
APIR-DSP: An Approximate PIR-DSP Architecture
for Error-Tolerant Applications

Yuan Dai1†, Simin Liu1†, Yao Lu1†, Hao Zhou1, SeyedRamin Rasoulinezhad2, Philip H.W. Leong2, Lingli Wang1∗
1State Key Lab of ASIC and System, Fudan University, Shanghai 201203, China

2School of Electrical and Information Engineering, The University of Sydney, Australia 2006
∗Email: llwang@fudan.edu.cn

Abstract—In error-tolerant applications such as low-precision
DNNs and digital filters, approximate arithmetic circuits can sig-
nificantly reduce hardware resource utilization. In this work we
propose an embedded block for field-programmable gate arrays,
called APIR-DSP, which incorporates an approximate 9×9 hard
multiplier based on the PIR-DSP architecture to improve speed
and reduce area. In addition, a DSP unit evaluation platform
based on Yosys and VPR which packs multiply accumulate oper-
ations into DSP blocks is developed. Using this tool we synthesis
designs from Verilog implementations of matrix multiplication
in DeepBench and the DoReFaNet low-precision neural network
and show that APIR-DSP significantly reduces DSP resources
and improves hardware utilization and performance compared
with the Xilinx DSP48E2 embedded block. Compared with exact
multiplication, it is shown that accuracy loss is optimized with
the SNR of an FIR filter being reduced by 1.03 dB. For DNNs,
accuracy loss for AlexNet is 0.31% on CIFAR10 dataset and no
accuracy loss for LeNet on MNIST dataset is observed. Synthesis
results show that the APIR-DSP enjoys an area reduction of
21.60%, critical path reduction of 4.85% and power consumption
is reduced by 2.80%, compared with PIR-DSP.

I. INTRODUCTION

Deep learning technology based on the convolutional neural
networks has had tremendous impact in a number of diverse
applications. However, with the evolution of models trending
towards those with greatly increased storage and computa-
tional requirements, techniques for their efficient implemen-
tation become increasingly important. For example, AlexNet
proposed in 2012 can achieve a top-1 error rate of 37.5%
on ImageNet by performing 727M floating-point operations
with 60.9M parameters in five convolutional layers and three
fully-connected layers [1]. In contrast, the more advanced con-
volutional neural network ResNet152 requires 11.3B floating-
point operations, utilizes 152-layers, and achieves a single-
model top-1 validation error rate of 19.38% [2]. Large neural
network models cannot be deployed in application scenarios
where computing resources and memory resources are limited,
particularly in embedded devices where delay and power are
strictly constrained. To overcome these limitations, a low-
precision inference neural network with acceptable accuracy
loss is proposed, which reduces storage requirement and
computational complexity through approximate arithmetic.

†These three authors contributed equally to this work.

For high performance inference, application specific in-
tegrated circuit (ASIC) or field-programmable gate array
(FPGA) hardware acceleration platforms are preferred as they
offer the highest degree of customization. FPGA is pro-
grammable and arbitrary data paths can be developed using
fine-grained logic resources [3], [4]. Being commercial off-
the-shelf products where design costs are amortised over all
users, compared with ASICs, FPGAs enjoy lower design cost,
faster time to market, and lower production cost for all but
the highest volume applications. On FPGAs, efficiency is
achieved via embedded digital signal processing (DSP) blocks
which can effectively implement multiply-accumulate (MAC)
operations prevalent in low-precision neural networks.

FPGA vendors have evolved their architectures to enable
low-precision computing. The width supported by typical
FPGA DSPs is 8-18 bits. For example, Xilinx provides a
scheme of using their DSP48E2 to realize MAC operations
[5]. Each DSP block can implement two 8-bit MAC operations
with a shared multiplicand and no more than 7 multiplications
accumulated. Recently, FPGA vendors have evolved their
architectures to efficiently support lower (< 8 bits) precision
[6]. For example, AI tensor blocks in Intel Stratix 10 NX
FPGA can support up to 30 int8 MAC operations and 60 int4
MAC operations [7].

Approximate arithmetic circuits have become a viable
energy-saving solution for digital systems [8]. In some error
tolerant applications, such as deep neural networks (DNNs)
and digital filters, approximate arithmetic circuits can provide
many benefits including smaller area, lower critical path delay
and lower power consumption. By carefully designing the
approximate multiplier, the accuracy loss can be controlled. In
addition, the distribution of DNN and filter parameters mainly
lies in the range of multiplier with no or little error.

To realize low precision operations and take advantage of
approximate arithmetic circuits, in this paper, we propose an
architecture supporting approximate computation, based on
the PIR-DSP architecture [9]. The new architecture is called
APIR-DSP (approximate PIR-DSP), and this work makes the
following contributions:
• A novel DSP architecture, based on an approximate 9×9

multiplier which achieves significantly better area, critical
path delay and power consumption than a full multiplier.

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 F

ie
ld

-P
ro

gr
am

m
ab

le
 T

ec
hn

ol
og

y
(IC

FP
T)

 |
 9

78
-1

-6
65

4-
20

10
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
FP

T5
28

63
.2

02
1.

96
09

92
7

Authorized licensed use limited to: University of Sydney. Downloaded on February 11,2022 at 23:54:47 UTC from IEEE Xplore. Restrictions apply.

To the best of our knowledge this is the first approximate
DSP embedded block.

• We show a number of applications that APIR-DSP can be
used with minimal reduction in computational accuracy.
APIR-DSP can improve utilization by supporting a large
number of low-precision multiply accumulate operations,
while at the same time increasing speed and reducing
area.

• An open source programmable DSP block evaluation
platform1, based on the Yosys and VPR open source
electronic design automation (EDA) tools, which supports
both DSP48E2 and APIR-DSP blocks. This is the first
academic platform which can pack multipliers described
in Verilog into DSP blocks having large numbers of low-
precision multiply accumulate units.

II. BACKGROUND AND RELATED WORK

A. DSP Blocks on Current FPGAs

Xilinx proposed the DSP48E1 architecture for Virtex 7
series FPGA, which contains a 25-bit pre-adder, a 25×18 mul-
tiplier and a 48-bit arithmetic logic unit (ALU), and can realize
subtraction, addition, accumulation or logical operations.

For the Ultrascale series FPGA, Xilinx proposed the
DSP48E2 architecture [10], which is the improved architecture
of DSP48E1. In addition, DSP48E2 is the basis architecture
of PIR-DSP, and its simplified schematic is shown in Fig.
1. Compared with DSP48E1, the DSP48E2 mainly has the
following improvements:

a) Wider multiplier: the multiplier width is improved from
25×18 to 27×18.

b) More flexible pre-adder: the pre-adder width is improved
from 25-bit to 27-bit, and A or B can be selected as input to the
pre-adder. In addition, the output of pre-adder can be squared.

c) Wide XOR: DSP48E2 can support a 96-bit wide XOR
function, which is not supported in DSP48E1.

However, as previously mentioned, there are limitations
when DSP48E2 performing low precision computation.

Fig. 1. The simplified schematic of DSP48E2.

The Intel Agilex FPGA is manufactured using a 10nm
process, which can be flexibly adapted to AI application
scenarios with other functions. The DSP block can support
multiple precisions of FP32, BFLOAT16, FP16 and INT8.

1GitHub.com/Dai-dirk/APIR-DSP

Floating-point performance of up to 40 TFLOPS can be
achieved [11].

In addition, there are many research papers describing the
architecture design of multi-precision DSP blocks. A DSP
block with a width of 16 that supports run time precision
configuration is proposed in [12], where it supports two 8-
bit multiplications but with 13% area overhead. In [13], one
18×18 multiplier can be used as eight 2×2 multipliers. A
multi-precision DSP block based on radix-4 Booth multi-
plier is proposed in [14], which supports 9/12/18/24/36 bit
multiplications and multi-input additions. In [15], the authors
presented a modification of the Arria-10 DSP block, which can
pack twice as many 9-bit multipliers and four times as many
4-bit multipliers to support 4×9 or 8×4 MAC operations. The
DSP block area is increased by 12%, but the total FPGA area is
increased by 0.6% only. The enhanced DSP block is used in
two state-of-the-art accelerators and evaluated over different
DNN models (ALEXNET, VGG-16, and RESNET-50) with
speed acceleration by 1.32×/1.6× and chip area decreased by
15%/30% for 8/4-bits respectively.

A multi-precision, semi-2D interconnection and multiplex-
ing optimized DSP block (PIR-DSP) is proposed in [9], which
is the basis for APIR-DSP. In addition to multi-precision
multiply accumulate support, PIR-DSP adds a register file
(RF) at the input of a DSP48E2 block to support data
multiplexing and reduce energy loss in data movement, and
changes the interconnection between DSPs to support low-
precision cascaded data streams. Compared with the baseline
DSP48E2, PIR-DSP reduced runtime power consumption by
31%/19%/13% when implementing a 9/4/2-bit MobileNet-V2
DNN.

B. Open Source Design Flow for FPGA

Yosys is an open source synthesis tool originally developed
by Claire Wolf for the Icestorm project [16]. It takes Verilog
files as inputs, and can generate netlists in various formats for
use with simulators, formal verification, and place and route
(PnR) tools. Yosys supports the Xilinx DSP48E1 DSP block
and in this paper we have added support for the DSP48E2,
PIR-DSP and APIR-DSP blocks.

For placement and routing, a number of open source tools
are available. VTR [17] is a research tool to design and test
simulated FPGA architectures. It uses an XML based format
to describe an FPGA. Another option is Nextpnr [18], which
uses programmatic descriptions of FPGA architectures, and is
written from the ground up with commercial FPGAs in mind.

Our evaluation platform is based on Yosys and VPR.
Together these two tools can map a benchmark circuit in
Verilog to the target FPGA architecture, applying synthesis and
placement and routing to allow performance to be evaluated.

III. APIR-DSP BLOCK ARCHITECTURE

PIR-DSP uses a divide-and-conquer technique [19] to par-
tition the 27×18 multiplier into six smaller multipliers, each
being a signed/unsigned 9-bit multiplication. As shown in
Fig. 2(a), a 27×18 multiplication is done by evaluating six

Authorized licensed use limited to: University of Sydney. Downloaded on February 11,2022 at 23:54:47 UTC from IEEE Xplore. Restrictions apply.

partial results with appropriate shifts. Fig. 2(b) shows that
by controlling the shift steps for the first, fourth and fifth
partial results, the summation can be arranged into two sep-
arate columns, therefore, PIR-DSP can compute 2 parallel
signed/unsigned (9×9+9×9+9×9) MAC operations and the
PIR-DSP multiplier is composed from six 9×9 multipliers.
In this paper, we replace these six exact 9×9 multipliers
of the PIR-DSP with approximate ones to form a new DSP
architecture, called APIR-DSP.

Fig. 2. PIR-DSP multiplication modes, a 27 × 18 bit multiplication is
implemented as a number of 9× 9 operations to support different precisions.

As shown in Fig. 3, an unsigned 9×9 multiplier can be
partitioned into nine 3×3 multipliers, where “Pi” (0 ≤ i ≤ 8)
is a 6-bit partial result. With appropriate shifts, the final result
can be obtained by summing these partial results. Therefore,
we use the unsigned approximate 3×3 multipliers to construct
an unsigned approximate 9×9 multiplier.

Fig. 3. nine 3×3 multipliers compose a 9×9 multiplier

A. Approximate 3×3 multiplier

A 3×3 multiplier has 6 inputs α2−0, β2−0 and 6 outputs
O5−0. Modifying the output values of the exact 3×3 multiplier
can simplify the logic and decrease resource cost. For 6 inputs,
there are 64 (26) output values. We modify six cases, as shown
in TABLE I, the Value and Value′ represent exact values and
approximate values, respectively. From TABLE I, the output
logic function expressions (1)-(4) can be obtained. Compared
with the exact multiplier, the logic complexity of our approx-
imate multiplier is lower for synthesis. In reference [20], the
authors suggested a number of error metrics including: error

TABLE I
APPROXIMATE TRUTH TABLE FOR 3×3 MULTIPLIER

α2−0 β2−0 O5−0 Value O′5−0 Value′ ED
101 111 100011 35 011011 27 8
110 110 100100 36 101000 40 4
110 111 101010 42 101110 46 4
111 101 100011 35 011011 27 8
111 110 101010 42 101110 38 4
111 111 110001 49 101101 45 4

TABLE II
COMPARISON OF 3×3 APPROXIMATE MULTIPLIER IN TERMS OF AREA,

POWER AND DELAY

Name Area(µm2) Power(mW) Delay(nS)
Exact mul 67.68 3.73 0.45
Appro mul 46.44 2.36 0.26

Improvement 31.38% 36.73% 42.22%

distance (ED), error rate (ER), mean error distance (MED),
normalized mean error distance (NMED) and mean relative
error distance (MRED). In this work we use ED, ER and MED,
and their expressions are shown in equations (5)(6)(7), where
m is the number of values approximated and n is the number
of input variables. Our approximate multiplier has EDs less
than 8, ER is 9.375% and MED is 0.5.

O′2 = α2α1α0β1 + α1β2β1β0 + α2α1α0β2

+ α2α0β2β1 + α1β2β1β0 + α2α1α0β0

+ α2α0β1β0 + α2α0β2β0

+ α2α0β2β0

(1)

O′3 = α1β2α0 + α2α1α0β2β1β0 + α1β1β2

+ α2α1β1 + α2α0β0β2 + α2β1β0
(2)

O′4 = α1α1α0β2β1 + α2α1β2

+ α2α1β2β1β0 + α2β2β1
(3)

O′5 = α2α1β2β1 (4)

ED = |V alue− V alue′| (5)

ER =
m

2n
(6)

MED =

∑2n

i=1ED

2n
(7)

Both our approximate multiplier and a baseline exact
multiplier are described using Verilog, and synthesized with
Synopsys Design Complier (DC) using the ASAP-7nm process
library [21] to compare their performances. As shown in
TABLE II, our approximate multiplier achieves a 31.38%
decrease in area and 36.73% lower power consumption. Delay
is decreased by 42.22% compared with the baseline.

Authorized licensed use limited to: University of Sydney. Downloaded on February 11,2022 at 23:54:47 UTC from IEEE Xplore. Restrictions apply.

B. Approximate PIR-DSP achitecture

The APIR-DSP supports both unsigned and signed inputs,
which is based on the 9×9 approximate multipliers, as shown
in Fig. 4. If operand A or B is signed, we extract its sign bit
and convert the operand into 2’s complement form, after which
unsigned multiplication is performed. The extracted sign bits
of the two inputs are XORed to obtain the sign bit of the
result. Finally, we control whether the unsigned multiplication
result is complemented according to the signs of the operands,
the final result is generated appropriately.

Fig. 4. The proposed 9×9 approximate multiplier

The proposed APIR-DSP is formed using the proposed ap-
proximate 9×9 multipliers to replace the exact 9×9 multipliers
in the PIR-DSP, which is shown in Fig. 5.

Fig. 5. The APIR-DSP architecture

IV. PROGRAMMABLE DSP BLOCK EVALUATION
PLATFORM

In the section, we introduce our programmable DSP block
evaluation platform by expanding the front-end synthesis tool
Yosys and the architecture description file for back-end PnR
tool VPR.

A. Synthesis and Technology Mapping

Our programmable DSP block evaluation platform uses
Yosys for synthesis and the embedded ABC [22] for tech-
nology mapping. As previously mentioned, Yosys supports
some features of the Xilinx Virtex 7 series, such as BRAM,
Carry-chain, etc., but lacks support for Ultrascale DSP48E2.
Therefore, we first modify the Yosys library files based on
the Xilinx 7 series, and then add support for the DSP48E2,
PIR-DSP and APIR-DSP blocks.

Yosys’s techmap command converts the components into the
basic logical units in the target architecture. In FPGA CAD
flow, the basic logical unit can be a LUT or a special functional
unit, such as a multiplier. In order to be compatible with the
VPR input format, we have modified the LUT, carry-chain and
other units in Yosys FPGA synthesis library.

For the LUT unit, Yosys usually calls ABC to gener-
ate LUT2, LUT3 and other fixed subunits. This is not
suitable for VPR packing, place and route. Therefore, we
add the “synth pirdsp” command in Yosys to support both
PIR-DSP and APIR-DSP architectures based on the original
“synth xilinx” to generate the basic $lut units and allow VPR
to pack them into clusters.

The carry-chain module in Yosys synthesis library lacks
the carry output port CO CHAIN, which does not match
the CLB architecture in the VPR description file. To address
this problem, we modify the architecture description of carry-
chain module, where the most significant bit (MSB) of CO is
assigned to output CO CHAIN, as shown in Fig. 6(b).

Yosys natively supports DSP48E1 block which can convert
a $mul into a DSP48E1 block based on techmap command.
Then it can pack the corresponding $add and other units into
the DSP48E1 block. Therefore, it is relatively straightforward
to add support for the DSP48E2, PIR-DSP and APIR-DSP
blocks to the Yosys synthesis library.

For the DSP48E2, a single $mul unit can be converted
into one DSP48E2 block, this being one-to-one mapping flow.
However, for PIR-DSP or APIR-DSP, it contains six 9×9
low-precision multiplications, so multiple $mul units must be
packed into a single DSP block. In order to perform synthesis
for the PIR-DSP/APIR-DSP blocks, we add a pre-pack step
based on Yosys’s extract command which packs the six $mul
units into one DSP block. Using the same method, we pack
the input registers that meet the condition for being used as
port A of the DSP block into a RF. Hence, the synthesis result
of Yosys contains DSP and RF blocks, which can be packed
by VPR into a PIR-DSP/APIR-DSP block.

As previously mentioned, Yosys can pack the $add unit into
a DSP block. The different connections of $add and other
units in a DSP block constitute a variety of working modes.

Authorized licensed use limited to: University of Sydney. Downloaded on February 11,2022 at 23:54:47 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

Fig. 6. Carry-chain description in Yosys synthesis library: (a) before modi-
fication,(b) after modification

We write packing architecture Pattern Matcher Generator
(PMG) files according to the format specified by Yosys [16],
for DSP48E2, PIR-DSP and APIR-DSP respectively. These
files describe the connections in the DSP blocks under each
working mode. A Python script reads the one PMG file to
generate a corresponding header file, which is included by a
C++ file to realize the mode matching.

After the mapping for $lut, carry-chain, $mul, $add and RF,
the final step is for Yosys to generate a blif file for VPR.

B. Placement and Routing

Our programmable DSP unit evaluation platform uses VPR
for placement and routing, and the architecture description
file for VPR is based on the Xilinx 7 series. The APIR-DSP
block can replace the DSP48E1 in Xilinx 7 series, and anal-
ysis performed following placement and routing. The FPGA
architecture description files in VPR can be implemented at
different levels [23]. If the device model of FPGA is well
matched with the data model, a reasonable and accurate FPGA
architecture model can be obtained. For example, Murray et
al. use VPR to model commercial FPGA Intel Stratix IV [24].
We use the same method and model our target FPGA at the
device model level.

In our target FPGA architecture, the APIR-DSP block’s
interconnection and placement are shown in Fig. 7, where
DSP units are arranged in a columnar fashion and are the

same height as BRAMs. Each APIR-DSP unit cotains two
DSP blocks. In the architecture description file, the height
parameter is used to define the height relationship of different
units. In this paper, the DSP and BRAM have a height of
5. While BRAM is not the focus of this paper, we note that
Yosys treats it as a blackbox, and VPR only considers the
communication and interconnection of external ports without
any information regarding the specific internal connections.

Fig. 7. APIR-DSP interconnection and placement

Compared with DSP48E2, PIR-DSP or APIR-DSP block’s
interconnection is a semi-2D systolic structure. In this struc-
ture, each DSP block connects to non-adjacent DSP blocks
in the same column [9]. As shown in Fig. 8, we implement
this structure by modifying the “direct” and the parameters
“y offset” in the architecture description file. As previously
mentioned, each DSP unit contains two DSP blocks, and the
height of DSP unit is 5. Therefore, we set the “y offset” equals
to -5, which indicates that the DSP block in current DSP unit
connects to the DSP block in previous DSP unit, instead of
the DSP block in the same DSP unit.

As previously mentioned, we use VPR to pack the RF
of port A into APIR-DSP. We use “pack pattern” in the
architecture description file to guide the VPR.

In addition to DSP and BRAM units, the synthesis results
of Yosys also contain LUTs and flip-flops and other units,
these resources being provided by the configurable logic block
(CLB). We describe the detailed architecture and internal
connection of CLB unit in the architecture description file.
For the LUT unit, the basic LUT unit generated by Yosys is
represented by an instance marked with “.names”.

For flip-flops, there are different units in the Yosys standard
library. Examples include $dffe with enable signal and $adff
with synchronous reset signal. Yosys converts these units
into the register units of the target FPGA. In our flow the
register units are FDRE, FDSE, etc. Therefore, we provide
blif modules for each register unit (i.e. FDRE, FDSE, etc.) in
the architecture description file to indicate that it is the basic
unit, and VPR will pack it into a CLB block.

Finally, in the layout section of the architecture description
file in VPR, we define the same cell arrangement structure and

Authorized licensed use limited to: University of Sydney. Downloaded on February 11,2022 at 23:54:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Description of the direct connections for APIR-DSP architecture

TABLE III
COMPARISON OF THE SNR OF FIR FILTER

Muliplier Type SNR (dB)
Exact(baseline) 33.80
Approximate 32.77

that the FPGA automatically expands the grid size (i.e. setting
“auto layout”) with an aspect ratio of 0.6 during placement
and routing.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed approximate 9×9
multiplier in an FIR filter and DNN applications. We also syn-
thesise hard blocks for PIR-DSP and APIR-DSP and compare
their area, power consumption and critical path delay. Finally,
using two low-precision test cases on the programmable DSP
unit evaluation platform, we compare the performance of
DSP48E2 and APIR-DSP.

A. Result of approximate 9×9 multiplier

We apply the proposed approximate 9×9 multiplier and
the exact 9×9 multiplier to a 20 order adaptive low-pass
FIR filter and compare their maximum output signal to noise
ratio (SNRs) to evaluate the accuracy loss introduced by the
approximate multiplier. As shown in TABLE III, compared
with exact FIR filter, the approximate FIR filter’s SNR is
decreased 1.03 dB.

We also use a TensorFlow DNN platform to study DNN top-
1 accuracy loss (DAL) caused by our approximation. During
the training stage, the fake-quantization method [25] is used to
simulate the quantization effect with floating-point operations
to reduce the accuracy loss caused by the quantization error.
Fig. 9 shows the structure of the convolutional layer, where
weights are in the form of floating-point numbers. Hence, in
order to use the proposed approximate multiplier without in-
creasing the quantization complexity, we quantify the weights
to 8-bit, corresponding to the unsigned 8×8 multiplication,
which is the subset of the approximate multiplier operations.
Finally, the fake-quantization method is applied to the output
of the ReLU6 function to obtain the output.

We compare an unsigned 8×8 exact multiplier to our
proposed approximate 9×9 multiplier by introducing the mul-
tiplier approximation in look up table (LUT) form to the
platform which was subsequently used to train the DNN on
the MNIST and CIFAR10 datasets.

Fig. 9. A convolutional layer in training with fake-quantization method

TABLE IV
COMPARISON OF DAL WITH THE PROPOSED MULTIPLIER

Multiplier
Type

MNIST CIFAR10
LeNet AlexNet

Exact(baseline) 99.32% 88.48%
Approximate 99.32% 88.17%

DAL 0 0.31%

As shown in TABLE IV, when computing unsigned 8×8
multiplications, compared with the baseline exact multiplier,
the proposed approximate multiplier achieves a very small loss
of accuracy. In addition, the DNN is able to compensate for
the approximation of the multipliers by adjusting its weights.

In addition, we use the MED and NMED expressions of (7)
and (8), respectively, to further illustrate the accuracy of the
proposed approximate multiplier. Since the error distribution
of our proposed approximate 9×9 multiplier is not uniform,
small operand has small error. In these specific applications
where parameters do not tend to be very large, hence our
approximate multiplier has a low accuracy loss.

TABLE V shows these two error metric values of the pro-
posed approximate multiplier in specific applications, where
the MEDs and NMEDs are very small.

NMED =
MED

(2n − 1)
2 (8)

B. DSP Performance

PIR-DSP and APIR-DSP were implemented in Verilog
and synthesized using Synopsys Design Compiler (DC) with

TABLE V
THE MED AND NMED RESULTS

Applications MED NMED(×10−6)
FIR filter 0.07 1.12

LeNet 5.54 85.24
AlexNet 0.36 5.59

Authorized licensed use limited to: University of Sydney. Downloaded on February 11,2022 at 23:54:47 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
COMPARISON OF APIR-DSP AND PIR-DSP IN TERMS OF AREA, POWER

AND DELAY

DSP Type Area(µm2) Power(mW) Delay(ps)
PIR-DSP 1280.09 181.14 4250

APIR-DSP 1003.68 176.06 4044
Improvement 21.60% 2.80% 4.85%

TABLE VII
COMPARISON EVALUATION RESULTS OF DSP BY GEMMS

DSP Type Size DSP
Usage

BRAM
Usage

CLB
Usage Delay(ns)

DSP48E2 70×117 65 269 986 9.22
APIR-DSP 70×117 33 270 1089 8.49

Improvement 0 49.2% -0.3% -9.4% 7.9%

ASAP-7nm process library [21]. From the Synopsys DC
tool reports, the area, power consumption and critical path
delay information can be extracted, and this is summarized
in TABLE VI. Compared with PIR-DSP, APIR-DSP’s area
is decreased by 21.60%, critical path delay decreased 2.80%
and power consumption decreased 4.85%. Thus the APIR-DSP
simultaneously improves performance for these three metrics.

C. Evaluation Platform Test

We use general matrix multiplication (GEMM) in Deep-
Bench [26] and low-precision neural networks DoReFaNet
[27] as Verilog test cases to evaluate the performance of
DSP48E2 and APIR-DSP. The results after VPR placement
and routing form the basis for our evaluation. Timing infor-
mation of CLB, BRAM and other units in the architecture file
are provided by Symibiflow/prjxray-db [28], and the timing
information of DSP blocks is obtained by DC synthesis.

In the GEMM case, as shown in TABLE VII, using APIR-
DSP, the size of FPGA (i.e. the array size to implement the
given application) does not change, and the usage of DSP
blocks is decreased from 65 to 33, this being because APIR-
DSP supports more multiply accumulate operations within a
single DSP. However, in order to route the APIR-DSP input
data, CLB usage is increased. The critical path delay is also
decreased from 9.22 ns to 8.49 ns.

In the DoReFaNet case, as shown in TABLE VIII, using
APIR-DSP, the size of the FPGA array is significantly de-
creased from 250×417 to 207×345. The usage of DSP blocks
is decreased from 216 to 72 and CLBs are decreased from
74482 to 50931. The critical path is in the address generation
(when DNN weights are read from BRAM), and both have
the same value of 9.84 ns.

These two examples show that the APIR-DSP can signifi-
cantly reduce the resource usage and increase the performance
compared with DSP48E2.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose APIR-DSP, an approximate PIR-
DSP architecture with low accuracy loss. Compared with PIR-
DSP, by using approximate 9×9 multiplier, APIR-DSP’s area,
power consumption and critical path delay are decreased by

TABLE VIII
COMPARISON EVALUATION RESULTS OF DSP BY DOREFANET

DSP Type Size DSP
Usage

BRAM
Usage

CLB
Usage Delay(ns)

DSP48E2 250×417 216 12 74482 9.84
APIR-DSP 207×345 72 12 50931 9.84

Improvement 31.5% 66.7% 0 31.6% 0%

21.60%, 2.80% and 4.85%, respectively. Based on Yosys and
VPR, we have developed a programmable DSP unit evaluation
platform, and used DeepBench and the DoReFaNet low-
precision neural network to compare the Xilinx DSP48E2 with
APIR-DSP. We conclude that APIR-DSP can significantly re-
duce number of DSP blocks and improve hardware utilization.

In future work, we can further partition the approximate
9×9 multiplier into 4×4 or 2×2 approximate multipliers so
that APIR-DSP can support a wider range of low precision
MAC operations, improving the performance of APIR-DSP.
In addition, we intend to refine compatibility between Yosys
and VPR, and include support for other DSP blocks.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science
Foundation of China under grant 61971143.

REFERENCES

[1] Krizhevsky A, Sutskever I, Hinton G. ImageNet Classification with Deep
Convolutional Neural Networks. NIPS. Curran Associates Inc. 2012.

[2] He K, Zhang X, Ren S, et al., “Deep Residual Learning for Image
Recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770-778.

[3] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, et al., “FINN:
A Framework for Fast, Scalable Binarized Neural Network Inference,”
in Proceedings of ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), 2017, pp. 65-74.

[4] A. Prost-Boucle, A. Bourge, F. Pétrot, et al.,“Scalable high-performance
architecture for Convolutional ternary Neural Networks on FPGA,” in
International Conference on Field Programmable Logic and Applica-
tions (FPL), 2017, pp. 1-7.

[5] Xilinx Inc. “WP486-Deep Learning with INT8 Optimization on Xilinx
Devices,” 2017.

[6] A. Boutros and V. Betz, “FPGA Architecture: Principles and Progres-
sion,” in IEEE Circuits and Systems Magazine, 2021, vol. 21, no. 2, pp.
4-29.

[7] Intel Corp. “Intel Stratix 10 NX FPGA: AI-optimized FPGA for high-
bandwidth, low-latency AI acceleration,” 2020.

[8] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 18th IEEE European Test
Symposium, Avignon, France, 2013, pp. 1-6.

[9] S. Rasoulinezhad, H. Zhou, L. Wang and P. H. W. Leong, “PIR-DSP:
An FPGA DSP Block Architecture for Multi-precision Deep Neural
Networks,” in IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2019, pp. 35-44.

[10] Xilinx Inc. “UG579: UltraScale Architecture DSP Slice,” 2018.
[11] Intel Corp. “UG-S10-DSP Intel Stratix 10 Variable Precision DSP

Blocks User Guide,” 2018.
[12] Warrier R, Shreejith S, Zhang W, et al., “Fracturable DSP Block for

Multi-context Reconfigurable Architectures,” in Circuits Systems and
Signal Processing, 2016, 36(7).

[13] P. Colangelo, N. Nasiri, E. Nurvitadhi, et al., “Exploration of Low
Numeric Precision Deep Learning Inference Using Intel® FPGAs,” in
IEEE 26th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2018, pp. 73-80.

Authorized licensed use limited to: University of Sydney. Downloaded on February 11,2022 at 23:54:47 UTC from IEEE Xplore. Restrictions apply.

[14] H. Parandeh-Afshar and P. Ienne, “Highly Versatile DSP Blocks for
Improved FPGA Arithmetic Performance,” in 18th IEEE Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2010, pp. 229-236.

[15] A. Boutros, S. Yazdanshenas and V. Betz, “Embracing Diversity: En-
hanced DSP Blocks for Low-Precision Deep Learning on FPGAs,”
in 28th International Conference on Field Programmable Logic and
Applications (FPL) , 2018, pp. 35-42.

[16] C. Wolf, Yosys Open Synthesis Suite. http://www.clifford.at/yosys/.
[17] Murray K E, Petelin O, Zhong S, et al., “VTR 8: High-performance CAD

and Customizable FPGA Architecture Modelling,” in ACM Transactions
on Reconfigurable Technology and Systems, 2020, vol. 13, no. 2, pp. 1-
55.

[18] Nextpnr. https://github.com/YosysHQ/nextpnr.
[19] M. Sjalander and P. Larsson-Edefors, “Multiplication Acceleration

Through Twin Precision,” in IEEE Transactions on Very Large Scale
Integration Systems, 2009, vol. 17, no. 9, pp. 1233-1246.

[20] I. Scarabottolo, G. Ansaloni, G. A. Constantinides, et al.,“Approximate
Logic Synthesis: A Survey,” in Proceedings of the IEEE, 2020, vol. 108,
no. 12, pp. 2195-2213.

[21] Clark, L. T., Vashishtha, V., Shifren, L., et al., “ASAP7: A 7-nm finFET
predictive process design kit,” in Microelectronics Journal, 2016, vol.
53, pp. 105-115.

[22] Berkeley logic synthesis and verification group, “Abc:
a system for sequential synthesis and verification.”
https://people.eecs.berkeley.edu/alanmi/abc/.

[23] K. E. Murray, M. A. Elgammal, V. Betz, T. Ansell, K. Rothman and
A. Comodi, “SymbiFlow and VPR: An Open-Source Design Flow for
Commercial and Novel FPGAs,” in IEEE Micro, 2020, vol. 40, no. 4,
pp. 49-57.

[24] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Timing-driven
Titan: Enabling large benchmarks and exploring the gap between aca-
demic and commercial CAD,” in ACM Transactions on Reconfigurable
Technology and Systems, 2015, vol. 8, no. 2 p. 1-18.

[25] B. Jacob et al., “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition), 2018, pp. 2704-2713.

[26] HLS4ML. https://github.com/raminrasoulinezhad/DeepBenchVerilog.
[27] L. Jiao, C. Luo, W. Cao, X. Zhou and L. Wang, “Accelerating low bit-

width Convolutional Neural Networks with embedded FPGA,” in 27th
International Conference on Field Programmable Logic and Applica-
tions (FPL) , 2017, pp. 1-4.

[28] Project X-Ray. https://github.com/SymbiFlow/prjxray−db/blob/artix7/ti-
mings/.

Authorized licensed use limited to: University of Sydney. Downloaded on February 11,2022 at 23:54:47 UTC from IEEE Xplore. Restrictions apply.

		2021-11-22T15:11:01-0500
	Certified PDF 2 Signature

