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Abstract

We have proposed an area efficient implementa-
tion of Cellular Neural Network by using the time-
multiplezed method [6]. This paper describes the un-
derlying theory, method, and the circuit architecture
of a VLSI implementation. Spice simulation results
have been obtained to illustrate the circuit operation.
A building block cell of a time-multiplexed cellular neu-
ral network has been completed and is currently being
fabricated. We expect to deliver test results at the Con-
ference.

1: Introduction

Cellular neural networks are a parallel computing
paradigm characterised by locally connected architec-
ture. They are particularly suitable for image pro-
cessing. Although the computing elements are lo-
calised, the dynamics of transient evolution propagates
throughout the network and global processing of infor-
mation is achieved. The local nature of interconnection
amongst the computing elements is particularly suited
to VLSI implementation for the obvious reason of re-
duced area spent on routing of connections.

The design of general purpose, programmable cel-
lular neural network (CNN) chips with dimensions re-
quired for practical applications still remains a chal-
lenge. In a standard CNN (SCNN), a programmable
basic cell would require 18 multipliers (9 each for
feedback (a,,) and feedforward (b,,) template coeffi-
cient values). Thus, the chip area is proportional to
18N?, where N is the array size. For example, a pro-
grammable CNN chip by Halonen et al. required 1 mm?
per cell [4]. Another programmable CNN chip by Lim
et al. had an area of 0.4 mm? per cell [7]. A recent chip
by Kinget et al. [5] had a cell size of 0.26 mm? (see
Table 1). For practical image processing applications,
a simple implementation of a programmable CNN re-
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quires a prohibitively large area.

To reduce the number of multipliers, instead of using
9 multipliers, we propose using one multiplier 9 times in
a multiplexed fashion. With this scheme, a time multi-
plexed CNN (TMCNN) cell requires only 2 multipliers,
one each for a,, and b,, values respectively. This tech-
nique results in large area saving in implementing a
fully programmable CNN.

2: Mathematical model of time-

multiplexed CNN (TMCNN)

The circuit model equation of a CNN (assuming sin-
gle layer and unity neighbourhood size) can be written
as: [1]
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where Vy;; is the cell state, m an index, being a di-
rection indicator {(NE, N, NW, ..., §, SW) around a
cell C(i,5), Vy7; the cell output correspondmg to the
neighbour of cell C(%,5) in direction m, V[, the exter-
nal neighbour input, 7 the bias and a,, and b,, the co-
efficients in the feedback A-template and feedforward
B-template respectively.

In order to perform the time multiplexing, eqn. 1 is
rewritten as:
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where m is varying from 1 to 9 (ad infinitum). A
factor M is included in the equation owing to the mul-
tiplexing process and M varies according to the number
of active template coefficients. The maximum value of
M is 9 for a single layer CNN with unity neighbourhood
size. Contributory components in the same direction m
for all cells are obtained by performing summation over
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Figure 1. Edge detection of a square pattern
of array size 8 x 8. A dot denotes a black pixel
and a circle a white pixel. (a) Original pattern.
(b) Final pattern after detection.

a periodic pulse of width 7" through small incremental
time steps.

A C-program was written to solve the differential
equation (2) using the Runge Kutta Method. The soft-
ware was successfully applied to perform edge detection
with the conditions in equations(3)-(5) and the results
are shown in fig. 1.

0 0 0
A= [0 200}, 3)
0 0 0
—0.25 —~0.25 —0.25
B = | =025 20 -025 |, (4
~0.25 —0.25 —0.25
I = —02. ()

The edge detection result for an 8 x 8 array CNN
was successful and the results shown in fig. 1.

3: TMICNN cell

In a TMCNN building block cell, some multipliers
are replaced with transmission gates (see fig. 2). Only
2 time multiplexed core multipliers are used for the A
and B templates. The timing diagram of the driving
pulses for the transmission gates and the gain control
voltage waveforms for the time multiplexed multipliers
(A and B multiplier) are shown in the inset of fig. 2.
The a,, and b,, coeflicients are implemented by apply-
ing their values in a time multiplexed manner on Vj4(t)
and Vg (t) (see fig. 2). Each template coeflicient will be
active for one-ninth of the time since there are 9 coeffi-
cients each in A- and B-templates respectively. Corre-
sponding coefficients in the two templates are concur-
rently active. While the mth coefficients in the A and
B templates are active, the mth neighbouring output
Vym and the mth input source V7, will be sent to the
A and B multipliers respectively (as shown in fig. 2).
The timing sequence of the driving pulses control which
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and when V72, and V7, will be connected to the inputs
of the A- or B-multiplier respectively by the transmis-
sion gates. Assuming that the A- and B-templates are
space invariant, the same multiplexing pulse V,,, will
drive all the cells in the CNN with the corresponding
Vy,?ﬁ and V7 . The appropriate gain of the multipli-
ers are set by the gain control voltage waveforms V4 (1)
and Vp(t). The dynamic evolution of the CNN occurs
as a result of the continuous integration process across
the state capacitors.

3.1: The multiplier circuit

The multiplier is a Gilbert four quadrant multiplier
circuit as described by Mead [8]. The gain and sign of
the multipliers are determined by the magnitude and
sign of a,, and b,, values. These are globally pro-
grammable by the common V4(t) and Vp(t) voltage
sources. In general, V4(t) and Vp(¢) are multi-level
voltage waveforms.

We have adopted a differential mode operation for
the multiplier. The differential mode operation will
suppress common mode noise in the circuit. Trans-
mission gates are used to implement the multiplexing
scheme. The switching process gives rise to quanti-
sation noise and clock feedthrough error owing to the
charge injection effect. The differential mode operation
alleviates some of these problems.

3.2: The active resistor

We make use of a MOS linear resistor as the active
resistor (a strict linearity may not be required but our
active resistor exhibits a large linearity throughout the
signal range in our operation). The configuration is
similar to that of Wang [10]. The active resistor con-
sists of 2 p-transistors connected in series. The lower
device has its substrate node attached to the source
in order to eliminate the body effect. For an n-well
process, a separate n-well is required for this transis-
tor. The active resistor requires less silicon area than
a passive counterpart and the value is given by the ex-
pression:
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The active resistor is used as a load in the summing
and squashing circuit in fig. 2.

R, =

3.3: The MOS gate capacitor

We use MOS gate capacitors for the state node ca-~
pacitors. These capacitors have the advantage of higher
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Figure 2. The TMCNN building block basic
cell. The inset shows the timing diagram of
the driving pulses and the multipliers gain
control voltage waveforms V4 (t) and V().

value and less stray components compared with those
fabricated using double polysilicon structure. The lat-
ter feature is considered especially important since the
stray capacitance will affect the circuit dynamics. The
signal swing across the state nodes have bipolar polar-
ities and it is necessary to use a pair of nfet and pfet
transistors connected back to back.

3.4: The transmission gates

Transmission gates are designed with minimum ge-
ometry to reduce clock feedthrough error and hence
charge injection.

4: Spice simulation results

We interconnect a number of basic cells to form the
TMCNN array. The cells are fully programmable to
have different feedback and feedforward template val-
ues by programming the voltages values of the voltage
sources V4 (t) and Vp(t). The technological parame-
ters were those of Orbit Semiconductor’s 2 um double
metal, double polysilicon, n-well CMOS process. The
inputs, state variables and the bias must be scaled ap-
propriately [9] before the circuit can operate properly
according to the state equation in eqn.(2).

4.1: Trajectory of Chua’s 4 x 4 array

The multiplexing technique was applied to the CNN
described in Chua and Yang [1] with the same initial

82

Transient_ Waveform Quantization_Noise

Voliage voltage

i
3.00 -

1 |

Vx_nolse
_ VyZnoise”

3.00 —

250 250 —

200 200 —

Figure 3. The transient voltage waveform of a
cell circuit C(2,2) in a 4 x 4 array of a TMCNN
and SCNN. (a) The transient response of the
TMCNN is delayed as shown. (b) Noise rip-
ples are associated with the time multiplexing
scheme when the multiplexing pulses do not
have sufficiently short pulse width.

conditions as in fig. 9a of [1]. We used the same tem-
plates and bias conditions in [1], namely:

0 10
A= 1 2 1], B=0,
0 1 0
Similar circuits as in [1] were used except that time
multiplexing was used instead of a parallel implemen-
tation. The trajectory of the cell ((2,2) (for the cell
location, see [1]) was monitored both for a standard
CNN (SCNN) and our TMCNN. The transient wave-
form is shown in fig. 3. When time multiplexing, it
is not necessary to compute the zero a,, values and
so in this case, M = 5. Our results were exactly the
same for both types of CNN except that the multiplex-
ing process delayed the circuit response by M (= 5)
times. Noise owing to switching normally occurred in
the TMCNN waveform, as shown in (b) of fig. 3. The
quantisation noise ripples disappeared when the mul-
tiplexing pulse width T" was small enough (< 40 ns, in
the present case).

4.2: Horizontal line detection

The TMCNN cell was also successfully simulated as
a horizontal line detector. The input condition was
that of Chua’s fig.1 [1]. The input vector I, is a
4 x 4 array as shown in eqn.(8). Using a template of
A (eqn. 10), we obtain the output image of the output
vector OUT shown in eqn. (9). Fig. 4 shows the trajec-
tories of the state variables V; and outputs V; of two
cells Cy,; and Cy 1 which changed their signs during
the processing period of the horizontal line detection.
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Figure 4. Trajectories of state nodes V, and
outputs V, of cells C;,; and C5;

The waveforms exhibited some noise ripples which are
typical of the time-multiplexing method.
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4.3: Edge detection

We performed two simulation tests, first with the
usual template conditions of equations(3)-(5), and sec-
ond with equations(4) and (5) being lumped together.

4.3.1 Usual template conditions

A complete 8 x 8 array TMCNN was simulated. The
multiplexing pulse width 7' was 120 ns. The conditions
of equations (3)-(5) were used to successfully perform
edge detection (see fig. 1). Tt is of interest to note that
only 1 pass of each coefficient was needed to reach the
steady state response.
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Figure 5. Simplified circuit architecture of
time multiplexed CNN. IB is the substitute cur-
rent source in place of B-template multipliers
and the original bias Ib.

4.3.2 Lumped circuit conditions

It is noted that the input sources and the template co-
efficients are invariant with time during the processing
period. The terms of (35, _, b™u™+I/M) add up to a
constant sum. Hence these terms can be pre-computed
and programmed into the circuit as a fixed bias (IB).
Note that the original bias term Ib has been included
here.

A 6 x 6 TMCNN array was simulated using the
lumped circuit conditions and the result was success-
ful. A typical threshold bias expression # computed
off chip for a 6 x 6 array has the form shown below
(equ. 11).

-2.95 -2.95 —-345 -345 —-2.95 -—-2.95
-2.95 13 0.3 0.3 1.3 —-2.95
= -3.45 0.3 -1.2 =12 0.3 —3.45
T =345 03 -12 -12 0.3 —3.45
-295 1.3 0.3 0.3 1.3 =295
-2.95 —-2.95 —-3.45 -3.45 -295 -—2.95
(11)

In this circuit mode, all the B-template multipli-
ers have been dispensed with and replaced with sim-
ple dynamic current mirrors. This mode of operation
achieves a further reduction in chip area (at the ex-
pense of additional off-chip computation).

The simplified architecture is shown in fig. 5.



Figure 6. Layout design of the TMCNN build-
ing block cell

5: VLSI layout design of the TMCNN
building block cell

We performed the layout of a cell to implement the
TMCNN circuit architecture of Fig. 5. We made use
of linear MOS resistor and MOS gate capacitors de-
scribed in section 3. The active resistor is of 1.6M{
and has a high linearity throughout the range of signal
swing in our circuit. The MOS gate capacitance has a
value of about 0.5pf. From our simulation result, the
average cell current is about 100nA at a supply voltage
of +2.5V. The test chip will be sent out for fabrica-
tion soon and we expect to deliver test results at the
Conference.

Our cell occupies an area of 0.065 mm? which is
about a quarter of the size of the smallest reported
programmable CNN cell (see Table 1).

6: Delayed circuit response of the time
multiplexing scheme

The settling time 7 to reach steady state response
is inherently longer for a TMCNN than a SCNN. This
is due to the sequential operation of the time multi-
plexing scheme. In our simulation result of 4.3.1, 7 of
SCNN is 120 ns and that of TMCNN 1.1 ps. Our re-
sult showed that 7 of a TMCNN was about M times
that of a SCNN when the neighbourhood size is 1 (M
is 9 in this case.) Larger neighbourhood size and the
greater number of non-zero template coefficients will
increase 7. The multiplexing scheme is a function of
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Author Tem- Tech- Cell | Array
plates nology | Size | Size

Cruz et al. | Fixed 2 pm 0.032 | 6x6

1992 [2] mm?

Halonen et | Program- | 2 um 1.0 4x4

al. 1992 [4] | mable mm?

Espejo et Fixed 1.6 pm | 0.015 | 16 x 16

al. 1994 [3] mm?

Kinget et Program- | 2.4 pm | 0.26 | 4x4

al. 1995 [5] | mable mm?

TMCNN Program- | 2 pm 0.065 | test
mable mm? | cell

Table 1. Recent Analog VLSI CNN Implemen-
tation

these two factors since the active periods of different
template coefficients are the same and will share the
time within a cycle of the multiplexing pulses. The
scheme becomes complicated for CNNs of multiple lay-
ers. However most image processing problems can be
solved with single layer CNN and the maximum value
of Mis 9. Also, the extra processing time of TMCNN
may not be a problem since the processing bottle-neck
may lie with the throughput of the input and output
processing.

7: Conclusions

The time-multiplexed CNN was proposed and the
operation verified through mathematical modelling and
SPICE simulations. We have designed a building block
cell to implement the TMCNN. We expect to deliver
test results of the cell by the time of the Confer-
ence. A fully programmable CNN which is imple-
mented through this simple time multiplexing scheme
required one quarter of the chip area of a conventional
SCNN, making it feasible to implement single chip
VLSI CNNs with much higher densities than previous
approaches.
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