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Abstract—Adapting CNNs to changing problems is challenging on
resource-limited edge devices due to intensive computations, high preci-
sion requirements, large storage needs, and high bandwidth. This paper
presents BOOST, a novel block minifloat (BM)-based parallel CNN
training accelerator on memory- and computation-constrained FPGAs
for transfer learning (TL). By updating a small number of layers online,
BOOST enables adaptation to changing problems. Our approach utilizes
a unified 8-bit BM datatype (bm(2,5)), i.e., with a sign bit, 2 exponent
bits, and 5 mantissa bits, and proposes unified Conv and dilated Conv
blocks that support non-unit stride and enable task-level parallelism
during back-propagation to minimize latency. For ResNet20 and VGG-
like training on CIFAR-10 and SVHN datasets, BOOST achieves near
32-bit floating point accuracy, reducing latency by 21%-43% and BRAM
usage by 63%-66% compared to back-propagation training without TL.
Notably, BOOST outperforms the prior SOTA works to achieve per-
batch throughput of 131 and 209 GOPs for ResNet20 and VGG-like
respectively.

I. INTRODUCTION

Convolutional neural networks (CNNs) are widely used in various
deep learning scenarios at the edge, including object tracking [1],
image classification [2], natural language processing [3], and au-
tonomous driving [4]. However, most edge deployments focus on
inference only, involving offline training of the CNN model on GPUs
and fixed network parameters for execution. This approach lacks
the adaptability required to handle changes in the environment or
new tasks, necessitating re-training and re-deployment. Moreover,
transferring network parameters to/from GPUs for edge-based ma-
chine learning incurs additional data transmission, memory band-
width, and power consumption. The communication between edge
devices and cloud GPUs also raises concerns about data privacy and
latency. Consequently, there are significant challenges in deploying
highly parallelized back-propagation algorithms on memory- and
computation-constrained edge devices, limiting the scale of training
workloads and performance at the edge. This issue poses a significant
obstacle to the adoption of machine learning at the edge under
varying requirements or changing environments.

Training at the edge faces strict limitations in terms of memory
and computation resources. Consequently, only small neural networks
with high precision or relatively large networks with low-bit data
formats can be deployed. However, this compromises both task
accuracy and latency performance. As a result, there is growing
interest in low-precision and low-batch techniques for edge train-
ing, which minimize memory and computation requirements while
enabling higher parallelism with limited resources. Recent studies
have shown that even with low batch sizes as small as one and
reduced bit-width (sub-8 bits) [5], [6], similar convergence and
accuracy to training with floating-point precision and large batches
can be achieved, even on large datasets like ImageNet. However,
determining the optimal data format for CNN training at the edge
remains a challenge, as it involves balancing accuracy and execution
efficiency. Previous research has explored datatypes such as FP8,

INT8, and the more recent block floating-point (BFP) [7]. However,
ensuring adequate task accuracy with these techniques typically
requires additional statistical calculations (e.g., standard variance and
underflow rate) to determine scaling factors for each layer, posing a
critical hurdle [8], [9]. In this context, block minifloat (BM) [10]
has emerged as a promising solution, delivering near 32-bit floating-
point accuracy with 8-bit computational complexity and memory
bandwidth requirements for low-precision training at the edge.

To this end, block minifloat (BM) [10] delivers near 32-bit floating
point accuracy with 8-bit computational complexity and memory
bandwidth requirement, which becomes promising for low-precision
training at the edge.

However, low-precision training using the back-propagation algo-
rithm [11] remains relatively slow, as it requires three times more
multiply-and-add (MAC) operations than inference, resulting in three
times longer latency for training. This phenomenon is due to (1)
The workload of low-precision training remains the same amount of
MACs as full-precision floating-point training; and (2) Most prior
works adopted the same architecture (such as systolic arrays) for
forward Conv, backward transposed Conv, and dilated Conv, despite
their different computation patterns, resulting in low efficiency and
hence long latency in the generic architecture for gradient generation.

To address these obstacles, we propose BOOST, an efficient
accelerator that utilizes block minifloat (BM)-based transfer
learning (TL) to accelerate CNN training on FPGAs. TL reduces
the training workload by fine-tuning only the last several layers of a
pre-trained model, rather than starting from scratch, to achieve higher
accuracy with fewer training epochs. In particular, BOOST explores
channel parallelism and adopts unified bm(2,5) precision for end-
to-end stochastic gradient descent (SGD)-based back-propagation
CNN training, featuring task-parallelism of error back-propagation
and gradient generation. This novel low-precision arithmetic elimi-
nates the need for extra computations for layer-wise scaling factors
and implements simplified computation units with fewer on-FPGA
resources compared to FP32/FP16. Additionally, low-batch training
combined with TL allows relaxed memory requirements for on-
chip storage of input feature maps, eliminating time- and energy-
consuming external data access for forward activations.

In addition to the above, we design a unified Conv block that han-
dles both forward Conv and backward transposed Conv, along with a
dilated Conv block for gradient generation and weight update. These
Conv blocks enable task-level parallelism and significantly reduce the
back-propagation latency. Notably, our Conv blocks support non-unit
stride, a feature rarely discussed in prior works [12], [13]. In short,
the major contributions of this work are summarised as follows:

• To the best of our knowledge, this is the first FPGA-based CNN
training accelerator for TL using 8-bit BM arithmetic. BOOST
addresses the memory and computation demands of FP32 while



Fig. 1: Inductive TL of CNN for image classification. i. training from
scratch on the source dataset (e.g., CIFAR-100); ii. initialization of the
same CNN with pre-trained parameters; iii. fine-tuning FC (including
several final Conv layers) as a new linear classifier for the target
dataset (e.g., CIFAR-10).

achieving similar accuracy at much lower latency than training
from scratch.

• We propose a unified BM precision for CNN training,
bm(2,5), with modified CNN building blocks, which elimi-
nates the necessity of using different precision for the forward
and backward paths. This narrower bit-width allows for the
efficient reuse of computation units and saves logic resources
on the FPGA.

• We design a novel unified Conv block for both forward Conv and
backward transposed Conv, as well as a dilated Conv block with
a weight kernel partition scheme for gradient generation. These
blocks support non-unit stride and enable task-level parallelism,
minimizing back-propagation latency. 1

We demonstrate the performance and benefits of the proposed
BOOST accelerator on VGG-like [14] and ResNet20 [15] networks,
using unified bm(2,5) precision for end-to-end back-propagation
training. Experimental results show that BOOST achieves near 32-
bit floating point accuracy with a latency reduction of 21%-43% and
BRAM reduction of 63%-66% compared to back-propagation training
without TL. Furthermore, BOOST outperforms prior state-of-the-art
works with per-batch throughput of 131 and 209 GOPs for ResNet20
and VGG-like respectively [12], [13], [16]–[20].

II. PRELIMINARIES AND RELATED WORKS

In this section, we introduce the preliminaries of the proposed
accelerator, including the TL training workflow and the arithmetic
operations for SGD-based back-propagation training of CNNs. We
then review the BM number system and related works.

A. CNN Transfer Learning

With features learned from the source dataset, TL generally updates
parameters in the latter layers of the CNN on the target dataset, as
shown in Fig. 1. The pre-trained CNN is fine-tuned using the back-
propagation algorithm [11] with the SGD optimizer [21], as illustrated
in Algorithm 1, including four stages: (1) forward path, (2) backward
path, (3) gradient generation, and (4) weight update.

1Reference designs have been made available from https://github.
com/chuliang007/resnet20_training.

Algorithm 1: Conv patterns in SGD training with momentum,
including Conv, transposed Conv, and dilated Conv.

1 Input: image samples, X; categorical labels, y;
2 Variables: activation, A; weight, W ; error, E; gradient, G;

velocity, V ;
3 Parameters: stride, s; padding, p; momentum, α; learning

rate, η;
4 for n = 1 to N do
5 Choose k uniformly at random from {1, 2, 3, ..., N}

A1 = Xk;
/* Forward- Conv */

6 for l = 2 to L do
7 Al[co][h][w] =

∑Hout,Wout,Cin,Cout,Hwt,Wwt
h,w,ci,co,hk,wk=0

8 W l[co][ci][hk][wk]×Al−1[ci][h× s+ hk − p][w ×
s+ wk − p];

9 end
10 Calculate error EL using AL and label y{Xk}

/* Backward- Transposed Conv */
11 for l = L− 1 to M do
12 El+1

dil [ci][h× s][w × s] = El+1[ci][h][w];

13 El[co][h][w] =
∑Hout,Wout,Cin,Cout,Hwt,Wwt

h,w,ci,co,hk,wk=0

14 W l+1
rot [co][ci][hk][wk]× El+1

dil [ci][h+ hk − p][w +
wk − p];

15 end
/* Gradient- Dilated Conv */

16 for l = L to M do
17 El

dil[co][h× s][w × s] = El[co][h][w];

18 Gl[co][ci][h][w] =
∑Hout,Wout,Cin,Cout,Hwt,Wwt

h,w,ci,co,hk,wk=0

19 El
dil[co][hk][wk]×Al−1[ci][h+ hk − p][w+wk − p];

/* Weight update */
20 V l = αV l + ηGl;

21 W l = W l − V l;
22 end
23 end

Forward path: In the forward path, input activations pass through
each layer to produce the numeric output. Convolutional layers slide
weight kernels over input feature maps to generate output feature
maps. Batch normalization (BN) performs an affine transformation on
the output feature maps, while ReLU replaces negative values with
zeros. AvgPool reduces the feature map size through average pool-
ing. The fully-connected (FC) layer applies a linear transformation
between input activations and weights to produce outputs matching
the categorical labels.

Backward path: The backward path for unit-stride Conv is the
same as the forward path, except that weights are rotated by 180° in
the height and width dimensions, while filter and channel dimensions
are exchanged [22]. For non-unit stride, the transposed Conv acts as
an up-sampling layer, retaining the same connectivity pattern between
weights and input activations as the forward Conv. Normalized input
activations are reused with respect to the cost function to calculate
weight gradients, bias gradients, and back-propagated errors in BN
layers. ReLU applies the same 0/1 mask as in the forward path,
and AvgPool replaces each pixel with multiple pixels of the same
averages. FC maintains the same computational pattern, except for
transposed linear weights. In TL scenarios, the backward path can
be shortened by back-propagating errors amongst several of the final
layers, i.e., from L to M layers, where M ≥ 2.
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Fig. 2: Minifloat and BM representations. The shared exponent is
common for minifloats of the same tile group and aligning the
maximum minifloat with the maximum floating point.

Gradient generation: Gradients in the back-propagation algorithm
are calculated using dilated Conv between forward input activations
and back-propagated errors. This approach avoids repeatedly deriving
gradients with the chain rule for each layer. In the case of non-
unit stride, errors are dilated with zeros between adjacent pixels and
expanded to match the receptive field size of the input activations in
the previous layer. Dilated Conv operates independently on feature
maps from different channels.

Weight update: Network parameters, such as weights and biases,
can be immediately updated once gradients have been generated. The
SGD optimizer with momentum is used, considering both current and
past gradients to determine the next direction of gradient descent.
Momentum velocities accumulated by weight gradients per iteration
are stored as well.

B. BM Number System

The BM number system, denoted as bm(e,m) [10], is a novel
floating-point representation designed for low-precision training, as
depicted in Fig. 2. It employs an 8-bit shared exponent for each
tile group consisting of 48 × 48 minifloats (with a tile size of 48).
The shared exponent serves as a tile-wise scaling factor, ensuring
that the maximum 8-bit minifloat aligns with the maximum floating
point value. This approach avoids overflow issues and provides
finer-grained scaling compared to traditional layer-wise loss/gradient
scaling methods [8], [9].

C. Related Work

1) Low-precision training: Prior works in low-precision training
have explored INT8 [17]–[19] or INT16 [23] formats, which often
suffer from accuracy degradation due to the limited dynamic range of
gradients in integer training [24]. Alternative approaches, such as the
Efficient Training Accelerator (ETA), introduced the PINT8 format,
achieving close-to-baseline training accuracy [13]. Block Floating-
Point (BFP) training has also gained attention for achieving a balance
between INT-like performance and floating-point accuracy. Hybrid
BFP-FP number representations, such as HBFP, have been proposed
for DNN training with FPGA implementations [7]. The Fast First,
Accuracy Second Training (FAST) system [25] supports variable
precision BFP with bit-parallel implementations, achieving similar
accuracy to HFP8 [26] on CNN and transformer models at faster
speeds. FlexBlock [27] supports various floating point precisions,
including 4-bit, 8-bit, and 16-bit mantissa with an 8-bit exponent,
utilizing hierarchical sub-word parallelism. Bitlet [28] employs bit-
level sparsity parallelism and bit-interleaved processing elements
but lacks acceleration for back-propagation in training. While Block
Minifloat (BM) incurs higher complexity than fixed-point logic, it has
demonstrated the best-reported accuracy for sub-8-bit training.

2) FPGA-based training accelerators: Existing FPGA-based CNN
training accelerators often prioritize throughput improvements and
rely on large batches (e.g., from 16 to 128). However, such designs
consume substantial resources and lack flexibility, particularly for
deep networks. This approach is not suitable for training on edge
devices with limited memory and where latency is critical. Most
existing CIFAR-10 training techniques only support older CNNs
with unit stride, and their Conv blocks are unable to handle non-
unit stride in the forward path or transposed Conv in the backward
path. Additionally, many works neglect the inclusion of normalization
layers, such as batch normalization (BN), due to the computation
complexity and latency concerns. However, BN is known to be crucial
for achieving high CNN accuracy [29]. Some approaches, such as
ETA [13] and FlexBlock [27], incorporate L1-norm filter response
normalization (L1-FRN) layers or RangeBN [30] to address these
challenges and improve accuracy.

Moreover, prior FPGA-based training accelerators have not ex-
plored the use of TL for CNNs, which can offer additional benefits
in terms of latency and memory usage. While FPGA-based infer-
ence accelerators have been proposed [31], which utilize pre-trained
weights and efficient Conv blocks from top layers, they still rely on
complete back-propagation and do not effectively reduce latency.

III. ALGORITHMIC OPTIMIZATIONS FOR CNN TRAINING

In this section, we present algorithmic optimizations for CNN
training to increase hardware efficiency on FPGAs.

A. Unified bm(2,5) Precision for Forward/Backward Operations

The CNN task accuracy is strongly dependent on the numerical
precision and dynamic range during training. Given a certain floating-
point bit-width, such as 8 bits, there exists a bit-width balance
between the mantissa (numerical precision) and the exponent (dy-
namic range). Hybrid precision is favored in GPU training due to
the different preferences for dynamic range and numerical precision
between the forward and backward paths [26]. However, on an FPGA,
accommodating a multiplier/adder/MAC capable of handling all these
data formats or separate ones would result in idle components for a
significant proportion of the time. To avoid this, we adopt a unified
Block Minifloat (BM) precision for on-FPGA training.

From a hardware perspective, fewer exponent bits are preferred
due to a narrower bit shifter and reduced critical path delay for
accumulators and multipliers. Specifically, the required bit-width of
the Kulisch accumulator, which converts floating points into full-
length fixed points and performs error-free addition for dot products,
grows exponentially with the exponent bits of minifloats. The lim-
ited dynamic range often leads to significant accuracy degradation,
especially in the backward path and gradient generation, where errors
and gradients prioritize dynamic range over precision, as reported in
[26]. However, as shown in the visualization presented in [32], the
dynamic range of errors within each layer can be adequately captured
by a 2-bit exponent, even if their absolute magnitudes are very small
(e.g., smaller than 2−10 in ResNet18 training on ImageNet).

Using BM arithmetic, we can effectively capture the dynamic
range within a tile group (typically smaller than a layer) by utilizing
a small minifloat exponent, such as 2 bits, and scaling it to tiny
absolute magnitudes with the assistance of a shared exponent of
sufficient bit-width. This approach eliminates the need for a 40-
bit accumulator in the backward path, as required in the original
hybrid bm(2,5)/bm(4,3) precision [10], resulting in saved com-
putation resources and reduced critical latency [10]. In our practical
implementation, we allocate 8 bits for shared exponents and choose
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TABLE I: Top-1 accuracy on CIFAR-10 and SVHN training from
scratch.

Model Precision (FP/BP) CIFAR-10 Acc. SVHN Acc.

VGG-like

FP32 86.46% 92.60%
BFP8 85.63% 91.77%

bm(2,5)/bm(4,3) 86.39% 92.05%
bm(2,5) 86.43% 92.12%

ResNet20

FP32 90.04% 93.34%
BFP8 87.56% 90.17%

bm(2,5)/bm(4,3) 89.38% 92.13%
bm(2,5) 89.71% 92.57%

a tile size of 32 to ensure adequate dynamic range. Experimental
results on CIFAR-10 and SVHN datasets, as presented in Table I,
demonstrate that modified ResNet20 and VGG-like networks utilizing
the unified bm(2,5) precision achieve comparable accuracy to FP32
and outperform hybrid BM and BFP8 [7] precision methods.

B. TL-Oriented Improvements to CNN Building Blocks

Layer fusion [33] is commonly used to combine Batch Nor-
malization (BN) with the previous Convolutional (Conv) layer to
reduce latency during inference. However, in backward propagation,
BN requires channel-wise gradients for the BN weights and bias,
which can only be computed after the mini-batch Conv operation
is completed. This makes fusing backward BN into Conv layers
challenging. To address this, we perform layer fusion by moving
the second Rectified Linear Unit (ReLU) function in the ResNet
basic building block before the shortcut addition. This fuses ReLU
and BN, enabling each basic block to be processed with just Conv
and the fused BN&ReLU functions. In the VGG-like network, we
replace the max-pooling layers with stride-2 Conv layers to maximize
computation block reuse. This ensures efficient hardware utilization.

However, due to the limited feature representations of the mod-
ified ResNet20 and VGG-like networks, their performance on the
ImageNet dataset during a 90-epoch training is subpar, achieving a
top-1 accuracy of 40.23% and 28.10%, respectively. Therefore, for the
purpose of proof-of-concept, we pre-train the ResNet20 and VGG-
like networks on CIFAR-100 using unified bm(2,5) precision and
then transfer the network parameters to the CIFAR-10 and SVHN
datasets as a starting point for fine-tuning. Fully-connected (FC) layer
is randomly initialized and trained from scratch due to the different
number of classes in CIFAR-100. As presented in Table II, fine-
tuning the pre-trained CNN models on CIFAR-100 achieves higher
accuracy compared to training from scratch with randomly initialized
network parameters. This illustrates an opportunity for the trade-off
between accuracy and hardware efficiency, i.e., only activations in
the final several trainable layers are kept for back-propagation. As
our TL strategy, we update the last 6 and 2 Conv layers of ResNet20
(batch size 4) for SVHN and CIFAR-10 respectively, and the last 3
Conv layers of VGG-like (batch size 8) for both datasets.

TABLE II: Top-1 accuracy of TL on CIFAR-10 and SVHN from
CIFAR-100. Unified bm(2,5) precision is utilized.

Model Layer Update CIFAR-10 Acc. SVHN Acc.

VGG-like

Full update 87.12% 92.75%
4 Conv + FC 86.57% 91.29%
3 Conv + FC 86.62% 91.31%
2 Conv + FC 83.76% 84.62%

ResNet20

Full update 90.89% 94.16%
6 Conv + FC 90.37% 92.26%
4 Conv + FC 89.39% 91.23%
2 Conv + FC 88.97% 90.34%

Fig. 3: Modifications to the basic building block of ResNet20 and
VGG-like.

IV. PROPOSED ACCELERATOR

With the proposed unified bm(2,5) precision and improvements
on the CNN building blocks, this section presents the details of the
proposed accelerator BOOST for CNN training, implemented in high-
level synthesis (HLS) using a coding style inspired by FraBNN [34].

A. Overall Architecture

The BOOST training accelerator can support the most commonly
used CNN layers. For example, the modified ResNet20 accelerator
requires the following operation types: 3 × 3 Conv and transposed
Conv with stride 1 and 2, 1×1 Conv and transposed Conv with stride
2, 3 × 3 dilated Conv with stride 1 and 2, 1 × 1 dilated Conv with
stride 2, 8× 8 AvgPool, FC, BN&ReLU, and shortcut addition.

Fig. 4 illustrates the execution of basic building blocks for the
forward path, backward path, gradient generation, and weight update.
To maximize hardware utilization, we generate at most one instance
of each computational block and process the CNN sequentially,
layer by layer. In both forward and backward paths, the layer-
by-layer processing is decoupled into the sequential execution of
Conv, BN ReLU, and shortcut addition in basic building blocks, as
shown in Fig. 4 (a) and (b). Since BN layers and shortcut addition
cannot be fused into adjacent Conv layers, their sequential processing
contributes to a significant portion of the overall latency.

To address the abovementioned performance degradation, in con-
trast to the prior works that process error back-propagation and
weight gradient generation sequentially, we employ task-level par-
allelism by processing transpose Conv and dilated Conv for the same
Conv layer in parallel (Fig. 4 (b)). This approach reduces the latency
of weight update to approximately 2× the latency for inference, this
being a significant improvement over references [12], [13] which
require 3×.

Processing elements (PEs) implement a sliding window Conv, as
shown in Fig. 4 (c), where BM arithmetic is applied in the dot prod-
ucts. Gradual underflow with denormals and Kulisch accumulation
are crucial to achieving high accuracy in BM training [10]. Here
we use unified bm(2,5) precision for activations, weights, errors,
gradients, and momentum velocities during training, which supports
denormals, normals, and zero as depicted in Eq. (1):

X⟨2, 5⟩ =
{

(−1)s × 21−b ×
(
0 +m× 2−5

)
, (e = 0)

(−1)s × 2e−b ×
(
1 +m× 2−5

)
, (e ̸= 0)

(1)

where the minifloat X is represented by sign s, exponent e, mantissa
m, and exponent bias b = 22−1 − 1. 8-bit minifloats in bm(2,5)
format are converted to 20-bit fixed points for error-free Kulisch
accumulation in dot products.2 Updated weights and velocities are

2To save DSP resources, multipliers and adders are synthesized with LUTs
while only MAC units utilize DSP48E2s.
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transferred back to off-chip DDR after data conversion from fixed
point to BM, where the leading-zero counter is implemented by
hls::log2() inherently supported in the HLS math library, and
stochastic rounding is implemented by a linear feedback shift register.

Algorithm 2: Channel tiling for ResNet20 training with BM

1 Variables: activation, A; weight, W ; error, E; gradient, G;
velocity, V ;

2 Parameters:
3 #input/output channel, in channels, out channels;
4 input/output CPF, ch in t = 8, ch out t = 8;
5 ...
/* layer_1_0 Conv2 forward */

6 in channels = 16;
7 out channels = 16;
8 for c out = 0 to out channels/ch out t− 1 do
9 activation index update;

10 for c in = 0 to in channels/ch in t− 1 do
11 weight index update;
12 function load weight (W );
13 function Conv (A,W );
14 shared exponent update;
15 end
16 function BN&ReLU (A);
17 end
18 function shortcut addition (A,A);
19 ...
/* layer_1_0 Conv2 backward */

20 in channels = 16;
21 out channels = 16;
22 for in channels/ch in t− 1 to c in = 0 do
23 activation index update;
24 function BN&ReLU (A,E);
25 for out channels/ch out t− 1 to c out = 0 do
26 weight index update;
27 function load weight momentum (W,V );
28 function Conv (E,W ) and Conv grad (A,E);
29 function write weight momentum (W,V );
30 shared exponent update;
31 end
32 end
33 ...

In a high-level construction of the accelerator, channel parallelism
is adopted for input and output channels, with a channel parallelism
factor (CPF) of 8 (as shown in Algorithm 2). This allows the parallel
processing of feature maps from 8 input and output channels. Thus,
it iterates 4, 16, and 64 times for Conv layer stacks with 16, 32, and
64 channels, respectively. The activation, weight, and 1-bit ReLU
mask indexes are updated when switching channels and layers. The
shared exponent of the BM is separately stored and aligns the 8-bit
minifloat with the maximum number. By employing channel tiling,
the maximum number along feature map dimensions is determined
in pipelined function blocks, and the shared exponent is updated
accordingly. The tile size is chosen to accommodate the maximum
feature map size of the datasets (e.g., 32 for CIFAR-10 and SVHN),
enabling the division of the minifloat group along the feature map
dimension (i.e., width and height) of the activations in channel tiling.
We store the forward activations of the final layers on-chip while
reading/writing weights and momentum velocities from/to off-chip

DDR, which provides several benefits:
• It allows for larger-scale CNNs supported within the FPGA’s

memory resource budget by keeping the weights off-chip.
• On-chip activations eliminate the time-consuming DDR transfer

of variable-sized feature maps, which is typically slower than
fetching and unpacking weights in previous works [12], [13].

• On-chip activations contribute to higher throughput as batch size
increases, thanks to weight reuse across batches. This effect
becomes more pronounced as the proportion of external data
access latency grows.

B. Unified Conv Block

The unified Conv block is a critical component responsible for
performing forward Conv and backward transposed Conv operations
with support for non-unit stride (e.g., stride 1 and 2 for ResNet20
and VGG-like). Its design aims to optimize memory bandwidth and
maximize hardware efficiency.

To achieve efficient memory access, the block utilizes a com-
bination of local buffering techniques, namely the line buffer and
window buffer. The line buffer stores lines from the input feature
map and updates pixels vertically. It has the same number of rows as
the input feature map and a number of columns equal to the height
of the weight kernel. This configuration allows the sliding window
of the weight kernel to efficiently compute with the locally stored
pixels of the input feature map horizontally. In addition, channel-
level parallelism is achieved by employing an array of line buffers,
where each line buffer corresponds to an input feature map. The
window buffer follows the shifting pattern of the weight kernel over
the image, and it copies the necessary pixels from the line buffer
for processing by the kernel. By utilizing multiple window buffers,
corresponding to different input channels, and applying parallelism
across them, the block can generate multiple output feature maps
simultaneously. For example, for the CPF of 8, 8 window buffers
can sample 8 line buffers that correspond to 8 input channels, and 8
kernels can be applied to these window buffers in parallel; this results
in 8 output feature maps per clock cycle.

The structure of the line buffer and window buffer architecture
is depicted in Fig. 5. It demonstrates how the line buffer, with the
same number of columns as the input feature map, slides down
along the column, while the window buffer slides right along the
row of the line buffer. This coordinated movement allows efficient
computation of Conv and transposed Conv operations with minimal
memory bandwidth requirements.

In terms of specific Conv operations, the block supports both unit-
stride Conv and transposed Conv. They share the same computational
pattern, with the only difference being the 180°rotation of weights and
exchange between the filter and channel dimensions for transposed
Conv. For stride-2 Conv in the forward path, where the output feature
map size is halved compared to the input, a strategy is employed to
discard output pixels every two steps, taking into account the limited
capacity of the line buffer. Similarly, for stride-2 transposed Conv in
the backward path, zeros are inserted between adjacent pixels during
the buffering process to ensure consistent processing of Conv and
transposed Conv operations with arbitrary strides.

C. Dilated Conv Block

In Conv layers, errors are computed using error and rotated
weights, while gradients are generated using input activations and
errors. We apply task-level parallelism for error back-propagation and
weight gradient generation to ensure similar latency for the unified
Conv block and the dilated Conv block. However, the error, serving
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(a) Forward path.

(c) Proposed Conv blocks. (b) Backward path, gradient generation, and weight update.

Fig. 4: Overall architecture of the CNN training accelerator BOOST for layer-by-layer processing in ResNet training. (a) The proposed unified
Conv block and dilated Conv block utilize line buffer and window buffer for activations (and errors). (b) In the forward path, Conv, BN ReLU,
and shortcut addition are sequentially processed for each layer with the same block instances. (c) During the backward path, transposed
Conv and dilated Conv are deployed in task-level parallelism to hide the latency of gradient generation during error back-propagation.

Fig. 5: Line buffer and window buffer architecture in unified Conv
block. The line buffer with the same column as the input feature map
slides down along the column of the feature map, and the window
buffer with the same row as the line buffer slides right along the row
of the line buffer.

Fig. 6: Stride-2 Conv and transposed Conv. We perform stride-2 Conv
in unit-stride and discard output pixels every two steps in the forward
path, and dilate input feature maps with zeros when loaded into the
line buffer in the backward path.

as the weight, has the same size as the input, which is larger than the
size in the unified Conv block. This prevents the practical use of local
buffering for the input feature map since the window buffer and line
buffer would need to be the same size as the complete feature map,
such as from 8× 8 to 32× 32 for CIFAR-10 and SVHN datasets.

To overcome this limitation, we propose a weight kernel partition
scheme for dilated Conv. As illustrated in Fig. 7, we partition the
weight kernel, such as the 8×8-sized weight kernel in the last Conv
layer of ResNet20, into multiple 4× 4 regions. These regions can be
arranged in the window buffer of a similar size as the unified Conv

Fig. 7: Weight kernel partition in dilated Conv. The error as weight
kernel is partitioned into four 4× 4 small kernels for dilated Conv.

block. The size of the partitioning region can be adjusted, but a small
size would require frequent data communication and under-utilization
of the MAC units, slowing down gradient generation. On the other
hand, a large size would require a significant number of BRAM ports,
making it challenging to achieve a non-trivial initiation interval.

In this approach, we allocate separate groups of line buffers and
window buffers for errors and input activations, respectively (Fig. 4
(c)). For each computation, 4×4 partitioned weights are loaded. The
decision to use partial sums as part of the weight gradient pixel is
determined by the pixel indexing of feature maps, which naturally
occurs in sliding windows of dilated Conv. To avoid duplicate
summations, partial sums are added to the same weight gradient every
four Conv steps. For example, the partial sum at step 0 (grey area in
Fig. 7(a)) contributes to the pixel of weight gradient [0][0], while the
partial sum at step 1 (grey area in Fig. 7(b)) contributes to the pixel of
weight gradient [0][1]. After four steps, the partitioned weight kernel
contributes again to the pixel of weight gradient [0][0] (yellow area
in Fig. 7(a)). Weight gradients in local buffers can be released after
the velocity accumulation during the weight update phase, which is
inlined in pipeline processing following gradient generation.

Although dilated Conv typically exhibits batch-level parallelism
instead of channel-level parallelism in Conv and transposed Conv,
the dilated Conv block for gradient generation requires nearly the
same latency as the unified Conv block when the feature map size
is the same. This is due to the channel-pipelined processing of
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local buffering and unit-stride Conv. Therefore, neither of the Conv
blocks degrades the latency of the task-level parallelism between the
transposed Conv and dilated Conv.

V. EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup and then
present our TL results on FPGAs.

A. Experimental Setup

We implement the training accelerator BOOST in HLS, synthesize,
implement, place and route using Vivado design suite 2019.2, and
evaluate the performance on a Xilinx ZCU102 FPGA. This board
uses the Zynq UltraScale+ MPSoC, which contains an embedded
ARM CPU. The programmable logic fabric has 274K LUTs, 2520
DSPs, and 64 Mb BRAMs. We have implemented accelerators with
all parameters updated, and accelerators for TL using different layer
update strategies as demonstrated in section III-B with forward
activations kept on-chip. ResNet20 and VGG-like networks are first
pre-trained on CIFAR-100 and then fine-tuned on CIFAR-10 and
SVHN respectively with a re-initialized 10-class FC layer. Weights
include off-chip 3×3 and 1×1 kernels in Conv layers, on-chip scalar
weights in BN layers, and 2-dimensional linear weights in the FC
layer. Biases in BN and FC layers are also updated on-chip. Inputs
are 32 × 32 RGB images loaded from off-chip DDR4 through an
AXI-lite bus under the control logic executed by the ARM-based
processor. Activations/errors and gradients are stored on-chip for
forward/backward operations and weight update, and discarded from
double buffers after processing of the current layer. The remaining
training workloads are executed on the FPGA logic part, running at
a system frequency of 225MHz.

Note that our BOOST implementation is also capable of complete
back-propagation training since we support all arithmetic operators
in ResNet20 and VGG-like. It is in principle scalable to different
CNNs and datasets, but in this paper we implement CIFAR-10 and
ResNet20 for comparison with the literature.

B. FPGA Implementation

To validate the functionality of the ResNet20 and VGG-like train-
ing accelerators, we demonstrate the training loss curve of CIFAR-10
with streaming images. The learning rate is fixed as 0.005 and 0.02
for ResNet20 and VGG-like respectively, both with a momentum of
0.9. As shown in Fig. 8, the ‘software’ curve sequentially processes
all layers with generic training algorithms (e.g., generic Conv, BN,
and FC) regardless of the channel number, while the ‘channel tiling’
curve additionally takes the same processing order as the hardware
design shown in Algorithm 2, where BN is operated inside output
channel tiling but outside input channel tiling. This difference makes
the convergence speed of these two curves not exactly the same. The
‘hardware’ curve utilizes the proposed unified Conv and dilated Conv
blocks as well as channel tiling. As for the ‘transferred’ curve, we
first train the networks with CIFAR-100 images, re-initialize the FC
layer, freeze Conv layers except for the last two of ResNet20 and
the last three of VGG-like, and then fine-tune the networks with the
CIFAR-10 images for another 90 iterations.

The CPF parameter is set at a maximum of 8 due to HLS tool
limitations on pipeline regions although it is in principle right to
increase above 8. The Conv block has a peak throughput of around
250 GOPs and requires memory bandwidth higher than 38.4 Gb/s
from the ZCU102 for off-chip weight access. Therefore, the design is
memory-bound and takes additional DDR transfer time. Since 3× 3
and 1 × 1 Conv weights would not be read/written from/to DDR

(a) ResNet20. (b) VGG-like.

Fig. 8: Training loss of the accelerators using CIFAR-10 images.

TABLE III: Resource utilization and power consumption of ResNet20
and VGG-like TL accelerators.

LUT DSP BRAM Power (W)
Full ResNet20 189K 502 1735 8.7

6 Conv+FC 142K 468 588 7.3
2 Conv+FC 131K 381 650 7.2

Full VGG-like 147K 373 1255 7.7
3 Conv+FC 130K 372 477 6.7

simultaneously in layer-by-layer processing, they are packed in 64
bits and sent through the same bundle and bus. Momentum velocities
utilize different bundles and buses from weights during weight update
phase. Writing updated weights and velocities takes less than twice
the time as reading weights due to the much higher frequency of the
DDR clock compared to the system clock.

The post-implementation reports of resource utilization and power
consumption are summarised in Table III. The BRAM usage for
storing forward activations greatly reduced in TL, i.e., 66% and 63%
for ResNet20 (CIFAR-10 accelerator utilizing more LUTRAM and
thus fewer BRAM than SVHN) and 62% for VGG-like. The FPGA
board power, including the FPGA, fans, and all other system power,
was estimated using the Xilinx Vivado Tool and measured with an
EcoFlow RIVER Max Portable Power Station.

Fig. 9 and 10 demonstrate the latency breakdown of BOOST
for batch 1 operation, including the forward path, backward path,
gradient generation, and total iteration time through the Vivado HLS
co-simulation reports and real hardware tests on the Zynq PL-PS
device. The latency in the forward path includes reading in Conv
weights and input images from off-chip DDR4 memory, sequential
processing of Conv layer stacks, AvgPool, FC, and calculating the
cross-entropy loss. The computation in the backward path (including
gradient generation and weight update) exhibits similar latency in
Conv layers due to task-level parallelism except for doubled latency
in BN layers because their gradients are first calculated before using
them for error back-propagation. The total latency also accounts for
Zynq system operations, such as communications with the ARM
processor through the AXI-lite bus. If without task-level parallelism,
this would result in a total throughput much lower than the peak
throughput of 250 GOPs during back-propagation.

In TL scenarios with all network parameters updated, training on
the source dataset simply serves to initialize the weights. Using a
source dataset of CIFAR-100 and a target dataset of CIFAR-10, we
observed an accuracy improvement of 1.18% (0.69%) for ResNet20
(VGG-like) networks compared with training from scratch. When
updating several of the final Conv and FC layers during TL, an
accuracy degradation of 0.74% for ResNet20 was observed. Similar
results are achieved for the SVHN target dataset. Freezing most of the
network parameters during back-propagation in TL brings benefits to
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TABLE IV: Performance comparison of FPGA-based CNN training accelerators.
[16] [17] [18] [12] [20] [19] [13] Ours

Device ZU19EG KCU1500 ZCU111 Stratix 10 MX ZCU102 MAX5 VC709 ZCU102
Data Format FP32 INT8 INT8 FP16 FP32 INT8 PINT8 bm(2,5)
Freq. (MHz) 200 250 180 185 100 200 200 225

Dataset CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-10 ImageNet CIFAR-10 CIFAR-10 ImageNet CIFAR-10 & SVHN
CNN Network LeNet10 VGG-like VGG16 VGG-like ResNet20 VGG16 VGG-like VGG16 ResNet20 ResNet18 VGG-like ResNet20

DSP 1500(76%) 1030(19%) 1037(25%) 1046(26%) 1040(26%) 1508(60%) 1680(67%) 6241(91%) 1728(48%) 373(15%) 502(20%)
LUT/ALM 33K(63%) 199K(30%) 73K(17%) 221K(31%) 239K(34%) - - 679K(57%) 132K(30%) 147K(54%) 189K(69%)

BRAM/M20K 174(18%) 1060(49%) 1045(97%) 2998(44%) 2558(37%) 787(86%) 812(89%) 1232(29%) 240(14%) 1255(69%) 1735(95.12%)
Norm - - - - - - BN - L1-FRN L1-FRN L1-FRN BN BN

Batch Parallel - - 1 1 1 1 1 128∗ 16∗ 16∗ 16∗ 1 1
Tput. (GOPs) 86 641 20 160 180 47 40 1417 611 659 811 209 131

Power (W) 14.2 26.8 - 20 20 7.71 8.2 13.5 8.4 8.6 8.6 7.7 8.7
Eff. (GOPs/W) 6.1 23.9 - 8 9 6.1 4.9 105.0 72.7 76.6 94.3 27.1 15.1

∗ Throughput of parallel multiple mini-batches.

Fig. 9: Latency breakdown of ResNet20 training accelerators running at 225 MHz.

Fig. 10: Latency breakdown of VGG-like training accelerators running at 225 MHz.

the latency of error back-propagation and weight gradient generation.
With the ResNet20 architecture, for SVHN, by updating only the last
6 Conv layers and the FC layer, we can halve the back-propagation
time; for CIFAR-10, updating only the last 2 Conv layers and FC
layer takes less than a quarter of the full back-propagation time.
This translates to reducing the total overall latency by 30% and 43%
respectively. Similarly, for the VGG-like architecture, a proper update
strategy for both CIFAR-10 and SVHN is to freeze all but the last 3
Conv and FC layers. This reduces the total latency by 21%.

Table IV compares our accelerators with prior CNN training works.
Since the modified ResNet20 and VGG-like networks for CIFAR-
10 and SVHN training are relatively compact, we are able to store
entire forward activations on the FPGA logic to avoid bandwidth
limitation incurred by off-chip DDR transfers of variable-sized input
feature maps. The DSP48E2 is primarily used for MAC units in
Conv blocks and index calculations. Although the overall throughput
may be lower than works of batch parallelism [13], [19], when
considering normalized throughput per batch, we achieve the (second)
highest performance of 131 and 209 GOPs for ResNet20 and VGG-
like respectively. Compared with the highest reported reference with
high-bandwidth memory (HBM2) [12], BOOST with complete back-
propagation requires 51% fewer DSPs and 21% fewer LUTs, but
22% more BRAM utilization (basically for the on-chip storage of
forward activations). In comparison with an Nvidia GeForce GTX
1080 Ti GPU, we observed throughputs of 24 and 49 GOPs on
ResNet20, and 77 and 139 GOPs on VGG-like for batch 1 and
2 respectively, with a power consumption of 55 Watt reported by

the nvidia-smi tool. In such low-batch training scenarios of
sequential processing for each batch, the FPGA implementation
demonstrates better energy efficiency and outperforms the memory-
bounded GPU in both throughput and power.

VI. CONCLUSION

We presented an FPGA-based TL accelerator, BOOST, for efficient
CNN back-propagation training with BMs. Our design utilized a
unified bm(2,5) precision for all data (e.g., weights, activations,
errors, gradients, and momentum velocities) and achieved similar
accuracy to FP32 for ResNet20 and VGG-like training on CIFAR-10
and SVHN. Our TL implementation utilizes fine-grained parallelism
via pipelining and task-level parallelism to achieve high performance.
Moreover, off-chip memory accesses are minimized by restricting off-
chip DDR accesses to Conv layer weight and momentum velocity
parameters, with other values including gradients and activations
being kept on-chip. While our implementation supports full back-
propagation, by applying TL where only several of the final Conv
and FC layers are trainable, we demonstrated that significant latency
and BRAM reduction can be achieved. Our future work will study
how high-bandwidth memory can be utilized to further improve
performance on large datasets and networks.
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