
1

Performance Analysis and Optimal Design of BATS
Code: A Hardware Perspective

Jiaxin Qing, Philip H. W. Leong, Senior Member, IEEE, and Raymond W. Yeung, Fellow, IEEE

Abstract—Batched Sparse codes (BATS codes) are a class of
linear network coding schemes that increase network throughput
by converting a multi-hop problem into an end-to-end problem
through network coding. It plays a crucial role in future wireless
communication, where packet loss is inevitable. This is an
enduring problem in many applications, including vehicular
networks. While the theory of BATS codes has been developed
over the past decade, little research has been done on its hardware
implementation, which is important for practical adoption. This
paper provides a systematic way to analyze the performance of
a BATS hardware accelerator when the code varies. A roofline
model which provides an upper bound of the performance
considering both computational and input/output constraints is
developed. Next, we build a model connecting the BATS code
design space with the hardware execution time, which can be
used to determine an optimal code. Finally, we propose and test
a flexible and scalable BATS code design paradigm for hardware
accelerators with numerical results. The same framework could
easily be extended to other linear codes and different computing
systems.

I. INTRODUCTION

MOBILE and distributed scenarios where edge devices
such as mobile phones and sensors send data to the

cloud to produce an output at a remote location are becoming
increasingly prevalent. Such models of computation often
involve multiple machines of different types connected via
one or more wireless communication systems, and applications
that fall in this category include Edge Computing, Artificial
Intelligence, Internet of Things, Autopilot, etc. Efficient wire-
less communication is central to providing the infrastructure
necessary for such applications.

The designs of current network protocols like TCP/IP were
based on the assumption that a reliable and low-latency link
layer is available. This is normally true for wired media such as
optical fiber or twisted-pair cable. However, in wireless com-
munication, the channel is constantly changing. Packet loss is
inevitable due to congestion, fading, and interference, which
is even more so for mobile and vehicular communications [1],
[2]. Current techniques to constrain packet loss involve either

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

J. Qing is with the Department of Information Engineering, The Chinese
University of Hong Kong, Hong Kong SAR (email: jqing@ie.cuhk.edu.hk).

P. H. W. Leong is with the School of Electrical and Informa-
tion Engineering, The University of Sydney, Sydney, Australia (email:
philip.leong@sydney.edu.au).

R. W. Yeung is with the Department of Information Engineering, The
Chinese University of Hong Kong, Hong Kong SAR. R. W. Yeung is also with
the Institute of Network Coding, The Chinese University of Hong Kong, and
he is also a Principal Investigator of the Centre for Perceptual and Interactive
Intelligence (CPII) Limited (email: whyeung@ie.cuhk.edu.hk).

reducing the modulation and coding rate or increasing the
signal transmission power, resulting in lower network through-
put and higher power consumption [3]. Batched Sparse Code
(BATS Code) [4] is a new class of network codes [5], [6]
that increase the end-to-end throughput in a wireless multi-
hop network without increasing the transmission power for
each link. The BATS code differs from the traditional end-
to-end channel codes in the fact that it enables coding at
the intermediate nodes rather than simple packet forwarding,
which is critical for a network code to achieve the capacity in
a lossy network in a wide range of scenarios [7], [8].

Retransmission is the only approach to address end-to-end
packet loss for the conventional store-and-forward strategy.
However, this introduces extra acknowledgment and manage-
ment packets that can lead to potential channel congestion
and also causes an exponential increase in overhead and
power consumption as the number of hops increases. For
example, with IEEE 802.11a, a 20 Mbps single hop network
drops to 1 Mbps when the number of hops is increased
to eight [9]. Network codes, like the BATS code, trade the
computational requirement at intermediate nodes for higher
end-to-end throughput so that retransmission is not required
and transmitters can send data at higher code rates. As a
result, power consumption caused by retransmissions, conges-
tion control, and channel loss control in the store-and-forward
strategy can be reduced.

Application-specific integrated circuits (ASICs) and Field
Programmable Gate Arrays (FPGAs) are hardware platforms
that use digital circuits to accelerate algorithms with a low
power consumption [10], [11]. As algorithms are implemented
as digital circuits, implementations can be massively paralleled
by pipelining different parts of the algorithms, which leads
to a high throughput and low latency performance. On the
other hand, applications running on a CPU with a complexly
designed kernel are usually slow for networking applications
where a large volume of data must be handled efficiently
and reliably [12], [13]. Therefore, in high-throughput and
delay-sensitive applications like the wireless base station [14],
practical LDPC [15], high-performance computing [16], and
data center [17], FPGA and ASIC are widely used to provide
a reliable and efficient data processing capability.

To match the push for higher wireless data rates and lower
power consumption, efficient hardware implementations of
BATS codes are required. However, there is no efficient
algorithm for finding the most suitable BATS code design for
FPGA except for searching a large design space, which is not
feasible. This paper considers FPGA implementation, although
the same ideas directly apply to ASICs.

mailto:jqing@ie.cuhk.edu.hk
mailto:philip.leong@sydney.edu.au
mailto:whyeung@ie.cuhk.edu.hk


2

In this work, we provide a general performance analysis
of BATS codes, with few assumptions regarding its imple-
mentation. We provide a practical and achievable performance
upper bound that can be used to compare different BATS code
designs and choices of the finite field. We then introduce a
flexible and scalable BATS code design methodology using
this model, which can be used to design an optimal BATS
code with minimal searches in the design space. Finally, we
present implementation results that verify our presented theory.
To the best of our knowledge, this is the first paper to study
hardware implementations of BATS codes.

II. BACKGROUND

A. BATS Code

A BATS code is a network code for wireless multi-hop
networks with an erasure channel in which packets are ei-
ther lost or well-received. It was first proposed in [18] and
analyzed asymptotically in [4], [19]. A finite-length analysis
was proposed in [20] with the asymptotic assumption relaxed,
which provides a more practical analysis of the performance
when the number of received batches is finite. Breaking the
“multi-hop curse” in wireless communication, various variants
of the BATS code are designed for different applications. For
example, [21] designed an expanding-window-based BATS
code for delay-sensitive applications like video streaming and
vehicular communications. [22] further improved this method
with an adaptive encoder. [23] proposed a BATS code with
unequal error protection capability for applications where
different parts of the data are of different importance. Many re-
searchers have focused on improving BATS codes’ practicality
to further push for more applications. For example, [24] and
[25] designed sophisticated and practical inner codes for the
BATS code, while [26] designed a quasi-universal outer code
for different channel conditions. However, the existing work
analyzes and optimizes the BATS code without considering a
specific computation platform.

A BATS code consists of an inner code and an outer code, as
depicted in Fig. 1. The inner code is a random linear network
code (RLNC) [27] applied at the intermediate nodes (referred
to as recoding); and the outer code is a matrix generalization
of the fountain code [28], applied at the source and destination
nodes. The BATS code has lower computational and storage
requirements than RLNC, and it preserves the rateless property
of the fountain code [29]. Similar to the RLNC, a BATS
code can be applied in a network with an unknown topology.
However, we consider a simple network here for simplicity.

Consider a line network with one source node, one destina-
tion node, and multiple intermediate nodes. The source node
has a file of size F to transmit, which can be divided into
k packets denoted by B = [b1, b2, ..., bk], where each packet
consists of a fixed number of symbols taken from a finite field
called the base field. It is further assumed that all the symbols
in this paper are taken from the base field.

1) Encoding: A batch is a set of M coded vectors gen-
erated using Bj ⊆ B and a random generator matrix Gj

where j refers to the j-th batch. The source node encodes the
source packets according to Algorithm 1, where dgj is the

Fig. 1. Tanner graph representation for BATS. The first row represents input
packets which are called variable nodes. The second row represents coded
batches which are called check nodes. The third row stands for batches after
being “recoded” by the intermediate nodes. Batches are generated in the outer
code by taking linear combinations of the input symbols according to an
optimized degree distribution.

degree of the j-th batch, which is sampled from Ψ, the degree
distribution. Encoding can be described by the following linear
system:

Xj = Bj ×Gj ,

where Xj is the j-th batch with M coded symbols.

Algorithm 1: Encoding for the j-th batch
Input: B = [b1, b2, ..., bk], seedj
Output: hj1 +Xj

dgj ← ψ(rng(seedj));
Bj ← uniformly sample dgj pkts from B;
Gj ← rng(seedj);
Xj = Bj ×Gj ;
hj1 = I;

Other than the coded symbols, an identity matrix I of size
M×M is appended to each batch as a “pilot” used for learning
the end-to-end transfer matrix.

2) Recoding: Recoding is only done within each batch.
If ni packets are received, where ni ≤ M , these received
packets are multiplied by a random matrix hj of size ni×M .
In the case of packet loss, recoding restores the batch to M
coded symbols, which effectively introduces extra redundancy
at the intermediate node. In detail, the recoding operation is
performed according to Algorithm 2.

Algorithm 2: Recoding the j-th batch
Input: Hj +Xj

Output: Hj + Yj

hj ← rng();
Yj = Xj × hj ;
Hj = Hj × hj ;

We introduce the coefficient vector Hj = hj1hj2...hjn,
where hjn is the linear transformation applied to the batchj
by the n-th node. Effectively, Hj is the product of all random
matrices involved in recoding of batchj after n hops. The
encoding and recoding are described by the following linear
system:

Yj = BjGjHj ,

where Yj is the j-th output of this linear system.



3

3) Decoding: Since the code is constructed based on a
pseudo-random number generator during encoding, the in-
cidence relations between input packets and coded batches
(depicted by the Tanner graph [30]), and the corresponding
generator matrices can be recovered using the shared seeds at
the destination node. To solve this linear system for B, belief
propagation (BP) decoding is used [29]. The basic idea of BP
decoding in BATS is to recursively solve a decodable batch
(check node) and then substitute the decoded symbols (variable
node) into other undecoded batches until all the decodable
batches are decoded. The detailed decoding procedure is given
in Algorithms 3 and 4.

Algorithm 3: Decoding for B
Input: Tanner graph: T
Input: H + Y
Output: B
while exist undecoded pkts in B do

for batchi ← i = 1 to n do
if batchi is not decoded then

if rank(GiHi) == rank(Bi) then
Bi = Yi(GiHi)

−1;
BackSubstitute(Bi, T );

end
end

end
end

Algorithm 4: BackSubstitution
Input: Decoded pkt: b
Input: Tanner graph: T
for all batchi in T that involves b do

Yi,Hi, g ← (batchi,T );
Yi = Yi − b · g ·Hi;

end

Generally, in the design space of a BATS code, the following
parameters are important: F , Ψ, M , pk and K as summarized
in Table I. The optimal choice of Ψ based on the network
topology and channel status has been extensively studied, and
we refer readers to [29], [31], [32], [33], [26], [34] for detailed
discussions1. Here, F , M and pk are usually related. In [29],
it is shown that in a line network with multiple hops, the
achievable rate increases with M . However, when F is small,
a large M will lead to a lower efficiency assuming pk is fixed,
and K is equal to (F ∗ (1+ overhead))/(pk ∗M)+1, where
the overhead is a non-negative real number.

B. Problem Formulation

In this paper, we consider implementing a BATS code on
a typical FPGA SoC architecture [35] as shown in Fig. 2.
The BATS code consists of three major components: the
encoder, the recoder and the decoder. We assume the following

1As the first implementation of the BATS code on FPGA, we accept the
original design of the BATS code as described in [29].

TABLE I
SUMMARY OF BATS CODE PARAMETERS

Symbol Meaning Unit

F total size of the file bits

φ size of the file in finite field symbols finite field symbols

Ψ degree distribution N/A

M batch size N/A

K total number of batches generated N/A

pk packet size finite field symbols

K total number of batches generated N/A

Fig. 2. Simplified architecture for a general FPGA SoC [35]. HPS: Hard
Processor System. MPU: Microprocessor Unit

parameters to be static during encoding: the degree distribution
(Ψ), the packet size (pk) and the batch size (M). We use
random linear network coding for the recoder and a Belief
Propagation decoding without inactivation for the decoder
[29].

We also consider accelerating BATS by offloading the finite
field matrix computations to an FPGA while keeping other
necessary operations on the CPU. This design philosophy will
be justified in Section IV. Therefore, Algorithms 1, 2 and 3
are modified to FPGA accelerated versions as in Algorithms
5, 6 and 7, where FPGA(·) indicates the algorithms to be
implemented on the FPGA.

Given the above setup, we aim to find BATS parameters
which leads to a design with the highest throughput and lowest
latency under the same network and application constraints.

Algorithm 5: FPGA Accelerated Encoding
Input: B = [b1, b2, ..., bk], seedj
Output: I +Xj

dgj ← ψ(rng(seedj));
Bj ← uniformly sample dgj pkts from B;
Gj ← rng(seedj);
Xj = FPGA{Bj ×Gj};



4

Algorithm 6: FPGA Accelerated Recoding
Input: I +Xj

Output: Hj + Yj

hj ← rng();
Yj = FPGA{Xj × hj};
Hj = FPGA{I × hj};

Algorithm 7: FPGA Accelerated Decoding
Input: H + Y
Output: B
while exist undecoded pkts in B do

for batchi ← i = 1 to n do
if batchi is not decoded then

if rank(GiHi) == rank(Bi) then
Bi = FPGA

{
Yi(GiHi)

−1
}

;
FPGA{BackSubsitute(Bi)};

end
end

end
end

III. ROOFLINE MODEL

The performance of a hardware accelerator is constrained
by two factors, memory bandwidth and computational power.
It can be improved by: increasing the available computing
resources through the use of larger capacity devices; increasing
the memory access efficiency via schemes such as bursting
and coalescing [36]; and improving the algorithm to better
utilise the computing resources (normally through parallelism)
and reduce the memory bandwidth requirements. The Roofline
model [37] is a simple bound-and-bottleneck analysis method-
ology for analysing computer systems, providing insightful
performance and optimization bounds to which a specific
implementation can be compared to determine its optimality.
The general construction of a roofline model is now briefly
reviewed.

Consider the analysis of a computer system required to
execute a given algorithm using floating-point arithmetic. Let
π be the arithmetic performance in floating-point operations
per second (FLOPS), and let β be the memory bandwidth in
byte/s. We define the Operational Intensity (OI) of a particular
program to be the average number of floating point operations
that are executed per memory access:

Definition 1: OI = π/β with the unit of FLOP/byte.
Here, OI is a metric connecting the computational power

with the memory bandwidth. For a given computer system,
the maximum computational power (πmax) and memory band-
width (βmax) can be determined from its specifications or via
benchmarking.

Fig. 3 shows an example of a roofline model2. For a fixed β,
if the computational power is unbounded (i.e. πmax =∞), we
have π = β ∗OI , independent of OI . Then the diagonal line
formed for β = βmax describes the maximum performance
of this platform. In a real system, however the computational

2The example in Fig. 3 is a finite field modified version. Different from
the one in [37], π is measured by finite field operations per second (OPS).
See Sec. III-B.

Fig. 3. Modified roofline model for FPGA (Cyclone V 5CSEBA6 [38]).
π: computational power measured in Giga finite field operations per second
(GOPS). βmax: the maximum achievable memory bandwidth. op/byte:
number of finite field operations per byte data transferred. The roofline model
shows the achievable computational throughput with respect to the operational
intensity when the platform (FPGA) is used as an accelerator for the BATS
code. It is bounded by the logic resources available on the FPGA

power in FLOPS is constrained by some finite πmax, so any
implementation necessarily lies under the roof π = πmax thus
formed. Reference [37] suggests the following:

Proposition 1: (Attainable Performance) For a particular
algorithm, the attainable performance or the attainable com-
putational power (in FLOPS), πattainable, on a particular
hardware with maximum computational power and maximum
memory bandwidth denoted by πmax and βmax respectively,
is given by

πattainable = min(πmax, βmax ∗OI),
where OI is the operational intensity of this algorithm.

Proposition 2: (Optimality Achievability) The x-coordinate
of the ridge point stands for the minimum OI required for
an algorithm to reach the peak performance on the current
platform. It also indicates the level of difficulty for the designer
to achieve the best performance on current platform.

Proposition 3: (Performance Bottleneck) If the OI of an
algorithm lies on the left of the ridge point, then this algorithm
is memory bounded. Otherwise it is computation bounded.

With minor modifications, the Roofline model can be ap-
plied to the design of the BATS hardware acccelerator, and
enables both the platform and implementation to be evaluated.
It also indicates which particular optimizations should be
prioritised. However, the original roofline model in [37] was
designed for floating point algorithms on a general computer
system and requires modification before it can be applied to
BATS.



5

A. Finite Field Multiplication

Like LDPC [39] and other error-correcting codes, most
implementations of BATS code to date use GF (2n). In this
paper we also use GF (2n) with polynomial basis [40] and
most implementations have chosen n = 8 because GF (28)
provides enough randomness for the code in the sense that
it is less probable to have a rank deficiency when generating
random matrices. Specifically, the probability for an r × m
randomly generated matrix over GF (q) = GF (2n) to be full-
rank is given by,

ξmr =

{
(1− q−m)(1− q−m+1)...(1− q−m+r−1) 0 < r ≤ m
1 r = 0,

[29], [19].
Evidently, ξmr → 1 as q → ∞, which means random

matrices of full rank will be generated with a very high
probability when the field size is large. Also, choosing n = 8
leads to a simpler implementation due to byte alignment.

However, in the later sections of this paper, we will show
that GF (28) is a suboptimal field choice sometimes in terms
of performance on hardware. Nevertheless, we continue to use
GF (28) in this section for ease of discussion. As addition and
subtraction in a binary extension field are simply exclusive-OR
(XOR) operations, the computational requirements of BATS
are dominated by multiplications (we will discuss finite field
inversion in Section-IV). Therefore, the finite field multiplier
is a crucial component for accelerating BATS.

Bit-parallel finite field multipliers can be analyzed in terms
of space and time complexity. The space complexity is usually
measured by the number of AND and XOR gates required
for its implementation. In [41], it is shown that schoolbook
finite field multiplication algorithms have at least a quadratic
space complexity, i.e. O(n2) where n is the extension field
degree, and this technique is generally faster (smaller in
time complexity) than other algorithms with sub-quadratic
space complexity [41]. As our field size is relatively small,
we choose to design a bit-parallel multiplier based on the
Russian-Peasant Multiplication algorithm [42] (a schoolbook
algorithm) with quadratic space complexity which has a faster
run time compared with algorithms with sub-quadratic space
complexity.

The Russian-Peasant Multiplication algorithm is given in
Algorithm 8.

As shown in Fig. 4, this algorithm can be realized using two
8-bit AND gates, two 8-bit XOR gates, three shift registers and
three registers. Such an implementation takes 8 clock cycles
to obtain the result c. We can also compute c in a single clock
cycle using 8 copies of the circuit.

B. Modified Roofline Analysis

The original roofline model [37] only considers accesses
that result from a memory system cache miss. In the case
of BATS accelerators, performance in most cases is limited
by off-chip memory accesses as we assume that on-chip
memory parallelism is not a performance bottleneck. A major
difference between our construction of the roofline model and
the original one in [37] is that our computational power is
measured by OPS instead of FLOPS (floating point operations

Algorithm 8: Multiplication in GF (28) using Ruas-
sian Peasant algorithm

Data: Two 8-bit input: a, b
Result: 8-bit output: c
c = 0;
for i ← 1 to 8 do

if b & 1 then
c ← c ⊕ a

end
if a & 0x80 then

a ← (a≪ 1) ⊕ 0x11B
else

a ← (a≪ 1)
end
b ← (b≫ 1)

end

Fig. 4. Circuit design for a GF (28) finite field multiplier based on the
Ruassian-Peasant Multiplication algorithm [42], [41], where a, b is the input
and c is the output. The final result is available after eight clock cycles.
Primitive polynomial x8+x4+x3+x+1 is used which is shown as 0x11B
in hexadecimal. All data paths are 8 bits.

per second), with OPS referring to the number of finite field
multiplication per second. Unlike the maximum computational
power in a CPU, which is determined by the clock frequency
and number of floating point execution units, we need to fit
as many Compute Units (CUs), i.e. finite field multipliers, as
possible on the given area of FPGA. However, the modified
finite field roofline model depends on the field size. For a given
FPGA size or chip area, a smaller CU design will result in a
higher πmax with an increase in the total number of operations
as a trade-off.

To show the process of constructing a modified roofline
model, we consider two example FPGA platforms, the Intel
Cyclone V SoC (5CSEBA6) [38] and Intel Arria 10 SoC
(10AS066) [43]. We implemented the multiplier introduced
in the previous sections using high-level synthesis tools [44]
and the resource consumption is summarized in Table II. Due
to their different architectures, the number of logic gates used
are not exactly the same.

Other than the resource consumption by multipliers in Table
II, extra Logic Elements (LE) are needed for controlling, and

TABLE II
RESOURCE CONSUMPTION FOR AN 8-BIT MULTIPLIER IN GF (28) SHOWN

AS THE NUMBER OF ADDITION, EXCLUSIVE OR AND SUBTRACTION
OPERATIONS NEEDED AND TOTAL LE CONSUMED.

AND XOR SUB LE LE Available

Arria10 9 14 1 171 660K

CycloneV 22 14 7 153 110K



6

TABLE III
THE MAXIMUM ATTAINABLE OPS (OPERATIONS PER SECOND) FOR

FPGA SHOWN IN THE MAGNITUDE OF ×109

Multipliers fitted Freq. (MHz) GOPS

Arria10 1157 240 277

CycloneV 215 110 23.7

Fig. 5. Finite field modified roofline model based on GF (28) for (a) Arria
10 10AS066 on the left and (b) Cyclone V 5CSEBA6 on the right. Arria has
a ridge point at OI = 32.5 op/byte and maximum performance 277 GOPS.
Cyclone V has a ridge point at OI = 8.9 op/byte and maximum performance
23.7 GOPS. The Arria 10 has much more logic resources than Cyclone V,
therefore (a) has higher maximum attainable GOPS than (b), even though the
same finite field is used.

building the interconnects and registers which consume the
majority of the available resources. We assume that 30% of
available LEs are devoted to the multipliers3. Based on this,
we can now approximate the total number of multipliers that
can fit on the device by dividing the total available LEs (minus
the extra logic) by the LE consumption for a single multiplier.
Given the clock frequency, the maximum finite field operations
per second which is defined as the processing rate when all
multipliers are working in parallel can be calculated for each
platform. The results are summarized in Table III.

Cyclone V and Arria 10 have an external SDRAM interface
with a dedicated on-FPGA hard memory controller, through
which the FPGA accesses large-size data. Through bench-
marking, the maximum external memory bandwidth is 8528
MB/s and 2700 MB/s for Arria 10 and Cyclone V, respectively.
Then the modified roofline model can be constructed as in
Fig. 5. Even though the Arria 10 is a much larger device than
Cyclone and hence supports more CUs, the memory bandwidth
is not increased as much as the computational power, which
results in a ridge point that is harder to achieve.

Before proceeding to the next section, we note the follow-
ing:

Proposition 4: The maximum performance of a BATS code
on a hardware platform is determined by the finite field
modified roofline model of this platform and the total number

3The 30% usage is an estimation obtained from synthesis reports of
multiple BATS code implementations with different parameter configurations.
A similar estimation can also be obtained with the analytical tool in [45].

of operations due to BATS, where the computational power is
measured in OPS.

IV. ROOFLINE ANALYSIS OF BATS

A. OI of Encoding and Recoding

Encoding and recoding computations of BATS can be
divided into two steps: random number generation and matrix
multiplication. Random number generation is the step where
the generator matrices, batch degrees, etc are generated. Pseu-
dorandom number generation algorithms like [46] [47] incur
little overhead in most CPUs, but FPGA/ASIC implementation
requires additional chip area and on-chip memory [48][49].
Matrix multiplication on CPUs is usually implemented using
nested loops with blocking for better data locality [50]. Other
techniques utilise SIMD operations [51] to compute multiple
finite field operations that are normally computed serially.
However, most CPUs available in the market do not have
SIMD support for finite field multiplication, and a lookup table
based implementation is used instead. Nevertheless, matrix
multiplication is a well-studied problem for FPGAs. Designers
can use highly parallel architectures in FPGAs, for example
the systolic array [52] combined with tiling for better data
locality to achieve a very efficient implementation.

Based on the above analysis, we propose to implement
the randomness generation and the matrix multiplication sep-
arately on the CPU and FPGA respectively. This way, the
FPGA will serve as a powerful accelerator for finite field
matrix multiplication leading to a simple and easy-to-optimise
hardware design. Reference [53] utilized the same design
philosophy for high-throughput tensor processing unit where
the hardware design is functionally simple but compact and
highly paralleled. Using a System on Chip (SoC) [54], where
the CPU and the FPGA are closely coupled on the same fabric,
the communication between the CPU and the FPGA can be
very efficient through dedicated interconnects as shown in
Fig. 2. Large data transfers can be even more efficient through
a direct connection between FPGA and the external memory.

To assess the computational power that can be achieved by
a BATS code, we need to calculate the OI . In the following
section, we derive an algebraic expression for OI in terms of
the BATS parameters.

Consider a file of size F bits. In GF (2n) with 2n finite field
symbols per element, each symbol is represented by n bits.
A file can be represented by φ = F/n symbols. To encode
this file and ensure the decodability, the following constraint
is necessary:

φcoded ≥ φ, (1)

where the total number of coded symbols to be generated is
given by φcoded.

Notice that the outer code rate Rout = φ/φcoded. Suppose
φcoded are divided into K batches with M coded packets. Each
packet is of size pk with unit of finite field symbol. Then we
have

φcoded = K ·M · pk. (2)



7

Notice that K is given by,

K =
φ · (1 + ϵo)

pkM
(3a)

=
F · (1 + ϵo)

npkM
(3b)

where ϵo ∈ {x ∈ R : x ≥ 0} is the encoding overhead in order
to satisfy the constraint in (1). Since the file contains φ/pk
packets, we have

dgi ∈ [1, φ/pk]. (4)

Denote the total number of finite field multiplication by
α. Recall that the encoding of a batch can be simplified as
a finite field matrix multiplication: Xi = Bi × Gi, where
Bi ∈ Fpk×dgi

q , Gi ∈ Fdgi×M
q and Xi ∈ Fpk×M

q . Then,
the total number of multiplications involved in encoding K
batches is given by

αencoding =
K∑
i=1

(pk · dgi ·M). (5)

Since dgi ∈ [1, φ/pk], we can write the average degree,

1

K

K∑
i=1

dgi = ϵ
φ

pk
, (6)

where ϵ ∈ (0,1]. Then (5) can be simplified as

αencoding = ϵ · φ ·M ·K. (7)

Now we can calculate the maximum achievable OI for
encoding. Denote the memory transfer size by γ which has
the unit of finite field symbol. The least amount of data to be
transferred is the sum of the file size, the sizes of the generator
matrices involved in the matrix multiplication and the size of
the output matrix, given by

γencoding = φ+
ϵφ

pk
MK + pk ·MK. (8)

The maximum OI is calculated by dividing the number of
operations with the data transfer size. Notice that we regard the
OI thus obtained as the maximum achievable OI because the
memory transfer γ used in the formulation is the least memory
transfer required. Depending on the implementation on FPGA,
more memory transfer may be required, thus incurring a
smaller OI . Substituting (3a) into (7) and (8), we obtain

OIencodingmax = αencoding/γencoding

= ϵφMK × 1

φ+ ϵφ
pkMK + pk ·MK

=
pk · φ

φ+ pk2
(

1
ϵ +

1
ϵ(1+ϵo)

) , (9)

where OImax has the unit of operation per bit. Similarly, for
recoding, αrecoding and γrecoding can be calculated as

αrecoding = pkM2K, (10)

γrecoding = (2pk ·M +M2)K. (11)

Then,

OIrecodingmax = αrecoding/γrecoding

=
pkM2K

(2pkM +M2)K

=
M · pk
M + 2pk

. (12)

From (9) and (12), we first draw the following conclusions:
• For encoding, OImax depends only on pk and φ, where φ

is a function of the file size and the finite field size, degree
distribution and encoding overhead which are controlled
by ϵ and (1 + ϵo) respectively.

• For recoding, OImax depends only on the batch size M
and the packet size pk.

To see how to find the attainable computational power, let us
take one of the most common BATS configuration from [29]
as an example. Consider encoding a file of size F = 64
Kbytes with n = 8, pk = 1024, ϵ = 0.5 and ϵo = 0.2.
We can calculate and plot OIencoding = 17.16 op/byte in
the roofline model. Then we can see in Fig. 5 (the orange
dash line) that the corresponding attainable computational
power is equal to the maximum computational power, i.e.
π = πmax = 23.7 GOPS. Therefore, the BATS encoder
implemented as described is computational bounded. While
neither the computational power nor the OI directly represents
the total time spent on the coding, they provide important
information for determining the optimal design.

Equations (9) and (12) directly connect the hardware per-
formance with the parameters in the BATS code design space.
The OImax for recoding is relatively simple as given in (12),
which monotonically increases with either M or pk. This
result is also intuitively correct because the inner code is
designed to be simple so that it does not incur too much
complexity at the intermediate nodes.

When the performance is memory bandwidth bounded, the
closer OI is to the OI of the ridge point, the better, which
means that we would want to increase OI in most cases.
For example, in recoding, OI clearly increases with M and
pk. However, we notice that the total number of operations
αrecoding increases with M quadratically and linearly with
pk. The best way to increase the OI while minimising the
execution time for recoding is to use a large pk instead of a
larger M . For encoding, the answer is not so obvious.

B. OI of Decoding

BP decoding is more complicated than encoding and re-
coding because it involves many logical decisions and data
abstraction. In this paper, we only consider naı̈ve BP decoding
without inactivation decoding [55]. We proposed an FPGA
accelerated algorithm for decoding in Algorithm 7. In the algo-
rithm, the computations implemented on FPGA are specified.

Roughly speaking, BP decoding for BATS can be divided
into the following steps: rank calculation, coefficient inversion,
batch decoding and decoded packet propagation. Rank calcu-
lation and coefficient inversion are usually implemented with
the classical Gaussian Elimination (GE). It has been shown
that the GE is much more efficient in CPU than in FPGA



8

Fig. 6. A Tanner graph is a minimum decodable graph if all variable nodes
can be decoded and there is no unused check node. Each batch is associated
with two important parameters that determine its decodability, p: the number
of variable nodes propagated to this check node. r: rank of this check node.

[56]. Therefore, we perform rank calculation and coefficient
inversion in the CPU. Even though such a design incurs
some communication cost, it is compensated by the ease of
managing a Tanner graph for BP decoding on a CPU.

Algorithm 9: FPGA Accelerated Decoding with coa-
lescing

Input: H + Y
Output: B
Collector
while exist undecoded pkts in B do

for i = 1 to n do
if batchi is not decoded then

if rank(GiHi) == rank(Bi) then
Collector

{
(GiHi)

−1, i
}

;
mark batchi as decoded;

end
end

end
end
B = FPGA{Collector, Y }

Based on the proposed architecture, Algorithm 7 can be
further improved to Algorithm 9 which reduces the FPGA-
CPU communication cost. In Algorithm 9, inverted matrices
are collected and only rank calculation and coefficient vector
inversions are performed along the decoding process. When
the BP decoding stops, all the inverted matrices and received
packets will be transferred to the FPGA for computation. This
way, less interruptions and invocations are needed between the
FPGA and the CPU. We now analyze the OI of BP decoding.

Definition 2: (Decodable Graph) Define a decodable Tanner
graph as the Tanner graph with sufficient information for all
variable nodes to be decoded.

The information in Definition 2 refers to the received
packets, coefficient vectors, and generator matrices.

Assume we want to decode a Tanner graph with K check
nodes constructed in the encoding stage. Let ri be the rank of
the i-th batch, and pi be the number of packets propagated to
the i-th batch. Recall that a batch is solvable if and only if
ri + pi ≥ dgi. For a minimum decodable graph, we have

ri + pi = dgi. (13)

For example, the Tanner graph in Fig. 6 is a minimum
decodable graph if and only if (13) holds for all check nodes.

To decode the i-th batch, we first need to propagate the rel-
evant decoded packets to it (propagation stage) and then mul-

tiply it with the corresponding (GiHi)
−1 (decoding stage).

The propagation stage is essentially a matrix subtraction and a
multiplication of size (pk, ri)−(pk, pi)×(pi, ri). The decoding
stage is a matrix multiplication of size (pk, ri)× (ri, ri) and
requires a total number of finite field multiplications equal to

K∑
i=1

αi = pk

K∑
i=1

(r2i + piri), (14)

where αi is the total number of finite field operations needed
to decode the i-th batch. Substituting (13) into (14), we have

K∑
i=1

αi = pk

K∑
i=1

dgiri. (15)

Now, we analyze the memory transfer requirements. The min-
imum memory transfer for decoding a file with φ finite field
symbols is given by

∑K
i=1 γi, where γi is the memory transfer

required to decode the i-th batch. The minimum memory
transfer consists of the transfer of all linearly independent
received packets, the corresponding coefficient vectors and the
final decoded file, i.e.,

K∑
i=1

γi =

K∑
i=1

(ripk + dgiri + φi)

=

K∑
i=1

(ripk + dgiri) + φ, (16)

where φi is the portion of file decoded from the i-th batch
and φ =

∑K
i=1 φi. Finally, OImax is calculated as

OIdecodingmax =

∑K
i=1 αi∑K
i=1 γi

=
pk

∑K
i=1 dgiri∑K

i=1(ripk + dgiri) + φ
. (17)

We use the same trick as in (6) to remove the summation.
Notice that dgi ∈ [1, φ

pk ], ri ∈ [1,M ] and dgiri ∈ [1, φ
pkM ].

Therefore, we can write
K∑
i=1

dgiri = ϵ1
φ

pk
MK, (18)

K∑
i=1

ri = ϵ2MK, (19)

where ϵ1, ϵ2 ∈ (0, 1]. Notice that ϵ1 and ϵ2 are parameters
depending on dgi and ri. Substituting (3a), (18) and (19) into
(17), we obtain

OIdecodingmax =
pk

∑K
i=1 dgiri∑K

i=1(ripk + dgiri) + φ

=
pk · ϵ1 φ

pk ·M
φ(1+ϵo)
pkM

pk · ϵ2M φ(1+ϵo)
pkM + ϵ1

φ
pk ·M

φ(1+ϵo)
pkM + φ

=
ϵ1(1 + ϵo) · pk · φ

ϵ2(1 + ϵo) · pk2 + ϵ1(1 + ϵo)φ+ pk2

=
pk · φ

φ+ pk2
(

1
ϵ1(1+ϵo)

+ ϵ2
ϵ1

) . (20)



9

Observe that (20) has a form similar to that of (9). When
ϵ2 = 1, the two equations are exactly the same. Due to this
similarity, the optimal design for encoding and decoding are
similar, even though there may be some slight mismatch due to
the value chosen for ϵ2, which largely depends on the network
status. In practice, this discrepancy is not significant. We also
observe from (9) and (20) that they have the same number of
operations when ϵ2 = 1. According to our roofline model, the
upper bound of the computational power is determined only
by the OI of the algorithm when the hardware platform is
fixed, which means that the encoding and decoding will share
a similar upper bound for computational power. Therefore,
we can draw the following conclusion from this observation,
which will be clearer in (25) derived in the next section.

Proposition 5: (Shared Optimality) The optimal choice of
parameters for encoding in terms of hardware performance
would be approximately the same as the optimal parameters
for decoding.

V. MAXIMUM THROUGHPUT ANALYSIS AND THE DESIGN
PARADIGM

When a program is bandwidth bounded, higher OI leads
to higher attainable computational power. But as one may
notice, increasing the OI by changing the BATS parameters,
e.g., pk, may also increase the total number of operations.
The appropriate metric to use is the total execution time
for processing a given amount of data or coding throughput
subject to the given hardware resources. Therefore, in this
section, we will characterize the execution time and coding
throughput in terms of the BATS parameters on a hardware
platform.

Suppose the attainable computational power for a BATS
code is π̂attainable OPS. It can be attained from the roofline
model given the OImax of the current BATS code design.
Recall that the number of batches is given by (3b). Substituting
this into (7), (10) and (15), we obtain

αencoding = ϵ(1 + ϵo)
F 2

n2pk
, (21)

αrecoding = (1 + ϵo)
FM

n
, (22)

αdecoding = ϵ1(1 + ϵo)
F 2

n2pk
(23)

as the total number of finite field operations for encoding,
recoding and decoding respectively.

Notice that we assume the worst-case scenario for decoding,
namely that all the batches are needed to recover the file and
thus (21) and (23) are actually equivalent. We also observe
the same relation for encoding and decoding in (9) and (20).
Additionally, we can see that the computational complexity
of recoding is linear in n, while the finite field multiplier is
of quadratic space complexity (as discussed in Section III-A).
Due to the difference in computational complexity and space
complexity of finite field multiplier for FPGA implementation,
more data can be recoded as the finite field size decreases,
assuming that the total hardware resources are fixed.

Following the above, the minimum execution time is ob-
tained by dividing the number of operations by the attainable
computational power, i.e.,

tmin =
α

π̂attainable
. (24)

The maximum throughput of encoding and decoding is ob-
tained by dividing the file size by the minimum execution time.
For recoding, the maximum throughput is obtained by dividing
the amount of data transferred by the minimum execution time.
The maximum throughput denoted by T is given in (25) and
(26) for encoding, recoding and decoding.

T encoding
max = T decoding

max =
F

tmin
(25)

T recoding
max =

γrecoding
tmin

(26)

Continuing with the previous example in Section IV-A of
encoding a file of size F = 64 Kbytes with n = 8, pk = 1024,
ϵ = 0.5 and ϵo = 0.2, we obtain OI = 17.16 op/byte that
corresponds to π̂attainable = 23.7 GOPS. Using (21) and (24),
we can calculate that tmin = 0.106 ms. If we change pk
to 2048, we will have OI = 8.69 op/byte that corresponds
to π̂attainable = 18 GOPS. Then the minimum execution
time is tmin = 0.053 ms. We can also convert the minimum
execution time into maximum throughput by dividing the file
size by the execution time, which are 4.9Gbps and 9.9Gbps
respectively for this example. In Section VI, we will show
that these theoretical performance bounds are practical and
achievable as supported by the measurements from the FPGA
implementations.

In the design space of a BATS code, the file size F and
the batch size M are mostly related to the network condition.
A network with a large amount of data requires a large F
and M for better efficiency. On the other hand, if the data
rate in the network is too small while using a large F and
M , the BATS code would introduce a significant delay to
the network. To balance all these considerations, we propose
Algorithm 10 to determine the most suitable design with
minimum implementing and testing.

Algorithm 10: BATS for hardware design paradigm
Input: application constraints ζ1
Input: network conditions ζ2
Input: design space S
Output: Optimal BATS design d̂

1: Determine F ← ζ1, ζ2;
2: Search S and calculate theoretical bounds;
3: Find designs with highest bounds;
4: Refine choices according to ζ1, ζ2;
5: d̂← implementing and testing;

As indicated in Algorithm 10, we first need to consider
the application constraints and network conditions to design a
suitable BATS code. For example, the application constraint
in vehicular communications could be low-latency, limited
computation power and memory. The network condition could
be defined as high packet loss due to challenging channel



10

Algorithm 11: Naı̈ve Matrix Multiplication in GF (2n)
Input: Matrix A: M ×K, Matrix B: K ×N
Output: Matrix C: M ×N
Cache A, B for m ← 0 : M do

for n ← 0 : N do
acc ← 0;
for k ← 0 : M do

acc ← acc ⊕ A[m, k]×B[k, n];
end
C[m,n] ← acc;

end
end

Algorithm 12: Two-level blocked version [57]
Input: Matrix A: M ×K, Matrix B: K ×N
Output: Matrix C: M ×N
tileA, tileB[TS][TS];
regA, regB[TS]; /* TS:Tile size */
for m← 0 : M/TS do

for n← 0 : N/TS do
acc[TS][TS]← 0;
for k ← 0 : M/TS do

Load tileA, tileB ← A,B;
/* register level tiling */
for tk ← 0 : TS do

Cache regA, regB ← tileA, tileB;
acc← acc⊕ regA× regB;

end
end
C ← acc;

end
end

conditions. In Step 1 of Algorithm 10, we choose a small
F , e.g., F = 2 KBytes, for low latency and low buffer
size. Then we build up a design space S with parameters of
interest, such as pk,M, ϵ, ϵo, and n. In Step 2 we calculate
the theoretical throughput of all design combinations in S
using the analytical tool proposed, after which we can select
ones with high throughput in Step 3. In Step 4, we refine the
selected designs under the application and network conditions.
In this example, we choose a smaller M which reduces the
buffering cost in both time and memory (ζ1). Additionally, we
need a higher coding overhead ϵo due to the network condition
(ζ2). Therefore, we can exclude designs from those selected
in the last step with criteria defined by ζ1, ζ2. Finally, we can
implement and test the remaining designs for the best solution.
Notice that choosing F in Step 1 is optional since it can also
be included in the design space as a variable. Nonetheless,
in many applications, F is limited by the network buffer size
and closely related to the network latency. Thus determining F
prior to Step 2 is often desirable when the latency is prioritized
over throughput.

Introducing the constraint variables ζ1, ζ2 in our design
paradigm aids the searches for suitable designs within through-
put constraints while keeping enough flexibility to meet the
application requirement. In an actual design process, more
complicated requirements, such as the network communication
protocol, can be included in ζ. We refer readers to [58] for
more detailed discussions on the design of network commu-
nication protocol from the perspective of the BATS code.

Exhaustively searching the design space S becomes in-

tractable. Restricting the design space exploration via Algo-
rithm 10 to a subset with the highest theoretical throughput
allows a good solution to be found with minimal effort.

VI. ACHIEVABILITY OF THE PERFORMANCE BOUND

This section will show that our proposed theoretical bound
is achievable by improving the hardware design. We first
implement the encoder and recoder using a naı̈ve matrix
multiplication given in Algorithm 11, which we call the
“naı̈ve” implementation. It is a simple baseline implementation
that requires further optimization.

For an implementation, plotting the achieved performance
in its corresponding roofline model can help to decide how
the current implementation can be optimized. As shown in
Fig. 7, the naı̈ve implementation is far from the theoretical
roof, so the easiest way to optimize this implementation is to
increase data locality, which reduces the data transfer time and
practically moves the implementation up in the roofline model.
The optimized version is called the “blocked” implementation,
which is explained in Algorithm 12, a two-level blocked matrix
multiplication scheme in GF (2n). The first level blocking
creates tiles in the BRAMs on the FPGA and stores data from
the off-chip memory, which reduces the expensive off-chip
memory access. The second level blocking is register blocking.
Since the BRAM has limited read-write ports, which stalls the
FPGA pipeline, we read part of the data in the BRAM to the
registers and then perform the computation. Because we can
create multiple read-write ports in the register-based memory
blocks, pipeline stalls are avoided. Notice that if the naı̈ve
implementation is already close to the roof, the most efficient
optimization will be moving the performance diagonally in the
roofline model, which means increasing the data locality while
increasing the OI.

Following the setup of the previous example, we use a fixed
ϵ = 0.5 and ϵo = 0.2 and vary the value for n, pk,M and F
in our experiment. Table V summarizes the theoretical bounds
and the implementation testing results for selected designs.
Fig. 7 plots the implementations in the corresponding roofline
models, showing the performance increase from the naı̈ve
implementation to the blocked implementation. The resource
consumption of eight basic FPGA implementations for the
naı̈ve version and the blocked version is shown in Table IV.
Notice that the blocked implementations consume more logic
resources (LUTs and FFs) than the naı̈ve implementation but
consume fewer block RAMs. It is due to the fact that the
blocked implementation has more pipeline stages, so more
registers need to be configured to accommodate the tiles. The
blocked implementation is a compact and efficient design with
more parallelism achieved. Since the naı̈ve implementation
caches the two input matrices on the FPGA before com-
putation, it consumes more block RAMs than the blocked
implementation, which caches the tiles dynamically. Also,
we notice that the GOPS/Slice increases as the field size
decreases in all implementations. It is expected as explained
in the previous discussions, that multipliers in smaller field
sizes have a better area/time product. Four BATS designs
in different finite fields are tested for encoder and recoder



11

TABLE IV
RESOURCE CONSUMPTION FOR THE TWO IMPLEMENTATIONS IN DIFFERENT FINITE FIELDS (n = 1, 2, 4, 8) ON CYCLONE V 5CSEBA6. UNIT OF RAM:
KBYTE. UNIT OF Fmax : MHZ. GOPS/SLICE: AVERAGE GOPS ACHIEVED BY CORRESPONDING DESIGNS IN TABLE V DIVIDED BY THE TOTAL NUMBER

OF SLICES USED. THE BEST DESIGN IN TERMS OF GOPS/SLICE IS HIGHLIGHTED IN BOLD.

design LUT FF RAM Slice GOPS/Slice Fmax design LUT FF RAM Slice GOPS/Slice Fmax

naı̈ve,n=8 17,022 38,446 302.6 20,974 4.76× 10−9 129 blocked,n=8 49,402 68,787 178.8 39,645 1.026× 10−4 106.6

naı̈ve,n=4 16,911 37,444 293.6 20,522 4.54× 10−9 116.1 blocked,n=4 26,871 43,020 109.2 24,222 1.745× 10−4 118.8

naı̈ve,n=2 16,778 37,813 289.1 20,648 7.65× 10−9 108.8 blocked,n=2 22,924 36,104 88.1 20,453 2.780× 10−4 115.6

naı̈ve,n=1 17,064 38,361 302.6 20,938 21.77× 10−9 121.8 blocked,n=1 30,609 43,012 101.9 24,352 10.512 × 10−4 112.1

(a) n = 8 (b) n = 4

(c) n = 2 (d) n = 1

Fig. 7. Roofline models based on Cyclone V 5CSEBA6 for n = 8, 4, 2, 1.
The achieved performance of designs corresponding to Table V are shown in
the roofline model. The naı̈ve implementations are indicated by ‘⋆’ and the
blocked implementation are indicated by ‘▽’.

respectively, under various file sizes. We can see that under
all conditions, the performance is significantly improved from
the naı̈ve implementation to the blocked implementation. The
performance of the latter is comparably close to the theoretical
bound, which indicates that the theoretical performance bound
is practical and can be approached by improving the hardware
design. The optimization priority is also suggested by the
roofline model as discussed above.

Notice that most designs using blocked implementations are
within a factor of 10 away from the roof, yet, many more

TABLE V
BATS DESIGNS WITH THEORETICAL AND IMPLEMENTATION

PERFORMANCE. ⋆THEORETICAL. 1NAÏVE IMPLEMENTATION. 2BLOCKED
IMPLEMENTATION. t: LATENCY (MS). Thr.: THROUGHPUT (MBPS).

TARGET PLATFORM: CYCLONE 5CSEBA6.

design n pk M t⋆/Thr.⋆ t1/Thr.1 t2/Thr.2

enc.1 8 1024 16 0.11/4.5k 24.8/20.1 0.388/1.28k
enc.2 4 2048 16 0.156/3.2k 88.4/5.65 1.24/403
enc.3 2 2048 4 0.253/1.97k 185/2.7 2.16/231
enc.4 1 1024 4 0.667/749 339/1.47 3.53/141
rec.1 8 1024 16 0.061/9.8k 12.8/46.8 0.268/2.23k
rec.2 4 2048 16 0.078/7.6k 22.2/27 0.438/1.36k
rec.3 2 2048 4 0.0592/10.1k 6.01/99 0.236/2.54k
rec.4 1 1024 4 0.0585/10.2k 5.44/110 0.168/3.57k

(a) F = 64 Kbytes

design n pk M t⋆/Thr.⋆ t1/Thr.1 t2/Thr.2

enc.5 8 1024 16 0.033/7.4k 7.83/31.9 0.217/1.15k
enc.6 4 2048 16 0.046/5.4k 22.2/11.2 0.453/551
enc.7 2 2048 4 0.065/3.8k 47.1/5.3 0.677/369
enc.8 1 1024 4 0.166/1.4k 84.8/2.9 0.97/257
rec.5 8 1024 16 0.036/8.3k 7.74/38.7 0.204/1.47k
rec.6 4 2048 16 0.046/6.4k 13.4/22.3 0.309/970
rec.7 2 2048 4 0.03/10k 3.13/95.8 0.171/1.75k
rec.8 1 1024 4 0.029/10.3k 2.77/108 0.11/2.72k

(b) F = 32 Kbytes

design n pk M t⋆/Thr.⋆ t1/Thr.1 t2/Thr.2

enc.9 8 1024 16 0.022/5.6k 2.82/44.3 0.118/1.05k
enc.10 4 2048 16 0.022/5.6k 6.8/18.3 0.236/529
enc.11 2 2048 4 0.016/7.7k 12.1/10.3 0.275/454
enc.12 1 1024 4 0.042/2.9k 21.5/5.81 0.299/418
rec.9 8 1024 16 0.024/6.1k 5.19/28.9 0.17/882
rec.10 4 2048 16 0.031/4.8k 8.97/16.7 0.24/625
rec.11 2 2048 4 0.015/10k 1.64/91.4 0.113/1.32k
rec.12 1 1024 4 0.014/10.1k 1.64/91.4 0.115/1.30k

(c) F = 16 Kbytes

optimization techniques can be applied. For example, we can
exploit the full memory bandwidth using SIMD or a better
pipeline with a systolic-array structure [53]. This shows that
the design paradigm proposed in Section V indeed provides
useful guidance for achieving good hardware designs. Since
the proposed theoretical bound is practical and achievable, it
is justified to use the theoretical bound as a selection criterion
in the design paradigm.

VII. CONCLUSION AND DISCUSSION

In this paper, we studied implementations of BATS with
consideration of the finite field multiplier using a roofline
model. We proposed a finite field modified roofline model



12

which was then used to analyze the maximum throughput
and minimum latency of a BATS code on FPGA. Finally
we connected important BATS code design parameters to
hardware performance through Operational Intensity and the
roofline model. Three equations are derived, (9), (12) and
(20), which quantify the attainable hardware performance in
terms of the BATS code parameters. We also propose a design
paradigm for finding the best BATS code implementation on
FPGA based on our equations without intensively searching
the design space. Results from FPGA implementations were
used to verify our theory. The proposed design paradigm can
be easily extended to any hardware platform and it can even
be adapted to other linear codes.

Even though the roofline model provides insightful guidance
for optimization, it is not perfect. When calculating the attain-
able computational power of the platform, we assume that
matrix multiplication is perfectly scalable. However, in actual
implementations this is not true in general. Nevertheless, this
simplified model provides strong insight into how a hardware
implementation of BATS should be optimised.

The actual implementation of the decoding is omitted in Ta-
ble V for two reasons. As asserted in Proposition 5, decoding
shares the same optimality with encoding. Therefore, the most
suitable design for encoding would also be the optimal design
for decoding. Secondly, due to the difficulty in analysing
complexity of the decoding algorithm, how to find efficient
and highly parallel architectures for decoding is still an open
problem. Even though hardware designs for BP decoding for
other applications like the polar code [59] and LDPC code
[60] have been proposed, their direct application to BATS is
neither obvious nor optimal.

To the best of our knowledge, this is the first paper that
investigates the BATS code from a hardware perspective. We
believe that as applications of the BATS code are emerging,
efficient hardware implementations will be crucial for the next
generation of wireless communication infrastructure.

REFERENCES

[1] D. C. Salyers, A. D. Striegel, and C. Poellabauer, “Wireless reliability:
Rethinking 802.11 packet loss,” in 2008 International Symposium on a
World of Wireless, Mobile and Multimedia Networks. IEEE, 2008, pp.
1–4.

[2] E. Tanghe, W. Joseph, L. Verloock, and L. Martens, “Evaluation of
vehicle penetration loss at wireless communication frequencies,” IEEE
transactions on vehicular technology, vol. 57, no. 4, pp. 2036–2041,
2008.

[3] Y. Tian, K. Xu, and N. Ansari, “TCP in wireless environments: problems
and solutions,” IEEE Communications Magazine, vol. 43, no. 3, pp. S27–
S32, 2005.

[4] S. Yang and R. W. Yeung, “Batched sparse codes,” IEEE Transactions
on Information Theory, vol. 60, no. 9, pp. 5322–5346, 2014.

[5] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network informa-
tion flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[6] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inform. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[7] A. F. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros,
“Capacity of wireless erasure networks,” IEEE Trans. Inform. Theory,
vol. 52, no. 3, pp. 789–804, Mar. 2006.

[8] D. S. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for reliable
communication over packet networks,” Physical Communication, vol. 1,
no. 1, pp. 3–20, Mar. 2008.

[9] T. Kanematsu, K. Sanada, Z. Li, T. Pei, Y.-J. Choi, K. Nguyen, and
H. Sekiya, “Throughput and delay analysis for ieee 802.11 multi-hop
networks considering data rate,” International Journal of Distributed
Sensor Networks, vol. 16, no. 9, p. 1550147720959262, 2020.

[10] X. Zhang, H. Jiang, L. Zhang, C. Zhang, Z. Wang, and X. Chen,
“An energy-efficient asic for wireless body sensor networks in medical
applications,” IEEE transactions on biomedical circuits and systems,
vol. 4, no. 1, pp. 11–18, 2009.

[11] F. Karray, M. W. Jmal, M. Abid, M. S. BenSaleh, and A. M. Obeid, “A
review on wireless sensor node architectures,” in 2014 9th International
Symposium on Reconfigurable and Communication-Centric Systems-on-
Chip (ReCoSoC). IEEE, 2014, pp. 1–8.

[12] I. Zhang, J. Liu, A. Austin, M. L. Roberts, and A. Badam, “I’m not
dead yet! the role of the operating system in a kernel-bypass era,” in
Proceedings of the Workshop on Hot Topics in Operating Systems, 2019,
pp. 73–80.

[13] R. Chen and G. Sun, “A survey of kernel-bypass techniques in network
stack,” in Proceedings of the 2018 2nd International Conference on
Computer Science and Artificial Intelligence, 2018, pp. 474–477.

[14] V. Chamola, S. Patra, N. Kumar, and M. Guizani, “Fpga for 5g:
Re-configurable hardware for next generation communication,” IEEE
Wireless Communications, vol. 27, no. 3, pp. 140–147, 2020.

[15] J. Nadal and A. Baghdadi, “Parallel and flexible 5g ldpc decoder
architecture targeting fpga,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 29, no. 6, pp. 1141–1151, 2021.

[16] M. Vestias and H. Neto, “Trends of cpu, gpu and fpga for high-
performance computing,” in 2014 24th International Conference on
Field Programmable Logic and Applications (FPL). IEEE, 2014, pp.
1–6.

[17] M. Huang, D. Wu, C. H. Yu, Z. Fang, M. Interlandi, T. Condie, and
J. Cong, “Programming and runtime support to blaze fpga accelerator
deployment at datacenter scale,” in Proceedings of the Seventh ACM
Symposium on Cloud Computing, 2016, pp. 456–469.

[18] S. Yang and R. W. Yeung, “Coding for a network coded fountain,” in
2011 IEEE International Symposium on Information Theory Proceed-
ings. IEEE, 2011, pp. 2647–2651.

[19] S. Yang and Q. Zhou, “Tree analysis of bats codes,” IEEE Communica-
tions Letters, vol. 20, no. 1, pp. 37–40, 2015.

[20] S. Yang, T.-C. Ng, and R. W. Yeung, “Finite-length analysis of bats
codes,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp.
322–348, 2017.

[21] X. Xu, Y. Zeng, Y. L. Guan, and L. Yuan, “Expanding-window bats
code for scalable video multicasting over erasure networks,” IEEE
Transactions on Multimedia, vol. 20, no. 2, pp. 271–281, 2017.

[22] J. Yang, Z. Shi, and J. Ji, “Design of improved expanding-window bats
codes,” IEEE Transactions on Vehicular Technology, vol. 71, no. 3, pp.
2874–2886, 2021.

[23] X. Xu, Y. Zeng, Y. L. Guan, and L. Yuan, “Bats code with unequal error
protection,” in 2016 IEEE International Conference on Communication
Systems (ICCS). IEEE, 2016, pp. 1–6.

[24] H. H. Yin, S. Yang, Q. Zhou, and L. M. Yung, “Adaptive recoding
for bats codes,” in 2016 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2016, pp. 2349–2353.

[25] Z. Zhou, C. Li, S. Yang, and X. Guang, “Practical inner codes for bats
codes in multi-hop wireless networks,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 3, pp. 2751–2762, 2019.

[26] X. Xu, Y. L. Guan, Y. Zeng, and C.-C. Chui, “Quasi-universal bats
code,” IEEE Transactions on Vehicular Technology, vol. 66, no. 4, pp.
3497–3501, 2016.

[27] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, 2006.

[28] D. J. MacKay, “Fountain codes,” IEE Proceedings-Communications, vol.
152, no. 6, pp. 1062–1068, 2005.

[29] S. Yang and R. W. Yeung, “BATS codes: Theory and practice,” Synthesis
Lectures on Communication Networks, vol. 10, no. 2, pp. 1–226, 2017.

[30] R. Tanner, “A recursive approach to low complexity codes,” IEEE
Transactions on information theory, vol. 27, no. 5, pp. 533–547, 1981.

[31] X. Xu, M. S. G. P. Kumar, Y. L. Guan, and P. H. J. Chong, “Two-
phase cooperative broadcasting based on batched network code,” IEEE
Transactions on Communications, vol. 64, no. 2, pp. 706–714, 2015.

[32] X. Xu, Y. L. Guan, and Y. Zeng, “Batched network coding with
adaptive recoding for multi-hop erasure channels with memory,” IEEE
Transactions on Communications, vol. 66, no. 3, pp. 1042–1052, 2017.



13

[33] H. Zhao, S. Yang, and G. Feng, “Fast degree-distribution optimization
for BATS codes,” Science China Information Sciences, vol. 60, no. 10,
pp. 1–15, 2017.

[34] Z. Zhou, C. Li, S. Yang, and X. Guang, “Practical inner codes for bats
codes in multi-hop wireless networks,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 3, pp. 2751–2762, 2019.

[35] F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo, “Axi
hyperconnect: a predictable, hypervisor-level interconnect for hardware
accelerators in fpga soc,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[36] J. Vasiljevic, R. Wittig, P. Schumacher, J. Fifield, F. M. Vallina,
H. Styles, and P. Chow, “Opencl library of stream memory components
targeting fpgas,” in 2015 international conference on field programmable
technology (FPT). IEEE, 2015, pp. 104–111.

[37] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[38] Cyclone V Device Datasheet, 2019th ed., Intel, 11 2019.
[39] R. Gallager, “Low-density parity-check codes,” IRE Transactions on

information theory, vol. 8, no. 1, pp. 21–28, 1962.
[40] G. L. Mullen and D. Panario, Handbook of finite fields. CRC Press

Boca Raton, 2013, vol. 17.
[41] H. Fan and M. A. Hasan, “A survey of some recent bit-parallel GF(2n)

multipliers,” Finite Fields and Their Applications, vol. 32, pp. 5–43,
2015.

[42] D. Wells, The Penguin Dictionary of Curious and Interesting Numbers,
1st ed. Penguin Books, 1986.

[43] Arria 10 Device Datasheet, 2020th ed., Intel, 06 2020.
[44] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,

“High-level synthesis for fpgas: From prototyping to deployment,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 4, pp. 473–491, 2011.

[45] C. Y. Lin, H. K.-H. So, and P. H. Leong, “A model for matrix multipli-
cation performance on fpgas,” in 2011 21st International Conference on
Field Programmable Logic and Applications. IEEE, 2011, pp. 305–310.

[46] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, “A pseudorandom
generator from any one-way function,” SIAM Journal on Computing,
vol. 28, no. 4, pp. 1364–1396, 1999.

[47] L. Blum, M. Blum, and M. Shub, “A simple unpredictable pseudo-
random number generator,” SIAM Journal on computing, vol. 15, no. 2,
pp. 364–383, 1986.

[48] K. H. Tsoi, K. H. Leung, and P. H. W. Leong, “Compact fpga-based
true and pseudo random number generators,” in 11th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, 2003.
FCCM 2003. IEEE, 2003, pp. 51–61.

[49] M. Garcia-Bosque, A. Pérez-Resa, C. Sánchez-Azqueta, C. Aldea,
and S. Celma, “Chaos-based bitwise dynamical pseudorandom number
generator on fpga,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 68, no. 1, pp. 291–293, 2018.

[50] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance
and optimizations of blocked algorithms,” ACM SIGOPS Operating
Systems Review, vol. 25, no. Special Issue, pp. 63–74, 1991.

[51] H. Li and Q. Huan-yan, “Parallelized network coding with simd instruc-
tion sets,” in 2008 International Symposium on Computer Science and
Computational Technology, vol. 1. IEEE, 2008, pp. 364–369.

[52] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi et al., “A configurable
cloud-scale dnn processor for real-time ai,” in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2018, pp. 1–14.

[53] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer architecture, 2017,
pp. 1–12.

[54] J. Nurmi, Processor design: system-on-chip computing for ASICs and
FPGAs. Springer Science & Business Media, 2007.

[55] F. Lázaro, G. Liva, and G. Bauch, “Inactivation decoding of lt and raptor
codes: Analysis and code design,” IEEE Transactions on Communica-
tions, vol. 65, no. 10, pp. 4114–4127, 2017.

[56] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating
compute-intensive applications with gpus and fpgas,” in 2008 Sympo-
sium on Application Specific Processors. IEEE, 2008, pp. 101–107.

[57] C. Nugteren, “Clblast: A tuned opencl blas library,” in Proceedings of
the International Workshop on OpenCL, 2018, pp. 1–10.

[58] S. Yang and R. W. Yeung, “Network communication protocol design
from the perspective of batched network coding,” IEEE Communications
Magazine, vol. 60, no. 1, pp. 89–93, 2022.

[59] A. Pamuk, “An fpga implementation architecture for decoding of polar
codes,” in 2011 8th International symposium on wireless communication
systems. IEEE, 2011, pp. 437–441.

[60] S. Mhaske, H. Kee, T. Ly, A. Aziz, and P. Spasojevic, “High-throughput
fpga-based qc-ldpc decoder architecture,” in 2015 IEEE 82nd Vehicular
Technology Conference (VTC2015-Fall). IEEE, 2015, pp. 1–5.

Jiaxin Qing received a B.E. degree in electrical engineering from the
University of Sydney, Australia, in 2020. He is currently working toward
a Ph.D. degree in information engineering at the Chinese University of Hong
Kong, China. His research interests include communication system, deep
learning, and reconfigurable computing.

Philip H. W. Leong (Senior Member, IEEE) Biography text here.

Raymond W. Yeung (Fellow, IEEE) Biography text here.


	Introduction
	Background
	BATS Code
	Encoding
	Recoding
	Decoding

	Problem Formulation

	Roofline Model
	Finite Field Multiplication
	Modified Roofline Analysis

	Roofline Analysis of BATS
	OI of Encoding and Recoding
	OI of Decoding

	Maximum Throughput Analysis and the Design Paradigm
	Achievability of the Performance Bound
	Conclusion and Discussion
	References
	Biographies
	Jiaxin Qing
	Philip H. W. Leong
	Raymond W. Yeung


