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ABSTRACT

Training Deep Neural Networks (DNN) with high efficiency can be difficult to
achieve with native floating point representations and commercially available
hardware. Specialized arithmetic with custom acceleration offers perhaps the most
promising alternative. Ongoing research is trending towards narrow floating point
representations, called minifloats, that pack more operations for a given silicon
area and consume less power. In this paper, we introduce Block Minifloat (BM),
a new spectrum of minifloat formats capable of training DNNs end-to-end with
only 4-8 bit weight, activation and gradient tensors. While standard floating point
representations have two degrees of freedom, via the exponent and mantissa, BM
exposes the exponent bias as an additional field for optimization. Crucially, this
enables training with fewer exponent bits, yielding dense integer-like hardware
for fused multiply-add (FMA) operations. For ResNet trained on ImageNet, 6-bit
BM achieves almost no degradation in floating point accuracy with FMA units
that are 4.1 x (23.9x) smaller and consume 2.3 x (16.1x) less energy than FP8
(FP32). Furthermore, our 8-bit BM format matches floating-point accuracy while
delivering a higher computational density and faster expected training times.

1 INTRODUCTION

The energy consumption and execution time associated with training Deep Neural Networks (DNNis)
is directly related to the precision of the underlying numerical representation. Most commercial
accelerators, such as NVIDIA Graphics Processing Units (GPUs), employ conventional floating point
representations due to their standard of use and wide dynamic range. However, double-precision
(FP64) and single-precision (FP32) formats have relatively high memory bandwidth requirements
and incur significant hardware overhead for general matrix multiplication (GEMM). To reduce these
costs and deliver training at increased speed and scale, representations have moved to 16-bit formats,
with NVIDIA and Google providing FP16 (IEEE-754,[2019) and Bfloat16 (Kalamkar et al.,2019)
respectively. With computational requirements for DNNs likely to increase, further performance
gains are necessary in both datacenter and edge devices, where there are stricter physical constraints.

New number representations must be easy to use and lead to high accuracy results. Recent 8-bit
floating-point representations have shown particular promise, achieving equivalent FP32 accuracy
over different tasks and datasets (Wang et al.| 2018} |Sun et al.| |2019). We refer to such representations
as minifloats in this paper. Minifloats are ideal candidates for optimization. By varying the number of
exponent and mantissa bits, many formats can be explored for different trade-offs of dynamic range
and precision. These include logarithmic and fixed point representations which provide substantial
gains in speed and hardware density compared to their floating-point counterparts. For instance,
32-bit integer adders are approximately 10x smaller and 4 x more energy efficient than comparative
FP16 units (Dallyl 2015). That said, fixed point representations still lack the dynamic range necessary
to represent small gradients for backpropagation, and must be combined with other techniques for
training convergence.

Block floating point (BFP) in (Yang et al.| |2019; Drumond et al.| 2018)) share exponents across blocks
of 8-bit integer numbers, and provide a type of coarse-grained dynamic range for training. This
approach will typically incur some accuracy loss on more challenging datasets, however all dot-
products within the block can be computed with dense fixed point logic. In comparison, HFP§ (Sun
et al.,|2019) minifloats require larger floating-point units (expensive FP16 adders in particular) but
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have at least 5 exponent bits dedicated to each gradient and suffer zero degradation in accuracy. It
would seem that an ideal representation for training with both high efficiency and accuracy should
bridge the gap between each of these approaches. Our work achieves this for 8-bit and sub 8-bit
precision schemes, overcoming two key challenges in the process. These are listed below and
discussed with related works.

1.1 CHALLENGES AND RELATED WORK

Minimising data loss with fewer bits: While several works have demonstrated training with fewer
than 8 bits of precision, they typically lead to loss of accuracy on more complex problems and have
performance bottlenecks when parts of the algorithm are left in high precision (Hubara et al., 2017
Zhou et al |2016; [Miyashita et al.l |2016). The ability to train with persistent reduced precision
representations without losing accuracy remains a key challenge for end-to-end training. In this regard,
8 bit tensors with 16-bit updates can be trained effectively (Banner et al.| |2018)). Data loss arises
when formats do not have enough range to capture variations in tensor distributions during training.
BFloat (Kalamkar et al.|[2019) adds two extra exponent bits to their custom 16-bit representation, and
the Apex library is used in (Micikevicius et al.| [2017; |Wang et al., 2018; |Sun et al.,|2019) for scaling
the loss function into a numerically representable range. Block floating point and other variants apply
similar functionality for fixed point numbers, but at a finer granularity. WAGE (Wu et al.| [2018))
uses layer-wise scaling factors, SWALP (Yang et al.,|2019) shares exponents across feature maps or
convolution channels, and HBFP (Drumond et al., 2018)) does the same for dot-products, though their
implementation requires caching of intermediate activations in FP32 and wide weight storage for
better accuracy. S2FP8 (Cambier et al., [2020) replaces loss-scaling in FP8 (Wang et al., 2018) with
squeeze and shift factors that center 8-bit minifloats over the mean exponent of the value distribution.
Shift factors work in a similar fashion to BFP shared exponents, however squeeze factors can cause
precision to be diverted away from high value regions leading to errors in dot-product calculations.
We provide some empirical evidence of this effect in Section[d.3] Finally, HFP8 (Sun et al.| [2019)
defines two minifloat formats that are optimized for range and precision requirements of forward and
backward paths separately. In this work, we seek minifloat formats that have also been optimized for
arithmetic density.

Increasing the performance density of floating-point: Most DNN training frameworks are devel-
oped with GEMM accumulation in FP32. The authors in (Wang et al., 2018)) reduced the accumulation
width to FP16 with chunk-based computations and stochastic rounding. However, training minifloats
with even denser dot-products has not been demonstrated. For DNN inference, ELMA (Johnson)
2018) and posit number systems (Gustafson & Yonemotol 2017 describe arithmetic that accumulate
minifloat-like numbers as integers. Such work is applicable when the number of exponent bits is
small, however training under such regimes can lead to data loss due to limited dynamic range.

1.2 CONTRIBUTIONS

In this paper, we present the Block Minifloat (BM) representation which addresses both of the
aforementioned challenges. BM is a modification of block floating point that replaces the fixed point
values with minifloats, whilst maintaining shared exponents across blocks of numbers. BM formats
generalise a far wider spectrum of reduced precision representations and produce better outcomes
than previous 8-bit regimes. Specific contributions of our work include:

* Block Minifloat (BM), an efficient alternative to INT8 and FP8 for end-to-end DNN training
with comparable accuracy. Shared exponent biases provide dynamic range and accuracy,
while small exponent encodings provide fine-grained dynamic range and reduce the hardware
cost of GEMM accumulation.

* A new 8-bit floating-point format that uses no more than 4 exponent bits, achieving equiva-
lent accuracy to floating-point with denser hardware via efficient Kulisch accumulation.

* An exploration of the BM design space showing high accuracy DNN training with sub 8-bit
representations for all weights, activations and gradients. This includes two techniques
for minimising data loss of a practical implementation, namely gradual underflow and
cost-aware block designs, and results in 6-bit and 5-bit formats for training.



Under review as a conference paper at ICLR 2021

Exp. bias (8) |X| minifloat (3,2)

Ty —

Jannnsnnn SNl Rannusts | |

Align with max. exponent : <> :

ODs O [ ]
‘ -6

-2 0 5

|a| value distribution

' P log, |al

(a) Minifloat (b) BM (Shared exp. bias)

Figure 2: Exponent bias shifts the minifloat

Figure 1: Minifloat and Block Minifloat (BM) ten- distribution to align with the maximum expo-
sor representations nent of the value distribution

2 BLOCK MINIFLOAT REPRESENTATION

2.1 MINIFLOAT NUMBER FORMAT

Equation (I) computes the real value of a minifloat number, where (e, m) denote the number of
exponent and mantissa bits in the representation.

X(e,m) = E=0, (—1)*x 277 x(0+F x2™™) (denormal)
7/ Qotherwise,  (=1)* x 2877 x (14 F x27™) (normal)

The decimal expansions of the exponent and mantissa are both unsigned integers, given by E
and F respectively, s refers to the sign bit and 3 = 2¢! is the exponent bias for the binary-
offset encoding scheme. This is consistent with IEEE-754 floating point standards, except that our
minifloats are considerably smaller (4-8 bits only), can generalise to multiple (e, m) configurations,
and do not handle nan/infinity bit patterns. Instead, arithmetic is allowed to saturate at the limits
of the representable range [X;". X 1. For example, a minifloat representation with X <4, 3>
have exponent and mantissas that range between [0, 15] and [0, 7] respectively. Therefore, the
largest normal and smallest denormal positive numbers are X, = 240 and X", = 2710, This

corresponds to a dynamic range of 108 dB shown in Table[7/in Appendix [A.T]

(D

2.2 SHARED EXPONENT BIAS

The main difference between minifloat and block minifloat (BM) representations are highlighted
in Figure[I] Minifloats have one exponent per element, but that exponent must be wide enough to
tolerate changes in DNN tensor distributions during training (i.e. 5 bits for gradients in FP8 (Wang
et al.,[2018))). In contrast, BM share exponent biases across blocks of N minifloat numbers. This
provides equivalent dynamic range with respect to the block, but with fewer exponent bits than the
original minifloat format. Block Floating Point (BFP) operates similarly, but all numbers within the
block are integers (Drumond et al.,|2018). BM can generalise for this case, i.e. when e = 0.

The real value of the i*" element from BM tensor a is given in Equation (2), where X is an unbiased

minifloat tensor, represented by (e,m) exponent and mantissa bits, and /3, is the shared exponent bias.
a; = Xi{e,m) x 27Pe )

In this example, a; can only be represented accurately when the shared exponent bias (3, (calculated
for the entire tensor) and the distribution of X jointly captures the value distribution of a. For
example, large and small values in a could saturate or be lost altogether if 3, is too large or too small.
However, some leeway exists when exponents are shared across dot products. This is because dot
products are reduce operations, meaning their sum is dominated by the largest values in the inputs.
For this reason, we calculate 3, to specifically guard against overflow, and unlike (Cambier et al.,
2020) we don’t apply any scaling which could divert precision away from larger value regions. Our
method of updating 8 during training is illustrated in Figure 2] and formalized in Equation [3]below.

B, = max ([log, |al|) — (2° — 1) 3)

The first term denotes the maximum exponent for the tensor a, which changes and must be updated
during training, while the second term is fixed and refers to the maximum exponent of X.
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In terms of hardware, shared biases ensure that all dot products can be computed with denser minifloat
arithmetic. This is shown in Equationfor BM tensors a and b, each with IV elements.

N
a-b="" (X x 270 x (X] x 27%) ) = 27t (X2 X) @)

i=1
The dot product, X*- X°, have minifloat formats with smaller exponents, while the cost of calculating,

storing and aligning the exponent biases during training is amortized over the length of the dot-product.
Next we show how minifloat formats with fewer exponent bits lead to faster and more compact

hardware.

2.3 KULISCH ACCUMULATION

A Kulisch accumulator (Kulisch & Miranker, 2014) is a
fixed point accumulator that is wide enough to compute

Table 1: Kulisch accumulator examples

an error free sum of scalar floating-point products, over Format Kulisch AC,C :
the entire range of possible values. Kulisch accumula- (€a;ma)/(ep,my) | kadd  kshift
tors operate by shifting the mantissa of the floating point (8,23)/(8,23) 561 512
product into an internal register according to the expo- (5,2)/(6,1) 102 96
nent of the product. The sum proceeds as integer addition (4,3)/(5,2) 56 48
which is 4 — 10 x more efficient in terms of area and power (3,4)/(4,3) 34 24
compared to FP16 (Dally, |2015)). The number of bits re- (2,3)/(3,2) 20 12
quired for the internal register (i.e. the addend) and shifter,
scale the size and complexity of the accumulator and are INTS 32 )
provided as formulas in Equation (5) for BM operands
a = (eq,mg) and b = (ep, mp).
kadd =1+ (2° +mg + 1) + (2 + mp + 1) (5)
kshift = 2%« 4 2° (6)

In the above equations, kadd calculates the number of bits required for the largest product of two
numbers, plus one extra bit for the addition, and kshift determines the maximum number of bits the
mantissa product must be shifted to align with the addend. Crucially, by considering the size of kadd
and kshift, BM formats can be designed to trade-off fine-grained dynamic range (i.e. exponent
bits) for more precision and smaller hardware. In fact, formats with exponents up to 4 bits may
yield kadd of approximately the same size as INT8/INT32 arithmetic units, while kadd becomes
prohibitively wider and more expensive for larger exponents. This is clearly shown via example in
TableT]above, but more importantly, it is supported by hardware synthesis results given in Section 3]
and Appendix[A.4] For example, an 8-bit minifloat format having 4 exponent bits achieves a 1.6x
area reduction compared to HFPS8 (Sun et al., 2019) with 5 exponent bits. Furthermore, through an
extensive set of experiments we discover that such representations can also achieve high training
accuracy which forms a key contribution of our work.

3 TRAINING WITH BLOCK MINIFLOAT

3.1 MINIMIZING DATA LOSS

BM arithmetic will incur data loss when the value distribution is too wide or requires more precision
than can be captured by the underlying minifloat representation within a block. Below, we describe
steps taken to mitigate this problem without substantially increasing implementation overheads.

Gradual underflow: Our minifloats support denormal numbers as defined in Equation (T). Denormal
numbers have precision close to zero, and ensure that consecutively smaller quantized numbers
approach zero gradually. The alternative is flush-to-zero which discards the mantissa bits when
E = 0. This equates to approximately 12.5% of the exponent encoding when e = 3; this is highly
inefficient. Overhead for denormal numbers in hardware is minimal, and only requires detection of
E = 0 and a single bit flip in the multiplier. Our experiments show that gradual underflow is crucial
for BM formats with less than four exponent bits.
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Figure 3: End-to-end Training with Block Minifloat (BM). All off-chip memory transfers are low
precision BM tensors. BM alignments, weight updates, quantization, batchnormalization and ReLU
are executed in on-chip scalar FP32 units. The register file (RF) stores a block of V.

Block Size: Matrix multiplication with BM is computed by dividing tensors into NV x N blocks that
bound the number of exponent biases and reduce data loss, since each block shares one exponent
bias. Square blocks are chosen so that biases are contiguous in memory regardless of whether the
block is operating in the forward path or after transposition in the backward path. As such, BM can
be stored with a persistent data structure, that doesn’t require recasting or extra memory transfers
during training. This makes BM easy to use at the software level, but does mean that biases are shared
across N independent dot products. In terms of hardware cost, Equation [7] formalizes the relationship
between the size of IV and three overheads, where « refer to relative area costs for each overhead.

Kulisch FP Memory
log, N 1 8+ N2
(o)
cost:a1(1+ kgafid )+agﬁ+a3T (7)

For the first term, the width of the Kulisch accumulator must increase by log, N bits to prevent
overflow in the BM dot-products. In the second term, floating-point hardware (including quantization
and conversion modules) are required to accumulate, align and convert BM partial results, but the cost
is amortized over N fixed-point operations. Finally, in the last term, additional memory is required to
compute and store one 8-bit bias every IV x N values. For large block sizes, the extra silicon area
from Equation [7)is negligible compared to the GEMM but data loss from sharing biases can still be
significant. In Section (4.5), we used Equation [7]and determined that a block size of N = 48 offers a
good balance for both objectives and is used for the rest of this paper.

Hybrid representation: Different minifloat representations for forward and backward paths have
been shown to produce better accuracy for FP8 training (Sun et al., |2019). We apply the same idea,
and find the best balance of precision and range for both paths separately. Full details for all BM
formats are provided in Table |/ (in Appendix where forward and backward configurations
are given by (ey, my)/(es, mp) notation. Our formats cover each precision level between 4 and 8
bits, and are denoted by BM4, BMS5, BM6, BM7 and BMS in our experiments. For example, BM6
(2,3)/(3,2) refers to 6-bit BM training with weight and activation tensors represented by (2, 3) and
activation gradient tensors represented by (3, 2) minifloat formats.

3.2 TRAINING DETAILS AND GPU SIMULATION

BM offers an alternative to standard FP32 for the computationally intensive parts of training, which
is typically mapped to general matrix multiplication (GEMM). However, specialised hardware is
required to realise its potential gains in speed and energy efficiency. For the purposes of this paper,
we simulate the behaviour of BM hardware using GPUs and PyTorch. Given that dot products are
computed exactly via Kulisch accumulators, existing CUDA libraries for GEMM can be used without
modification, and all data loss is attributed to quantization only. Figure [3|provides an illustration
of the setup for each GEMM in forward and backward paths. In a practical implementation, BM
does not require any costly movement or storage of high precision tensors. This is enabled by
scalar processors after the GEMM (for FP32 operations, Kulisch to floating-point conversion, block
minifloat alignments, quantization etc.) and a weight update scheme that can compute and cache
high precision gradients on-chip (Sun et al.| 2019). Weight, activation and gradient tensors are
quantized to BM numbers with stochastic rounding as described in (Wang et al., 2018)). For the
software simulation, quantization is applied before each GEMM in forward and backward paths and
contributes significant performance overhead compared to standard PyTorch layers. An approximate
5x slow-down is realised on most networks and datasets, with support for denormal numbers the
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main implementation bottleneck. The realisation of the same function is comparatively cheap in
custom hardware however, and can be fully-pipelined for fast training times.

4 EXPERIMENTS

We evaluated the training accuracy of BM on a subset of image, language and object detection
modelling tasks. The entire spectrum of representations were explored on ImageNet (Deng et al.,
2009) and CIFAR (Krizhevsky et al., 2009) image recognition benchmarks, with results compared
against well-calibrated INTS8, FP8 and FP32 baselines. On other tasks, BM8 is compared with an
FP32 baseline.

Table 3: Training Accuracy (%) on CIFAR-10 for
Table 2: Final Validation Accuracy (%) on VGG16 and log quantization

CIFAR datasets for ResNet-18

kshift
Scheme CIFAR-10 CIFAR-100  CIFAR-10 FP32 Log Vi)
FP32 (ours) 94.9 715 log-5b' 941 938 -03 32

BM4 (2,1)/(3,0) 94.2 73.7 T (Miyashita et al.,|2016)
2 results achieved with base v/2

4.1 CIFAR-10 AND CIFAR-100

We ran CIFAR experiments using SGD with momentum of 0.9 for 200 epochs in batches of 128
images and initial learning rate of 0.1 which is decayed by a factor of 5 at the 60th, 120th and 160th
epochs. Table@]presents results for training ResNet-18 (He et al.l 2016) with only small BM6, BM5
and BM4 representations. These offer the highest reduction in memory usage while still reaching
very close to the FP32 baseline. For example, 6-bit BM training only records a 0.3% loss in accuracy
compared to FP32 on CIFAR-100 while theoretically saving 25% of memory read and write overheads
compared to FP8. We also tested logarithmic BM formats on CIFAR-10 and VGG16 network. Log
representations arise when m = 0, and require only adds and shifts for multiply-add arithmetic. Our
results use the same training parameters as before and are shown in Table[3] We compare against
the only previously known result for log training, i.e. log-5b (Miyashita et al.,|2016) and achieve
similar results with respect to FP32 for 5 bit and 4 bit. BM representations have exponent biases that
shifts tensor distributions dynamically during training, whereas log-5b define offset parameters at
each layer that are fixed. Allowing biases to vary during training gives BM an advantage, and results
in similar validation accuracy with only 4 bit words. This corresponds to approximately half the cost
for multiplication in the linear domain (by exponent add and Kulisch shift).

Table 4: Top-1 accuracy (%) of reduced precision (RP) training on ImageNet for ResNet-18 models

g Numerical representation (e, m) ResNet-18
cheme

w X dw dx acc FP32 RP
SWALP (Yang et al., 2019) 8! 8! 8! 8! 321 703  65.8
S2FP8 (Cambier et al.[[2020) (5,2)/(8,23) (5,2) (5,2) (5,2) (8,23) 703 69.6
HEPS (Sun et al 2019) (4,3) (4,3) (5,10) (5,2) (5,10) 694 69.4
BMS8 (2,5)/(4,3) (2,5) (2,5) (6,9) (4,3) 31t 69.7 69.8
BM7 (2,4)/(4,2) (2,4) (2,4)  (6,9) (4,2) 29! 69.7 69.6
BM6 (2,3)/(3,2) (2,3) (2,3)  (6,9) (3,2) 20! 69.7 69.0
BMS5 (2,2)/(3,1) (2,2) (2,2) (6,9 (3,1) 18' 697 668

! Fixed point
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4.2 IMAGENET

The ImageNet dataset has 1000 class labels, and consists of 256x256 images split into a training set
with 1.28 million images and validation set with 50,000 images. We use ResNet-18 (He et al.,[2016)
and AlexNet (Krizhevsky et al., 2012) architectures from the official PyTorch implementation
and train on one GPU with standard settings; SGD with momentum of 0.9, batches of 256 images,
and an initial learning rate of 0.1 (0.01 for AlexNet) which is decayed by a factor of 10 at epoch
30 and 60. ResNet-18 has been widely tested upon in previous work, and offers the most suitable
benchmark for exploring the full spectrum of BM representations, especially given the size of the
network as well as the cost of BM quantization on training times (approx. 5x slow-down). Results
are presented in Table E] where columns w, X, dw, dx and acc refer to the numerical representation for
weight, activation, weight gradient, activation gradient and on-chip GEMM accumulator. We achieve
FP32 equivalent accuracy for BM8 and BM7, slight degradation for BM6, while our BM5 exceeds
the reported accuracy for 8 bit SWALP (Yang et al., |2019). Compared to S2FP8 (Cambier et al.|
2020), our BM6 representation reaches similar levels of relative accuracy, but with two fewer bits and
without a high precision master copy of the weights. We provide some insights into possible reasons
for this in Section [4.5]by considering the possibility of diminishing returns in accuracy from scaling
minifloat representations. Compared with HFP8 (Sun et al.,|2019), which offers robust 8-bit training
results, BM8 produces the same accuracy on ImageNet while improving upon HFP8 in hardware
density and performance. BMS tensors can be represented with fewer exponent bits, and thus perform
dot products via Kulisch accumulators that are smaller and faster than FP16 units. Furthermore, BM
offers tradeoffs for even denser arithmetic and lower memory usage. In these regimes, BM hardware
is more comparable to SWALP (Yang et al., |2019) which performs the GEMM in fixed point. Proof
of BM design efficiencies are provided with RTL synthesis results in Section[5} Figure [6]

200
- 180 — FP32
2 —— BM8 (2,5)/(4,3)
2 160 —=— HFP8 (4,3)/(5,2)
Model (Dataset) [Metric] FP32 BMS 8 140 —+— BFP8 (0,7)/(0,7)
AlexNet (ImageNet) 56.0 56.2 5120
EfficientNet-b0 (small ImageNet) 62.6 61.8 3 100
LSTM (PTB)[Val ppl.] 84.7 87.33 2 40
Transformer-base IWSLT)[BLEU] 32.3 31.8
SSD-Lite (MbNetV2) (VOC)[mAP] 68.6 68.0 0 10 epzoochs 30 40
Table 5: Baseline FP32 v BMS training on Image, Figure 4: Validation perplexity of LSTM
Language and Object Detection models model on Penn Treebank

4.3 LANGUAGE MODELLING WITH LSTM

We compared 8-bit formats for language modeling on the Penn Treebank dataset Marcus et al.|(1993).
We adapted the 2-layer Long Short Term Memory (LSTM) network from PyTorch Examples||and
perform all GEMM operations with BM8 arithmetic. The batch size is 20, initial learning rate is 20
with 0.25 decay, the embedding and hidden dimensions are 650 and sequence length is 35. Results
in Figure 4| show BM8 with (2, 5)/(4, 3) hybrid configuration achieving better accuracy than BFP8
and HFPS variants. The proposed BMS representation has more fine-grained dynamic range and
fewer mantissa bits than BFPS, and more precision and fewer exponent bits than HFP8 formats.
This design point achieves better outcomes in terms of accuracy and hardware density than either
representation separately (see Figure[f] Section[5). Validation perplexity of 87.33 is also comparable
to 84.70 obtained with full-precision floating-point.

4.4 ADDITIONAL EXPERIMENTS

To demonstrate wider applicability of the BM number representation, we tested BM8 on several
additional networks and modelling tasks. Results are summarized in Table [ with full details of each

"Implementation available at https:/github.com/pytorch/examples/tree/master/imagenet
Implementation available at https:/github.com/pytorch/examples/tree/master/word_language_model
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experiment provided in Appendix[A.3] Crucially, every network tested achieved comparable accuracy
with baseline FP32. This includes EfficientNet-b0 (Tan & Lel [2019) image classification and SSD-
lite (L1u et al., 2016) with MobileNet-V2 object detection models, both of which represent the type of
network and application well suited to resource constrained hardware devices. Furthermore, we also
trained a small Transformer network for translation on the IWSLT German to English dataset (Cettolo
et al., 2014). In future work, we plan to scale our implementation and demonstrate training with
BM representations on larger networks and datasets. Network design with BM is another interesting
research direction, since the majority of network architectures have been designed and optimized
while assuming an FP32 arithmetic scheme.
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Figure 5: Experiments for minimising data loss with 6-bit Block Minifloat (BM6)

4.5 EMPIRICAL ANALYSIS

Effect of Denormal Numbers: To study the effect that denormal numbers have on training conver-
gence in sub 8-bit networks, we trained ResNet-18 on ImageNet for BM6 with denormals (ours)
and without denormals, using QPyTorch library (Zhang et al.l [2019)). Results are plotted against
floating point accuracy in Figure [5a] Without denormals, small numbers are flushed-to-zero and
training stagnates immediately. Although not shown here, 8-bit representations with more than e = 3
bits do not suffer similar accuracy degradation without denormals. This investigation confirms the
importance of denormal numbers for training BM formats with fewer exponent bits, and differentiates
our software and hardware experiments substantially from previous 8-bit regimes.

Selecting the Block Size: We conducted experiments on CIFAR100 to determine suitable block
sizes - those which simultaneously increase dynamic range and have low hardware overhead. Results
are shown in Figure [5Sb] We took the average of the largest range observed in gradient tensors at
different block settings, over the entire duration of training. Estimates of area come from Equation
with parameters; a; = 1, ag = 10 (relative area of fixed-point and floating-point respectively),
kadd = 21 and a3 = 0. We saturate the area cost at N = 256, which is consistent with the
length of dot-products supported by the GEMM architecture in TPU hardware (Jouppi et al.,[2017).
Finally, N = 48 emerged as a good selection, corresponding to one floating-point unit every 48
multiply-accumulate operations and one 8-bit exponent bias every 2304 minifloat numbers.

Scaling the Minifloat Representation: In Figure [2] which was discussed previously, minifloats
have exponent biases that shift the representation to align with the maximum of the underlying value
distribution. Additionally, the minifloat representation could be scaled (or stretched) over a wider or
narrower part of the value distribution. We investigate this effect by varying the base of the exponent,
and inspecting the underflow and root mean square error (rmse) of dot-products after quantization;
results are shown in Figure The tensor under test is a gradient tensor with maximum exponent
of -17 and mean exponent of -21. Mean scaling was proposed in S2FP8 (Cambier et al., 2020) for
8-bit training and works by centering the minifloat over the mean of the exponent value distribution.

For the (3,2) format, mean scaling requires a base of 2.52, calculated as b = 2%. This is akin
to redirecting precision from high value regions into smaller underflow regions, the result of which
observably leads to increased error in the tested 6-bit regime. Better approaches could be designed to
detect underflow and use higher precision arithmetic where necessary.
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Area Power

Component (um?) (W)
70 1 FP32 HFP8 BM8

FP32 4782 10051 = —e—e BM7
FP8 (w/FP16add) 829 1429 € ool P16 ® i BMS
INT8 (w/INT32 add) 417 1269 g
BMS 391 1141 3 68
BM6 200 624 <

— 5
INTS (4x4 systolic) 7005 20253 g 67
FP8 (4x4 systolic) 18201 56202 =
BMS8 (4x4 systolic) 6976 18765 66 1 < WAL
Table 6: Logic area and power of single- 0.000 0.001 0.002 0.003 0.004 0.005 0.006
cycle fused multiply-Add (FMA) and Computational Density (1/um?)
4x4 array multipliers. Synthesized at
750 MHz with Cadence RTL Compiler Figure 6: Computational density v ResNet-18 ac-
14.11 and 28nm cell library curacy on ImageNet

5 HARDWARE EVALUATION

In this section, we evaluate the proposed block minifloat representation in hardware and compare
against competitive integer and floating-point arithmetic. Figure [6] summarizes our results with a
plot of computational density (measured as operations per unit silicon area) and ResNet-18 training
accuracy on ImageNet. Computational density was obtained from an RTL design of single-cycle
fused multiply-add (FMA) units and 4x4 systolic array multipliers. We performed synthesis at
750MHz for 28nm silicon technology and recorded area and power measurements for each number
representation. Table[6] provides a subset of these results, with coverage of all BM formats supplied

in Appendix[A.4]

In summary, BM8 and BM6 arithmetic units are 2.1 x (12.2x) and 4.1 x (23.9x) smaller and
consume 1.25 x (8.8x) and 2.3 x (16.1x) less power than competitive FP8/(FP32) representations.
Such arithmetic, which has similar hardware complexity to INT8, may be especially useful in
embedded applications where there are stricter area and power constraints but training still needs to
achieve normal levels of accuracy and relatively high performance. With high computational density,
BM arithmetic can achieve higher training throughput on compute intensive problems, while sub
8-bit BM formats have lower bandwidth requirements leading to faster training times in memory
bound applications. Finally, overheads related to conversion from Kulisch to floating point and BM
quantization are expected to contribute little logic area relative to GEMM. This includes modules for
leading-one detection, barrel shifter, maximum exponent calculation, pre-quantization buffering and
stochastic rounding, each of which have an efficient implementation. Further support of these claims
and other system-level effects are the subject of future work.

6 CONCLUSION

A new representation called Block Minifloat (BM) was presented for training DNNs effectively
with reduced precision. Our representation allows the implicit exponent bias within IEEE-754
floating-point specifications to vary for a block of numbers, and can be trained with high accuracy
using narrow exponent encodings. We describe how few exponent bits lead to significantly smaller
hardware, while smaller representations reduce memory bandwidth requirements, leading to faster
training than previous 8-bit approaches.
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A APPENDIX

A.1 BLOCK MINIFLOAT NUMBER FORMATS

The full spectrum of Block Minifloat (BM) formats are presented in Table[7} BM formats are designed
with consideration for the hardware cost of the Kulisch accumulator and also dynamic range and
precision requirements. Based on hardware synthesis results (in Table [TT) integer-like hardware
is realised by limiting the value of kadd to approximately 32 bits (to match INT32). As observed
in Table[7] this translates into BM formats consisting of up to 4 exponent bits. Training with such
representations, that have comparatively low dynamic range, is a key contribution of this work.

Table 7: Comparison of Block Minifloat number formats

Scheme Format! Range?  Precision®  Kulisch Acc.
(e,m) (dB) (e) kadd  kshift
FP32 (8,23) 1668 2~ 561 512
Bfloat16 (Kalamkar et al., 2019) (8,7) 1529 2-8 529 512
FP8 (Wang et al.,[2018) (5,2) 185 23 71 64
S2FP8 (Cambier et al., 2020) (5,2) 185 273 71 64
HFP8 (Sun et al.,[2019) 4,3)/(5,2) 108/185 274273 56 48
SWALP (Yang et al.,[2019) 0,7 42.1 2-8 32 -
INT8 (Wu et al., [2018)) 0,7 42.1 2-8 32 -
BMS (ours) (2.5)/(43) 480/108 2-6/2-* 31 20
BM?7 (ours) Q4)/42) 41.9/101 275273 29 20
BMS6 (ours) (23)(32) 356/53.0 27423 20 12
BMS (ours) 2.2)/(3,1) 289/457 273272 18 12
BMS5-log (ours) 4.0)/(4.0) 28.9/457 2-3)2-2 33 32
BM4 (ours) Q1)/(3.0) 216421 273271 16 12
BM4-log (ours) (.0/(3.0) 289/457 27322 17 16

! hybrid formats, i.e. forward/backward
2 dynamic range in decibels 20 log; o (X5, /X, )
3 relative round-off error, i.e. 2~™ x 2!

A.2 SOFTWARE IMPLEMENTATION DETAILS

Block Minifloat (BM) arithmetic requires custom hardware to achieve gains in speed and energy
efficiency. We use QPyTorch (Zhang et al.| 2019), an open source framework for low-precision
training, to simulate the behaviour of BM hardware with existing PyTorch and CUDA libraries.
QPyTorch provides a simple interface for applying quantization in the forward path (weight and
activation tensors) and backward path (error, gradient and momentum tensors), ensuring that all
numbers have a low-precision representation, while the actual GEMM and AXPY operations are
computed in single-precision floating-point (FP32). This last point means that QPyTorch can
not ordinarliy be used to research low-precision accumulation strategies. Our work is different.
Kulisch accumulators (as described in Section 2) compute exact dot-products, and therefore our
GEMMs are adequately approximated by FP32 arithmetic (which is close to exact). QPyTorch is
avalaible onlineE]and supports floating-point (without denormals), fixed-point and block floating point
number formats. Our code implementation extends this package with the addition of a parameterised
BlockMinifloat class, which supports denormals and allows the user to specify any configuration
for exponent, mantissa and block size.

3Implementation available at https://github.com/Tiiiger/QPyTorch
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A.3 MODEL DETAILS AND ADDITIONAL EXPERIMENTS

A.3.1 BLOCK MINIFLOAT CONVERGENCE CURVES ON IMAGENET

5.5 90
5.0l — FP32 — BM5|] — FP32 — BM5
BM8 — BM4 8
4.5 —
— BM7 — log5 70
4.0¢ — BM6 1

3.5+

loss

3.0

wu
=)

validation error (%)

2.5t

2.0+

1.5+

1'00 10 20 30 40 50 60 70 80 90 200 10 20 30 40 50 60 70 80 90

epochs epochs

Figure 7: Train loss and top-1 validation accuracy for the full spectrum of Block Minifloat formats
trained on ImageNet using a ResNet-18 model

A.3.2 COMPARISON WITH BLOCK FLOATING POINT (BFP) ON IMAGENET

As described in Section 1, block minifloats bridge the gap between narrow floating-point and block
floating point (BFP) representations. The main idea is that better outcomes in terms of accuracy
and hardware efficiency can be achieved by exploring the spectrum between the two representations.
While BFP ensures that the majority of computation involves dense integer arithmetic, the lack of
fine-grained dynamic range typically leads to accuracy loss on larger models and more complex
datasets. In Table|§| (below), we show that BM recovers accuracy loss for 6-bit and 8-bit formats on
ImageNet while maintaining the same advantages in hardware.

Table 8: Comparison of Block Minifloat (BM) and Block Floating Point (BFP) number formats
trained on ImageNet with ResNet-18 model.

BFP BM
Scheme

(ours) (ours)
6-bit 67.0 69.0 +2.0
8-bit 69.2 69.8 +0.6

A.3.3 TRANSFORMER MODEL (WMT)

We trained the Transformer Base model from the FairSeqﬂrepository on the IWSLT’ 14 German
to English translation task. We used Adam optimizer and modified the FairSeq implementation
with BMS8 quantization. We used default training parameters found in the repository and trained
for 25 epochs. BLEU scores were calculated using the script from the repository and show similar
convergence between BM8 and FP32 models.

*Implementation available at https:/github.com/pytorch/fairseq
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Figure 8: Training convergence curves for Transformer on IWSLT’ 14 DE-En dataset

A.3.4 SSD-LITE (MOBILENET-V2) (VOC)

We adapted a PyTorch implementation of SSD-lite from an online repository El The base network
is MobileNet-V2 (Sandler et al.| 2018) which was pretrained on ImageNet. The enitre network is
trained on VOC2012 and VOC2007 trainval datasets and evaluated on VOC2007 validation dataset.
We apply BM8 quantization to all weights, activations and gradients before GEMM computations in
the forward and backward paths. The network was trained with default parameter settings provided
in the repository as follows: SGD with momentum of 0.9, weight decay factor 0.0005, batches of 32
images, and cosine annealing (¢,,., = 200) with an initial learning rate of 0.01. After 200 epochs,
BMS achieves a mAP of 68.0 which is sufficiently close to the reported accuracy of 68.6.

A.3.5 EFFICIENTNET-B6 (IMAGENET)

We adapted a PyTorch implementation of EfficientNet (Tan & Lel[2019) from an online repository El
We trained the smallest EfficientNet-b0O network on a reduced sized ImageNet dataset, where the
images are resized from 256x256 to 128x128. This choice was made to accelerate the training time,
which is slowed down by 5x with our BM8 quantization function. The network is trained on one
GPU for only 60 epochs using batch size 256 and an initial learning rate of 0.1 which is decayed
exponentially with gamma of 0.90387. Figure [0]shows convergence of BM8 with an FP32 baseline.

100

2]
o

[e)]
o

S
o

val. accuracy

— FP32
—— BMS8

N
o

0 10 20 30 40 50 60
epochs

Figure 9: Training convergence curves for EfficientNet-b0 on ImageNet

STmplementation available at https:/github.com/qfgaohao/pytorch-ssd
SImplementation available at https:/github.com/narumiruna/efficientnet-pytorch
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A.4 HARDWARE SYNTHESIS

Fused multply-add (FMA) units were designed in RTL for floating-point and block minifloat rep-
resentations. We modified code from the Deepﬂoat[] repository for FP32, FP16 and FP8 units. The
BM units with Kulisch accumulation were hand written in Verilog following the block design given
in Figure [T0] All designs were synthesised at 750Mhz using Cadence RTL compiler 14.11 and a
commercial 28nm standard cell library. Since GEMM hardware is typically designed from tiles of
smaller computational units, we also provide synthesis results for small 4x4 systolic array multipliers.
Full coverage of our results are shown in Table [0 and Table[T0] Table[TT]is also provided, and shows
the component breakdown and scaling of Kulisch related costs in different 8-bit BM regimes. Given
that BM relies on hybrid formats, the multiplier operands are both sized for the largest mantissa
plus one bit for denormal support. Compared to (4,3)/(5,2), which is the format used in HFP8 (Sun
et al.,|2019), BMS (2,5)/(4,3) is 1.6 x smaller. This is because BM8 has narrower exponent encod-
ings that reduces the width of the Kulisch accumulator. Finally, the overhead for converting from
Kulisch to FP32 is relatively small. We synthesised this to only contribute 264um? in area for 32-bit
accumulators, the cost of which is amortized over the length of the dot product.

KULISCH ADDEND ‘

kadd (+)

C

Figure 10: Block diagram of block minifloat multiply-add; A*B + C, where A and B are minifloats
and C is an integer

Table 9: Synthesized logic area and power
of single-cycle fused multiply-Add (FMA) at

750 MHz on 28nm chip.

Table 10: Synthesized logic area and power of 4x4

Component Areg Power systolic array multipliers at 750 MHz on 28nm
pm W chip.
FP32 4782 10051
FP16 1116 2120 Component Area  Power
FP8 (w/ FP16 add) 829 1429 pum? uw
INT8 (w/INT32add) 417 1269 FPS (w/FP16add) 18201 56202
BMS 391 1141 INTS8 (w/INT32 add) 7005 20253
o o BMS 6976 18765
BM6 4083 11959

BMS5 171 546
BMS5-log 231 801
BM4 115 361
BM4-log 120 426

"Implementation available at https://github.com/facebookresearch/deepfloat
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Table 11: Component breakdown and logic area for different 8-bit BM formats

Format Details Area (pm?)
(e,m)/(e,m) | multiply kadd kshift | comb.! kadd kshift total
(3,4)/(4,3) | (5bx5b) 34 24 | 210 93 74 377
(2,5)/(4,3) | (6bx6b) 31 20 |235 79 77 391
(3,4)/(5,2) | (5bx5b) 49 40 | 253 199 95 547
(4,3)/(5,2) | (4bx4b) 56 48 | 259 276 104 639
(5,2)/(5,2) | (3bx3b) 71 64 | 300 361 113 774
(0,7)/(0,7) | 8bx8) 32 NA | NA NA NA 418
T

combinational logic includes multiply component
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