
Received 5 July 2022, accepted 29 July 2022, date of publication 8 August 2022, date of current version 15 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3197224

Wireless Signal Representation Techniques for
Automatic Modulation Classification
XUEYUAN LIU , CAROL JINGYI LI , (Student Member, IEEE),
CRAIG T. JIN , AND PHILIP H. W. LEONG , (Senior Member, IEEE)
School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW 2006, Australia

Corresponding authors: Xueyuan Liu (xueyuan.liu@sydney.edu.au) and Philip H. W. Leong (philip.leong@sydney.edu.au)

ABSTRACT In this paper, we present a comprehensive survey and detailed comparison of techniques
that have been applied to the problem of identifying the type of modulation contained within received
wireless signals. Known as automatic modulation classification (AMC), the problem has been studied for
many decades. AMC plays a significant role in both military and civilian scenarios and is the main step in
smart receivers. With the development of software-defined radios and automatic communication systems,
IoT technology and the spread of 5G technology, there has been exponential growth in the number of
spectrum-using equipment making the issue of scarce spectrum resources more prominent. Although AMC
techniques can be optimized from the classifier’s point of view, signal pre-processing also plays a critical
role. Relevant data representation approaches include time-frequency analysis, cyclostationary transforms,
and hybrid techniques. We provide a taxonomy of common approaches based on order and dimensionality
along with an overall analysis of signal pre-processing algorithms for AMC. Furthermore, we reproduce
the major existing schemes under uniform conditions, allowing an objective comparison among different
methodologies. Finally, we create an open-source reproducible Python library to simulate these techniques,
ensuring the usefulness for future research.

INDEX TERMS Modulation classification, signal pre-processing, high order statistics, cyclostationary, time-
frequency transformation.

I. INTRODUCTION
With the recent advances in telecommunication technologies,
user applications have become increasingly bandwidth-
critical. Heterogeneous networks have evolved to include
diverse types of data traffic based on end-user require-
ments to support existing voice and data services, and
meet the next-generation network requirements. The con-
trol of spectrum resources requires real-time information
extraction and processing within a context of expanding
heterogeneity and dynamic systems. Automatic modulation
classification (AMC) refers to the problem of identifying the
modulation method of received radio signals from a specified
set of possible modulation techniques. In implementation,
it has been described as an intermediate procedure between
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signal detection and demodulation [1]. It plays a crucial role
in various civilian, commercial and military scenarios.

AMC techniques have been classified into two broadmeth-
ods: likelihood-based (LB) and statistical feature-based (FB)
approaches [1]. The LB approaches show good performance
by building a probabilistic model for the received signal,
but suffer from high computational complexity and require
knowledge of the signal environment and channel parameters
in advance [2]. Some LB algorithms such as the generalized
likelihood ratio test and the discrete likelihood function test
have been proposed to reduce the complexity. Although
LB algorithms can increase the performance efficiency by
applyingmaximum likelihood estimations or multiple lookup
tables [3], [4], they do not perform well on some modulation
modes or other tasks [2].

FB techniques aim to extract salient features for AMC from
the received time series [5]. If waveform features are capable
of identifying the type of modulation and if classifiers can
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create suitable decision boundaries, then FB algorithms have
the potential to achieve excellent performance with fewer
resources [1], [6]. Most of the existing well-developed AMC
techniques are FB-based, especially with the emergence of
machine learning techniques such as deep neural networks
(DNNs) [7], [8].

In this paper, we conduct an in-depth review of feature-
based digital modulation recognition systems, e.g. [9]–[21],
that embody the processing framework shown in Fig. 1.
We use the term pre-processing to describe the feature
extraction process which includes methods such as the fast
Fourier transform (FFT), spectral correlation function (SCF),
higher order statistics (HOS), etc. [22]–[24] and the term
classifier to refer to the processing module which maps
the features to an AMC class. Classifier modules include
methods such as decision trees (DT), support vector machines
(SVM), convolutional neural networks (CNN), recurrent
neural networks (RNN), long short-term memory (LSTM),
etc. These are reviewed in Section II-C. A taxonomy of
pre-processing techniques for AMC is presented in Table 1.
The pre-processing techniques are grouped into twelve
different classes based on the order of the transforms involved
and the dimensionality of the features. The original raw
sequences in the first row of the table can be considered as an
identity transformation. The focus of this study are the starred
rows, i.e. the last three rows.

In this paper, the highlights are listed as follows:

• A comprehensive survey of pre-processing techniques
and their applications inAMC that follows the taxonomy
that groups previously published and is based on order
and dimensionality.

• Objective tests and comparative analysis of existing
dominant pre-processing techniques are conducted
using the publicly available DeepSig RadioML
dataset [25] and a single-layer Linear Discriminant
Analysis (LDA) classifier as a benchmark. While many
reviews of AMC techniques have been published [2],
[6], [7], to the best of our knowledge this is the first
quantitative and reproducible comparison.

• This article describes in detail the principles of
various techniques, and compares their advantages
and disadvantages, including computational complexity
and application scenarios, which provides a valuable
reference for future blind recognition studies.

• An open-source Python 3 [26] library which implements
all the techniques presented in this study is explained in
Section VII-A.

The remainder of this paper is organized as follows.
In Section II we review digital modulation and clas-
sifier techniques. In Section III, linear time-frequency
techniques are reviewed. Section IV explains the higher
order statistics methods. Section V summarizes all of
the cyclostationary-based algorithms including second and
higher order spectral correlation functions and kernel-based
techniques. Section VI reviews and discusses the prominent

AMCworks using data pre-processing. Section VII describes
the replication experiments and objective comparative anal-
ysis of the afore-mentioned techniques. Finally, conclusions
are drawn in Section VIII.

II. BACKGROUND
This section reviews basic models for wireless signals, the
universal transformation framework, cyclostationary analysis
as a pre-processing scheme, popular AMC classifiers, and
other topics.

A. DIGITAL SIGNAL MODULATION
Digital modulation refers to the process of encoding digital
information using the amplitude, phase or frequency of a
transmitted signal. The choice of encodingmethod influences
the achieved data rate and robustness to noise in the channel.
Typically, modulation techniques encode several bits into
a single symbol, and the rate at which each symbol is
transmitted determines the bandwidth of the transmitted
signal [9].

The baseband complex envelope of a continuous-time
digitally modulated signal is:

xL(t) =
∑
n

s[n]g(t − nT ) (1)

where s[n] ∈ C are numbers in the complex plane, T is
the symbol period, and g(·) is a pulse shaping function,
e.g. a raised-cosine shaping filter [10]. The signal xL(t)
can be orthogonally decomposed into I (t) + jQ(t), where
I (t) = Re[xL(t)] is referred to as the in-phase component
and Q(t) = Im[xL(t)] as the quadrature component. The
baseband real signal is typically modulated with a carrier
to obtain the transmission signal: x(t) = Re{xL(t)ejωct } =
I (t) cos (ωct)− Q(t) sin (ωct), where ωc = 2π fc and fc is the
carrier frequency. Its equivalent complex analytic signal is:
z(t) = xL(t)ejωct = x(t) + jx̂(t), where x̂(t) is the Hilbert
transform of x(t).

The aim of the receiver is to recover xL(t), however,
hardware differences between the receiver and transmitter as
well as channel effects make this challenging. It is crucial
to match the receiver’s carrier frequency with that of the
transmitter. This is not perfectly possible in general, resulting
in a carrier frequency offset. In addition, fading within the
channel can also occur. In this light, the decoded baseband
signal at the receiver is described by the following signal
model (note that we assume an additive Gaussian white
noise (AWGN) channel):

x̃L(t) = a · e−j(2π1ft+ϕ)
∑
n

s[n]g(t − nT − N1)+ w(n) (2)

where a is channel gain, 1f is the carrier frequency offset,
ϕ is the channel phase (which also includes the carrier phase
offset), N1 is a timing offset, and w(n) is the channel noise.
In this review, we focus on digital modulation techniques,

such as OOK (On-off keying), 4ASK (Amplitude shift
keying), 8ASK, BPSK (Binary Phase shift keying), QPSK
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FIGURE 1. General flow chart for pre-processing based AMC.

TABLE 1. A taxonomy of AMC feature extraction techniques.

(Quadrature-PSK), 8PSK, 16PSK, 32PSK, 16APSK (Ampli-
tude Phase shift keying), 32APSK, 64APSK, 128APSK,
16QAM (Quadrature Amplitude modulation), 32QAM,
64QAM, 128QAM, 256QAM, GMSK (Gaussian Minimum-
shift keying), and OQPSK (Offset Quadrature Phase-shift
keying).

B. PRE-PROCESSING AND CYCLOSTATIONARY FEATURES
Pre-processing approaches can be characterized by their
statistical order, i.e., the power of a sample used in statistical
functions. Common pre-processing methods include linear
transforms like the fast Fourier transform and wavelet
transform. These only involve low-order statistical char-
acteristics, limiting their ability to distinguish between
modulation types. In contrast, the cyclostationary features
have many advantages as a signal pre-processing method in
FB classifiers, and can be used to explore the underlying
properties of the signal. This is because most actual signals
in real scenarios show uncertainty in direct observation.

A cyclostationary process is a signal having statistical
properties that vary cyclically with time. It was first analyzed
to investigate the diversity in the spectrum appearance of
all modulation types in 1994 [27]. Various work have
confirmed that the cyclic properties of a signal are exhibited
at second and higher statistical orders, e.g., using measures
such as spectral correlation density, high order moments and
cumulants, cyclic statistics, as well as kernel-based cyclic
correlation functions. Significantly, eachmodulation type has

a different periodic spectral pattern [28], [29]. HOS analyses
are often more robust to Gaussian and impulsive noise, and
channel interruption. As well, HOS-based methods remain
relatively straightforward to calculate, for example, the
Taylor expansion of the Gaussian kernel in the correntropy
method has high order terms embedded within the expansion.

Due to the flexibility and developability of cyclostationary
functions, there are many frameworks based on these
functions, but their general format for cyclic frequency
function can be written as:

lim
T→∞

1
T

T/2∑
n=−T/2

Y (∗)[n, τ ]e−j2παn (3)

Here, τ denotes individual delays (τ1, . . . , τm), m is cus-
tomizable, for example, when the cyclic temporal cumulants
function (CTCF) is involved, it relates to different terms
with varying time delays. The notation (∗) indicates optional
complex conjugation, and α is the cyclic frequency. Note that
the definition of Y [n, τ ] is not standardized, so we let it be a
customized function of the received signal x[n]. Many studies
target cyclostationary features by developing the Y (∗)[n, τ ]
in (3), as summarized in Table 2. Different algorithms
exhibit varying advantages with respect to additive white
Gaussian noise (AWGN), impulsive noise, and channel
interference [10], [30], [31]. The channel interference does
less corruption to the feature maps obtained from these
operations.
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TABLE 2. Design of Y [n, τ ] in (3) (Note: specific formula descriptions are
in later sections).

C. CLASSIFIERS FOR MODULATION RECOGNITION
Recent high-performance classifiers apply machine learning
models [32]. In this work, we consider classifiers appropriate
for AMC. These can be divided into supervised, unsuper-
vised, and deep models. For an efficient implementation, the
choice of model should relate to the specific input data.

1) LDA AND PCA
Linear Discriminant Analysis (LDA) and Principal Com-
ponent Analysis (PCA) are commonly used linear super-
vised and unsupervised techniques respectively [33]. Both
approaches enable classification based on a low-dimensional
embedding of the modulation data. PCA utilizes the data’s
covariance or correlation matrix to determine the directions
of maximal variability - these correspond to the eigenvectors
with the largest eigenvalues. Although LDA is also trained to
compute the top largest eigenvalues’ eigenvectors, it works
for class separation through additional intra- and inter-class
weight matrix operations.

2) DECISION TREE
A DT is a supervised multi-class model which uses a tree
graph to make classification decisions at tree nodes based
on feature values. Training primarily of DT is to design the
decision criteria for each tree node and to set the correct
threshold values. Various studies used HOS as the features for
DT [34]–[36], while some combined the instantaneous signal
and HOS features for training DT [37].

3) SUPPORT VECTOR MACHINE
Support vector machines uses a kernel function to project the
data into a high dimensional space after which classification
in then based on hyperplanes. For AMC, SVM has good
performance at various SNR ranges [38]–[40] and can
overcome the overfitting problem of deep networks [29].
However, these are generally limited to a small number of
training categories, and the results will be restricted if high
order modulations such as 256QAM are included. As well,
SVM needs assistant schemes to do multi-classification such
as kernel function and high-dimension feature space, these
schemes incur increased computational cost.

4) NEURAL NETWORK
The typical representation of deep model, neural networks,
are comprised of connected computational nodes referred
to as neurons. Each neuron computes a weighted sum

of its inputs followed by a nonlinear activation function.
The neurons are organised into layers that progressively
feed forward from input to output. Training determines the
optimal weights based on the training data. Deep network
methods for AMC commonly rely on well-defined modules
referred to as convolutional neural networks (CNN) and
recurrent neural networks (RNN) based on gated recurrent
units (GRU), and long short termmemory (LSTM) units [41].
Many studies use customised networks for AMC, while the
most common and best performing standard networks are
ResNet and AlexNet [42]. Training deep neural networks
require considerable computational resources and labelled
data sets. Thus techniques for reducing the training time
and computational complexity of NNs are helpful. For
example, principal component analysis (PCA) can be utilized
to compress the data and improve the classification accuracy
at low SNR [43].

III. LINEAR TIME-FREQUENCY ANALYSIS
Since most of the signals of interest are non-stationary,
a number of techniques have been developed to describe
signals with dynamic contents, such as short time Fourier
transform, wavelet transform and S-transform. These are the
basis of the field of time-frequency analysis.

A. FOURIER TRANSFORM
As the most classical fundamental transform, the Fourier
transform of x[n] has the following equations in the discrete
domain:

DFT(x) ≡ X (k) =
Ns−1∑
n=0

x[n]e−j
2π
Ns
nk (4)

STFT(x)(τ, k) ≡ X (τ, k) =
Ns−1∑
n=0

x[n]h[n− τ ]e−j
2π
Ns
nk (5)

here, τ denotes a time delay, Ns is the number of sample
points, h(·) is a window function. The application of FT
or DFT in AMC is often combined with other features,
in general, the most common features include calculating the
number of peaks ζ and the maximum value γ of spectral
power density of the normalised centred instantaneous
amplitude, as shown in (6) and (7) [44], [45].

ζ = Number{|DFT (x)| > ε} (6)

γ =
max |DFT (acn(n))|2

Ns
(7)

acn denotes the normalised centred instantaneous amplitude
of the signal, Ns is the number of sample points. Since the
modulation techniques M-PSK, M-QAM, and M-FSK have
different numbers of frequency peaks, the peak count of the
magnitude of the DFT can be used as a feature. For example,
the ε in (6) is customized to 0.7 times the maximum value so
that ζ can be used to distinguish M-FSK [45].

In (5), the non-stationary signal can be regarded as a
superposition of a series of short-time stationary signals,
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highlighting the variation of the original signal frequency
with time delay. The STFT decomposes the time domain
signal into windowed segments and then applies the discrete
Fourier transform on each segment. For this consideration,
the standard deviation between the peaks of absolute value
after each window-STFT can be used for identification [45],
this deviation is shown in (8).

ζ =

√√√√ 1
Nw − 1

Nw−1∑
i=1

[Wi −W ]2

where Wi = max|STFT i+1| − max|STFT i|

(i = 0, 1, . . . ,Nw − 1) (8)

Nw represents the number of windows, Wi is the difference
in peak values between adjacent windows. Additionally, the
number and size of peaks can be calculated separately for
the time-shift axis or the frequency axis as features. The
spectrogram corresponding to the STFT can be used as an
input image for a CNN [46].

In practice, each FT only transforms a finite window of
time-domain data and therefore, signal truncation is required.
For periodic signals, if the truncation is not an integer
multiple of the period (period truncation), then there will be
a leakage in intercepted signal [47]. In order to minimize this
error, a weighting function (window function) can be applied.
In addition to the type of window, the window length and
hop size are important parameters that impact the window’s
performance. When the signal’s frequency content or channel
characteristics change rapidly with time, a smaller window
size is needed. More generally, different window sizes should
be tried to obtain optimal performance.

FT features can give better results if they are combined
with other features [48]. In particular, the Fourier transform
can be beneficial if the data set involves different frequency
spectrum characteristics in terms of modulation schemes or
bandwidth, for example, discriminating different types of
M-FSK [49]. However, for broad AMC applications with
various modulations, the performance of FT features may
sometimes not be as good as directly using the original IQ
sequences [50].

B. WAVELET TRANSFORM
The wavelet transform (WT) [51] addresses the FT’s limita-
tions in capturing features from burst signals, non-stationary
processes and transient changes [52], [53] and hence the WT
can effectively analyze waveforms with sharp discontinuities
and peaks. Moreover, some fast algorithms derived from the
WT (e.g., the Mallat algorithm [54]) are computationally
inexpensive and can perform real-time identification.

The WT can be described as the projection of a signal
based on scaled and time-shifted versions of the original
wavelet (mother wavelet) [52]. The benefit of wavelet
analysis lies in its scale-time view of a signal and its
ability to enable multi-resolution analysis [55]. The standard
continuous wavelet transform (CWT) of a received complex

signal is given by:

CWT (a, τ ) =
1
√
|a|

∫
+∞

−∞

x(t)ψ∗
(
t − τ
a

)
dt

,
1
√
|a|

∑
n

x[n]ψ∗
[
n− τ
a

]
(9)

where a is the scale factor, τ is the translation variable, ψ(·)
is the wavelet generating function, and the asterisk denotes
complex conjugation. The discrete wavelet transform (DWT)
directly follows from the CWT, sampling the scale and
translation parameters of the continuous wavelet [56]:

DWT (j, k) =
∑
n

x[n]ψj,k [n]

where ψj,k [n] =
1
√
2j
ψ

[
n− k2j

2j

]
(10)

here the amplitude of the scale transform does not have to be
in the form of the nth power of 2, but this is commonly used
for the convenience of calculation.

In AMC, most research works employ the CWT with
the Haar wavelet, as the magnitude of the Haar WT can
identify M-PSK, M-QAM, MASK, and M-FSK modulated
signals [57], [58]. The Haar wavelet is defined by [52]:

ψ(t) =


1 0 ≤ t ≤

T
2

−1
T
2
≤ t ≤ 1

0 otherwise

(11)

The Haar WT reveals the difference in amplitude, phase and
frequency of the aforementioned digital modulations:

|CWT |ASK (a, τ ) =
4
√
Si sin2

(
ωcaTs

4

)
√
aωc

(12)

|CWT |FSK (a, τ ) =
4
√
Si sin2

(
(ωc+ωi)aTs

4

)
√
a(ωc + ωi)

(13)

|CWT |PSK (a, τ ) =
4
√
Si sin2

(
ωcaTs

4

)
√
aωc

(14)

|CWT |QAM (a, τ ) =
4
√
Si sin2

(
ωcaTs

4

)
√
aωc

(15)

where a is the scale factor, Ts is the duration of the pulse
shaping function, Si = I2i +Q

2
i associates with themodulation

modes, which is a constant for FSK, ωc is the carrier
frequency, and ωi relates to the FSK configuration.
|CWT | is almost constant for PSK signals, with peaks

occurring at phase shifts. However, for ASK, FSK and
QAM, their Haar WT plots look like a multi-step function
due to variations in frequency or amplitude. To solve this
problem, amplitude normalization can be performed before
applying the WT, which distinguishes the FSK signal as it
has the same HWT diagrams before and after normalization.
Nevertheless, this is still not sufficient to identify QAM
and ASK. One solution lies in choosing the optimal scale
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factor. Wei and Cao [59] used the number of peaks in the
histogram of the WT to quickly recognize ASK and QAM,
which has high accuracy at low SNR. On the other hand,
the statistical variance of the amplitude normalized WT can
distinguish between ASK, FSK, PSK and QAM [57], [58],
[60]. A summary of the main works on applyingWT to AMC
is given in Table 3.

Due to its multi-resolution analysis capability, WT is
effective in extracting features from transient signals. It is
therefore also used in a wide range of applications in image
and signal processing, medicine, mathematics and other
fields [61]. For example, WT can be applied to image
compression and denoising [62], or signal denoising through
wavelet decomposition, processing wavelet coefficients and
signal reconstruction, and it can also achieve fault detection
and localization of military equipment [63].

C. S-TRANSFORM
Like other time-frequency analysis tools, the S-transform (ST)
can exhibit the energy distribution in both the time and
frequency domains [67]. The notable feature is that it
maintains the global reference as Fourier transform but can
be considered a deformation of the wavelet transform as it has
different resolutions at different frequencies [68]. The general
S-transform is defined by:

s(τ, f ) =
∫
∞

−∞

x(t)
|f |
√
2π

e−((τ−t)
2f 2/2)e−j2π ftdt (16)

The S-transform can be a generalized form of STFT with
a Gaussian window. Note that the Gaussian window also
depends on the parameter f , which makes the window
width vary with frequency. Thus, the S-transform is a
time-frequency analysis with high frequency resolution at
low frequencies, and high time domain resolution at high
frequencies.

IF(τ, f ) =
1
2π
×
∂8(τ, f )
∂τ

(17)

In the work [69], the instantaneous value of ST is expressed
in terms of amplitude A and phase 8, for which the
instantaneous frequency is obtained according to (17).
In addition, the correlation coefficients between IF and τ ,
the variance of normalized IF are used as the extracted
signal features for classification. Although the final accuracy
is high, about 97.25% at SNR = 3dB, there are limited
modulation types involved, only CP, LFM, BPSK and BFSK.
The study [70] focuses on comparing the performance of WT
and ST and applying different classifiers such as NN, Naive
Bayes, LDA, SVM, k-NN to classify based on these features.
The obtained results show that ST outperforms WT in terms
of accuracy for all these classifiers and consumes much
less time than WT. However, the shortcomings are, firstly,
that the modulation types are still insufficient, only BPSK,
QPSK, FSK and MSK, and the classifier parameter settings
are not indicated. The literature [71] considers the ability
of the ST for signal recognition in multiple scenarios, for

example, AWGN, multipath Rayleigh fading channels, and
underwater communication. The basic idea is first to perform
the transformation, calculate its energy entropy according to
the definition of information entropy, and input the features
into an SVM classifier. The considered modulations include
16QAM, QPSK, 4FSK, OFDM, FM and SSB; although
the results show that ST has good resolving power, direct
comparisons with other techniques were not offered.

IV. SIGNAL STATISTICS
Early traditional features included variance of the amplitude,
phase and frequency of normalized signals [72]. The
important AMC works based on received signals’ moments,
cumulants and cyclic cumulants (CCs) are briefly reviewed
here. The most representative and influential algorithm
for digital modulation identification based on higher-order
statistics, proposed by Swami and Sadler [73], uses the
fourth-order cumulants of ideally synchronized and power
normalized signals as classification features for BPSK,
QPSK, 4PAM and 16QAM signals. The effects of SNR and
a number of samples on recognition performance are also
discussed. Marchand et al. [74] proposed a combination of
fourth- and second-order CC amplitudes for QPSK and QAM
classification. Spooner [75] utilized features of sixth-order
CCs for PSK and QAM. The use of up to eighth-order CCs
for a wider range of signals was studied in [13]. HOS is also
shown to be useful in parameter estimation for non-stationary
signals [76].

A. ESTIMATION OF MOMENTS AND CUMULANTS
High order statistics (HOS) refers to higher order moments
and cumulants. The kth order moments of a set of random
variables x = [x1, x2, x3, . . . , xk ]T are defined as the
coefficients of ω = (ω1, ω2, . . . , ωk ) in the Taylor
series expansion (if it exists) of the moment-generating
function [77]:

mx1,x2,...,xk = E{x1x2 . . . xk}

= (−j)k
∂k8(ω1, ω2, . . . , ωk )

∂ω1ω2 . . . ωk
|ω1=...=ωk=0

(18)

where

8(ω1, ω2, . . . , ωk ) = E{exp j(ω1x1 + ω2x2 + . . .+ ωkxk )}

(19)

is the joint characteristic function of vector x, and E(·)
is the expected value operator. If x[n] is a complex-value
time-series then its kth order moment can be calculated
by: mkq(τ1, . . . , τk−1) = E(x[n] . . . x[n + τk−q−1]x∗[n +
τk−q] . . . x∗[n + τk−1]) Here, k is the total order, q is
the number of conjugate parts, and ∗ means conjugation
operation. Specifically, when τ1 = τ2 = . . . = 0,
this becomes the kth order raw moment of a random
cyclostationary process and the moment formula becomes:

mkq(x) = E(xk−q[n](x∗)q[n]) (20)
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TABLE 3. Summary of WT-based AMC works.

The raw moments of signal are commonly used as an
estimation of signal’s moments, e.g.M40 stands form40(x) =
E(x4[n]). By default, τ1 = τ2 = . . . = 0 and the subscripts
represent the total order and the conjugation order.

Similarly, the kth order cumulant of process x =

[x1, x2, x3, . . . , xk ]T can be derived from (18) using
the cumulant generating function 9(ω1, ω2, . . . , ωk ) =
ln8(ω1, ω2, . . . , ωk ):

cx1,x2,...,xk = cum(x1, x2, . . . , xk )

= (−j)k
∂k ln8(ω1, ω2, . . . , ωk )

∂ω1ω2 . . . ωk
|ω1=...=ωk=0

(21)

where there exists a transformation equation between high
order moments and high order cumulants:

mx(I ) =
∑
q⋃

p=1
Ip=I

q∏
p=1

cx(Ip)

cx(I ) =
∑
q⋃

p=1
Ip=I

(−1)(q−1)(q− 1)!
q∏

p=1

mx(Ip) (22)

A partition of a set X is a set of non-empty subsets of X
such that every element x in X is in exactly one of these
subsets [78]. Here I = (1, 2, . . . , k) is the indices of set
[x1, x2, . . . , xk ], Ip is the unordered collection of set I , q is the

number of partitions of Ip, the summation operator denotes
the inner summation over all partitions of I .

Based on the above properties, cumulants can be estimated
through moments (20), common relational expressions are
given as follows:

C20 = cum(xnxn) = M20

C21 = cum(xnx∗n ) = M21

C40 = cum(xnxnxnxn) = M40 − 3M2
20

C41 = cum(xnxnxnx∗n ) = M40 − 3M20M21

C42 = cum(xnxnx∗nx
∗
n ) = M42 − |M20|

2
− 2M2

21

C60 = cum(xnxnxnxnxnxn) = M60 − 15M20M40 − 30M3
20

C61 = cum(xnxnxnxnxnx∗n ) = M61 − 5M21M40 − 10M20M41

− 30M2
20M21

C62 = cum(xnxnxnxnx∗nx
∗
n ) = M62 − 6M20M42 − 8M21M41

− M22M40 + 6M2
20M22 + 24M2

21M20

C63 = cum(xnxnxnx∗nx
∗
nx
∗
n ) = M63 − 9M21M42 + 12M3

21

− 3M20M43 − 3M22M41 + 18M20M21M22 (23)

Ideally, if a period of normalized digital modulated signal
is sufficient long and contains all symbol points, then its
theoretical HOS are displayed in Table 4.

B. HOS AS PRE-PROCESSING FEATURES
HOS or their variants can be directly used in AMC. Due to the
symmetry of some digital modulated signal constellations,
the nth order moments and cumulants for odd order are zero,
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TABLE 4. Some typical digital modulation’s HOS [27], [79].

FIGURE 2. Normalized |C42| and |C63| of BPSK, QPSK, 64QAM and
128QAM under SNR +20dB.

so only their even order statistics are of interest [27], [80].

cp,q(xn) = cum
(
snej2π fon, . . . , snej2π fon︸ ︷︷ ︸

p−q

× s∗ne
j2π fon, . . . , s∗ne

j2π fon︸ ︷︷ ︸
q

)

=
1
N

∑
n

ej2π (p−2q)fonsp−qn (s∗n)
q

,
Ccst
p,q

N

∑
n

ej2π (p−2q)fon
∑
m

p (n− mT ) (24)

For example, Fig. 2 shows |C42| and |C63| as features to
discriminate between BPSK, QPSK, 64QAM and 128QAM.
Here the normalization method introduced in [12] is adopted.
Initially the differences in distribution between BPSK
and QPSK are clear, while for 64QAM and 128QAM
only using |C42| and |C63| is not sufficient. Neverthe-
less, HOS shows good ability to separate non-Gaussian
signals from Gaussian noise for the analysis of chaotic
systems [81].

For scalar HOS, issues arise when not all the symbols
are represented in the processed signal [17], especially for

high order modulation modes such as 256QAM, there is a
high potential that only a small fraction of the constellation
points are present in the received signal. In addition the
carrier frequency offset, caused by the mismatch of receiver
and transmitter, can also harm the scalar HOS. Several
studies have investigated the impacts of this offset [17],
[19], [80]. For the baseband digital modulated signals,
their formats are given in (24), where Ccst

p,q denotes the
cumulant associatedwith symbol points sn, fo is the frequency
offset, and N represents the total number of sample points.
Though the term ej2π (p−2q)fon doesn’t involve the magnitude,
it affects the phase. This phase rotation will result in the
term

∑
n e

j2π (p−2q)fon ≈ 0, thereby causing the final value of
time-averaged cumulant cp,q(xn) close to zero when p 6= 2q
or carrier frequency offset fc is not zero. Ideally, the numerical
values of Ccst

p,q and cp,q(xn) should be equal, and cp,q(xn) has
been abbreviated as Cpq in most studies. Various techniques
have been proposed to circumvent these problems, improving
the classification capabilities of HOS:

• Multiply an additional offset compensation term
e−j2π (p−2q)fon. This only works when the carrier
frequency is known or can be estimated [19].

• For each time n only use the absolute value of cumulants,
for example:

∑
n |e

j2π (p−2q)fonsp−qn (s∗n)
q
|. Note that this

may lead to different results from theoretical values as
calculating absolute eliminate the negative numbers.

• Directly apply the absolute value |Cpq| [17], [82], [83].
• Normalization methods [14], [15], [20] achieved by
dividing different orders’ cumulants, for instance:

|Cm
42|

|Cn
21|
,
|Cm

63|

|Cn
21|
,
|Cm

63|

|Cn
42|

(25)

Here,m, n are customized power of cumulants according
to the specific situation, which can be used in conjunc-
tion with the cumulant’s order to dissolve the impacts of
channels and signal power as well.

With regard to current practice, it is most common to select
the representative normalized elements of HOS and use them
as inputs to a DNN-based model (e.g. fourth-, sixth- and
eighth-order cumulants such as |C40|, |C41|, |C42|, |C60|,
|C61|, |C62|, |C63|, |C80|, |C84|), which are summarised in
Section VI and Section VII-B.
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V. CYCLOSTATIONARY ANALYSIS
A. SECOND ORDER: CAF AND SCD
While the FT and WT can be classified as first-order
statistical characteristics, autocorrelation Rxx[τ ] and cross-
correlation Rxy[τ ] are second-order. A signal is wide sense
almost-cyclostationary of order n if its nth order statistics are
almost periodic functions of time. The inherent periodicity
can be quantified by Fourier analysis of the relevant functions
listed in Table 2. Cyclic autocorrelation function (CAF) and
spectral correlation density (SCD) are commonly applied
to identify second-order (or wide-sense) cyclostationary
stochastic processes whose autocorrelation functions vary
periodically with time [84]. In addition, they are the
foundation for kernel-based cyclostationary introduced in
Section V-F. The definition of autocorrelation function is
given by (26), and its Fourier coefficients make up the CAF
shown in (27).

Rxx[τ ] =
∞∑
−∞

x[n]x[n− τ ] (26)

Rαx [τ ] = lim
T→∞

1
T

T/2∑
n=−T/2

x[n]x[n− τ ]e−j2παn (27)

here α is the cyclic frequency. This can be viewed as
extraction of cycle frequencies from the autocorrelation
function x[n]x[n − τ ]. Each α corresponds to a particular
Fourier coefficient, which means that α gives the frequency
at which the autocorrelation function contains some power.
These values are derived from the sine waves generated by
the products of two first-order cyclostationary functions.

The SCD is the FT of CAF along the τ -axis, defined as:

Sαx [f ] =
∑
τ

Rαx [τ ]e
−j2π f τ (28)

here f is the spectral frequency. SCD allows locating
the amount of time correlation between frequency-shifted
versions of discrete signals in the frequency domain. Note
that the range of support for the SCD is restricted to the
region presented in Fig. 3, and Fig. 4 presents the distribution
differences in different modulations’ SCD plots.

FIGURE 3. Region of support for SCD.

The 2D representation of the SCD shown in Fig. 3 has
symmetry and redundancy [85]. It can be collapsed along one
of the axes to give the 1D f -profile or α-profile [86], that
is:

I (α) = max
f
|Sαx [f ]| I (f ) = max

α
|Sαx [f ]| (29)

B. SECOND ORDER CYCLOSTATIONARY FEATURES FOR
AMC
Since the computational complexity of traditional spectral
correlation is high, there are many existing techniques
designed for simpler algorithms, such as FFT Accumulation
Method (FAM) [87], Strip Spectral Correlation Algorithm
(SSCA) [88], and Faster Spectral Correlation (FSC) [89].
However, although SCD can now be implemented algorith-
mically or in hardware relatively speedily, its limitation is
also apparent. For modulations whose amplitudes or phases
satisfy the symmetry of the constellation diagram, based on
the properties of prototype functions, their SCD peaks appear
at the same positions, which makes SCD not discriminative
for modulations such as M-PSK and M-QAM (M > 4),
as their SCD plots have the same formats as QPSK [90],
[91]. Fig. 4 also illustrates this point, for QPSK, higher
order M-QAMs and APSKs, SCD does not have excellent
discrimination ability.

But for FSK and ASK, SCD still has good capabilities.
In [92], a real value matrix is obtained by taking the
magnitude of the SCD output. Then, using the 2D FFT
and inverse FT, the SCD image is mapped onto a 64 ×
64 image. Due to symmetry and sparse properties of the
SCD, only select a triangular region which is one-eighth of
the scaled image size is required. Next, the 64 × 8 pixel
data is reshaped into a vector with 512 lengths. Lastly, the
vector is normalized to zero mean and unit variance, before
being put into the classifier network. The modulations tested
were 4FSK, 16QAM, BPSK, QPSK, and OFDM, a set which
is not as challenging as some others. Accuracy achieved
was already 90% for an SNR of −2dB. In [93], α-profile
is used as the input features for a neural network classifier.
The modulation set contains 2FSK, 4FSK, 8FSK, BPSK,
QPSK, MSK, and 2ASK. When SNR is higher than -5dB the
recognition rate of 2FSK, 8FSK, QPSK, 2ASK is more than
95%. The overall accuracy is more than 90% when SNR is
higher than 0dB. It is evident that the application of SCD can
help with certain types of modulation classification.

C. HIGH ORDER: CYCLIC MOMENTS AND CUMULANTS
One important issue when utilizing scalar HOS is that
important information is lost by trying to summarise a
complex waveform with a few numbers. The HOS values
will have large data-dependent fluctuations making them
inappropriate for classification. Hence scalar HOS are not
well suited for discriminating between different circular
constellation modulation formats [18]. In this case, high
order cyclostationary properties can be useful. The nth order
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FIGURE 4. SCD plots for different modulation types.

lag-product is the nonlinear transformation in (3), defined as:

L[n, τ ]m = x(∗)[n+ τ1]x(∗)[n+ τ2] . . . x(∗)[n+ τm] (30)

where τ denotes individual delays and the notation x(∗)[n]
means optional complex conjugation.

Suppose a complex signal is nth order periodic in
frequency α. In that case, the averaging of the lag-product,
multiplied by a complex exponential of this frequency
conducts to the definition of cyclic temporal moment function
(CTMF), which is expressed as:

Rαx (τ )m = lim
T→∞

1
T

T/2∑
n=−T/2

L[n, τ ]me−j2παn (31)

this can be seen as discrete Fourier transform of L[n, τ ]m,
particularly when m = 2 the CTMF is equivalent to CAF.
At the same time, according to (23), the cyclic temporal
cumulant function (CTCF) can be obtained through the
CTMF (31). Take a zero-mean random signal as an example,
becauseM20 is the mean of a sequenceM20 = 0. In this case
C40 is approximately equivalent to itsM40.

D. RD-CTCF
A wide range of studies set τ in (30) to small values or
zero for several reasons [10], [79], [80]: the Cαx (τ )n is not
absolutely integrable for all τ ; with increasing τ , the value
of the high order cumulants tends to be close zero; and the
difficulty of implementation. In the light of these, the CTCF
with τ = 0, is termed reduced dimension cyclic temporal
cumulant function (RD-CTCF).

1) FOURTH ORDER CYCLIC FUNCTION
Depending on (23) and (31), the simplified fourth order cyclic
cumulants can be calculated through:

Cα40(τ = 0) =
1
N

∑
n

s[n]4e−j2πnα

− 3

(
1
N

∑
n

s[n]2e−j2πnα
)2

(32)

Cα42(τ = 0) =
1
N

∑
n

s[n]2s∗[n]2e−j2πnα

−

∣∣∣∣∣ 1N ∑
n

s[n]2e−j2πnα
∣∣∣∣∣
2

− 2

(
1
N

∑
n

s[n]s∗[n]e−j2πnα
)2

(33)

The plots of Cα40(τ = 0) and Cα42(τ = 0) are presented in
Fig. 5. The x-axis is cyclic frequency and y-axis is magnitude
of complex cumulants.

FIGURE 5. Fourth order RD-CTCF using (32) and (33).

2) SIXTH ORDER CYCLIC FUNCTION
Similar to fourth order, the sixth order cyclic functions are
derived from (23) and (31). Again, the plots of Cα61(τ = 0)
and Cα63(τ = 0) are shown in Fig. 6. The x-axis is cyclic
frequency and y-axis is magnitude of complex cumulants.

3) WINDOW SIZE AND OVERLAP
The above implementations all apply sliding windows as
described by the following equation:

mαpq(τ = 0) =
1
Nw

1
N

∑
w

∑
n

w[s[n]p−qs∗[n]q]e−j2πnα (34)

As mentioned before, the window size and overlap should
be adjusted according to the specific situation. When the
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FIGURE 6. Sixth order RD-CTCF.

window size and the total length of a signal are fixed, the
larger the overlap length, the greater the time resolution [46].

E. CTCF FEATURES FOR AMC
The previous subsection showed that the CTCF extracts
important features, and by observing the number, amplitude,
and position of its spectral lines, signal detection and
classification can be carried out. Most CTCF applications
have been fourth- and sixth-order, and the signal can be
detected and classified by examining its spectral line number,
peak magnitudes and peak locations. Table 5 presents a
summary of CTCF-based approaches, but for the current
results, this operation is not yet widely applied in AMC.

F. KERNEL-BASED
Second-order cyclostationary approaches have been used
extensively, especially for spectral sensing and automatic
modulation classification tasks [95]. Nevertheless, the
second-order cyclostationary (SCD or CAF) properties are
not suitable for non-Gaussian communication channels,
resulting in the deterioration performance, e.g. AMCofQAM
in time-varying channels [96]. High order cyclostationary
features can be further extended to kernel-based ones which
can subsume both second and higher order features in a
computationally efficient manner [97].

1) CORRENTROPY
Correntropy as a method called information theoretic learn-
ing (ITL) was first applied to machine learning problems
by [98] and was found to have very different properties
compared to mean square error (MSE), which is very useful
in nonlinear, non-Gaussian signal processing. Similar to CAF
which measures similarity across lags as the autocorrelation,
correntropy yields the entropy of the random variable during
averaging of the lags. Thus, the correntropy covers the higher
order moments of the probability density function (PDF) but
it is much simpler to estimate directly from the data and
bypasses the need for traditional moment expansion [95].

Correntropy is a similarity measure between two arbitrary
random variables X and Y : Vσ (X ,Y ) = E[κσ (X −Y )] where
κσ (·) is usually assumed to be a normalized Gaussian kernel
with variance σ .

Vσ (X ,Y ) =
1

√
2πσ

E
[
exp

(
−(X − Y )2

2σ 2

)]
(35)

For applications in signal processing, let X = x[n] and
Y = x[n + τ ]. Applying the Taylor series expansion of the
exponential function in the Gaussian kernel, we get:

Vσ [n, τ ] =
1

√
2πσ

∞∑
m=0

(−1)m

2mσ 2mm!
E[(x[n]− x[n+ τ ])2m]

(36)

σ is also denoted as Gaussian kernel size. Additionally, if the
correntropy function Vσ [n, τ ] is periodic with T0, then the
Fourier series expansion can be applied:

Vσ [n, τ ] =
∑
α

V ασ [τ ]e
j2παn (37)

V ασ [τ ] =
1
T0

∑
n

Vσ [n, τ ]e−j2παn (38)

here α = k/T0 is the cyclic frequency that represents
all multiples of fundamental frequency, where k ∈ Z.
The Fourier coefficient V ασ [τ ] of correntropy function is
called cyclic correntropy function (CCF). From τ and α,
the spectral function of CCF can be generated through
the Fourier transform, this is defined as cyclic correntropy
spectral density (CCSD):

Sαx [f ] =
∑
τ

V ασ [τ ]e
−j2π f τ (39)

It can be seen in (36) that the Gaussian kernel is sensitive to
higher-order statistic information. Thus an appropriate value
for σ must be selected for use in the correntropy kernel [31].
Fig. 7 shows CCSD plots for σ = 0.3. It can be seen that
the CCSD plots are able to better discriminate modulations
types than SCD (Fig 4), and the high order components in the
Gaussian kernel help distinguish between M-QAM types.

2) HYPERBOLIC TANGENT
Hyperbolic Tangent Correlation (HTC) is a new kernel
function method, proposed in [99]. This technique has been
used mainly for denoising and we are not aware of its
applications in AMC. Its expression is similar to original
correntropy:

T [n, τ ] = E[tanh(x[n]x[n+ τ ])] (40)

Its cyclic correlation function is called hyperbolic-tangent
cyclic correlation (HTCC), and the spectrum of the HTCC
is:

H ξ
x [τ ] =

1
T0

∑
n

T [n, τ ]e−j2πξn (41)

Z ξx [f ] =
∑
∞

H ξ
x [τ ]e

−j2π f τ (42)
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TABLE 5. Summary of key cyclic high-order features used.

FIGURE 7. CCSD for different modulation types (σ = 0.3).

The negative exponential in the Gaussian kernel can
only map real sequences to positive values, while the tanh
function includes negative ones. This matches the correlation
function, benefiting signal separation and its mathematical
derivation [99]. Moreover, HTCC requires no parameters
while correntropy requires setting the parameter σ .

G. KERNEL-BASED FEATURES FOR AMC
The main research on applying cyclic correntropy to AMC
has been by Fontes et al. [95], [97] and Câmara et al. [100].
They showed mathematically that CCF contains more
information other than CAF [97], including high order
information, and a sinusoidal function which controls the
phase shift of the response regardless of the type of
random process. These properties serve to make the cyclic
correntropy relatively insensitive to non-Gaussian noise, e.g.
impulsive noise.

In [95], the authors study the correntropy function itself
instead of CCF or CCSD. Due to Gaussian kernel’s non-linear
transformation, cross entropy is not guaranteed to have zero
mean. Gaussian kernel based cross entropy coefficients [101]
between the input signal and pre-stored known modulation
signals are utilized to circumvent this. Also, because the
σ value controls the behaviour of the kernel function, using a
classifier based on the cross entropy coefficients, the authors
investigated the relationship between SNR and kernel size

TABLE 6. Relationship between SNR and cross-entropy coefficients’
kernel size σ [95].

for MSK, OOK, BPSK, QPSK and 16-QAM. For better
performance, the most suitable kernel size can be chosen
according to the circumstance, as shown in Table 6.

In addition to these coefficients, CCF and CCSD also have
a wide range of characteristics to analyze. For example, cyclic
components at specific α-axis positions can be employed
as signatures [100]. Commonly, the most reliable method
is still to directly recognize the entire 2-dimension CCSD
plot (with spectra frequency f vs. cyclic frequency α) as a
featuremap. A summary of researches developed using cyclic
correntropy are presented in Table 7. In fact, even simple
classifiers have good accuracy (close or equal to 100%) at
high SNR, so the major challenge in employing correntropy
is to make the feature map robust at low SNR. Collectively,
CCF and CCSD are mostly not affected by impulsive noise
and provides good discrimination of different modulation
schemes.
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TABLE 7. Summary of kernel-based cyclostationary techniques for AMC.

VI. SUMMARY OF PUBLISHED RESULTS
This section reviews the published techniques included in the
taxonomy in Table 1. The overall comparison is summarised
in Table 8, and lists the configurations and final accuracy of a
number of key papers on the subject. Note that in the SNR &
Accuracy column, the accuracy is from the lowest to the last
stable value; the corresponding SNR ranges do not include the
SNRs after the accuracy becomes stable. This is employed to
compare the performances better.

A. FUSION OF FEATURES
In addition to directly employing the aforementioned fea-
tures, numerous studies applied combinations of features.

1) FUSION OF SCALAR FEATURES
Fused scalar features often use statistics such as standard
deviation of the absolute value of normalized centered
instantaneous amplitude, or the value of specific locations
of some transformations, such as CWT and CTCF. In [66],
some statistics of CWT andHOC are used as nodes thresholds
in a decision tree. Lee et al. [109] directly combines HOC
and signal statistics into 28 numerical values and feeds them
into dense layers to classify. Majhi et al. [18] extracts the
peak positions of RD-CTCF20, RD-CTCF21, RD-CTCF40,
RD-CTCF42, and merges them with HOC as features.

2) FUSION OF MULTI-DIMENSION FEATURES
The flexibility of neural networks enable them to readily
handle data of different dimensions. For example, [48] uses
separate CNNs for feature extraction of raw IQ and FFT, and

then employs a fully connected layer as a fusion layer to
combine and map these CNN outputs to different categories.
Wang et al. [116] combines IQ samples and IQ-converted
constellation graphs as inputs to a CNN, and confirms
that a combination of features can have better accuracy
by showing it outperforming IQ sequences. On the other
hand, [117] shows that for raw IQ inputs, a CNN and
LSTM will have similar performance, and the application of
HOC can improve the accuracy by around 8%. Inspired by
the former’s research, [118] also utilizes IQ sequence and
HOC as inputs to a DNN classifier and achieves a higher
accuracy but has limited accuracy for M-QAM classification.
For combinations of sequences, the discrete orthonormal
Stockwell transform [104] and the IQ series are integrated
as two channels and fed into a CNN; instead of using two
separate NN modules ahead of a fusion module; this uses
fewer parameters. For the fusion of 2D images, the perfor-
mances of using smooth pseudo Wigner-Ville distribution
(SPWVD) [119] and Born-Jordan distribution (BJD) alone
are found to be similar [107]. They use two individual CNN
to process each feature image and connect these two CNN’s
outputs with fully-connected layers.

Thus mixed features are often more effective than using
them separately. Unfortunately, such models inherently
require more parameters than a single model.

B. OBSERVATIONS
As can be seen in Table 8, the SNR ranges, modulation
sets, and classifiers of different studies make direct com-
parison impossible. Hence for the sake of standardization,
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TABLE 8. Performance summary of pre-processing based AMC algorithms.

VOLUME 10, 2022 84179



X. Liu et al.: Wireless Signal Representation Techniques for Automatic Modulation Classification

TABLE 8. (Continued.) Performance summary of pre-processing based AMC algorithms.
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in following section, we reproduce the pre-processing
techniques and compare them using a unified classifier.
Nevertheless, we have formed the opinion that: 2D features
outperform 1D and scalar ones; combined features offer
improvements over uncombined ones; second-order trans-
forms are more robust to noise than linear ones; and second-
and high-order techniques perform better than first-order.

VII. EXPERIMENTS: REPRODUCTION AND OBJECTIVE
COMPARISON
A. EXPERIMENTAL CONFIGURATION AND PYTHON
LIBRARY
In addition to the above works, we also provide a systematic
open-source Python library for computing the aforemen-
tioned pre-processing algorithms, designed to allow access
to specific functions or to enable the execution of all
functions available in the library. It is also possible to
customize the class methods and attributes to introduce new
functions for future research works or practical applications.
This library focuses on the second and higher order
cyclostationary features in Table 1. For other transformations
we directly call some off-the-shelf libraries. The outputs
of different pre-processing algorithms can be fed into
an LDA classifier to calculate the recognition accuracy,
which is helpful for the comparison of the accuracy of
different feature maps. This library is available from:
https://github.com/louisinhit/AMC_preprocess.

Since the datasets, SNR ranges and classifiers used in
previous studies are all different, we conducted a comparison
using our own library and a unified dataset. I&Q input signals

TABLE 9. Information on modulation data set.

were uniformly selected from the 19 digital modulations
from DeepSig RadioML 2018.01A dataset [25] to produce
a benchmark set. We divide the SNR range into 3 groups,
low, middle and high. Details are given in Table 9. The split
between the train set and the test set is 9:1. LDA is chosen
here as the classifier [120] because there are no parameters
involved, and a linear technique leads to a straightforward and
simple comparison.

B. EVALUATION OF HIGH ORDER STATISTICS
For determining the optimal normalization approach, in the
baseline model, we apply general normalization (43)
to 14 HOS: {|C20|, |C21|, |C40|, |C41|, |C42|, |C60|, |C61|,

|C62|, |C63|, |C80|, |C82|, |C84|, |M101|, |M103|}.∣∣∣∣∣∣CpqC
p
2
21

∣∣∣∣∣∣ (43)

The HOS processing approaches mentioned in other papers
and the accuracy they achieved using the LDA classifier are
shown in Table 10. It is clear that the n-th root of magnitude
value |Cpq|

2
p outperforms the others, therefore, this method

should be used for scalar HOS.

TABLE 10. Experiment: LDA accuracy for element HOS.

C. EVALUATION OF TIME-FREQUENCY
TRANSFORMATIONS
1) OVERALL COMPLEXITY COMPARISON
Finally we carefully compare the transformations introduced
in this paper. Details of the signal characteristics adopted in
this comparison experiment are shown in Table 11. It provides
the theoretical computation complexity and the time required
to process a 1024 long sample points segment on Intel(R)
Xeon(R) CPU E5-2630 v4 platform. Here the complexity of
the add-window operation is skipped and the focus is on the
complexity involved in the mathematical operation.

In order to control the variables as much as possible
for objective and reliable results, all performance test
experiments are reproduced locally. The modulation set is
shown in Table 9. The parameters for each technique are
selected to be as close to the suggested values in the literature,
e.g., in scalar HOS, the best normalization algorithm is
chosen; in DWT or CWT, the most appropriate scale factor
is used; the fast CCSD algorithm follows [97], and adopts the
optimal σ value; and fast SCD is calculated according to [87].
According to Table 11, a higher order transformation does not
mean more computational overheads. The high complexity
of the cyclic-correlation spectra stems mainly from the two
Fourier transforms for the t and τ axes, respectively, or the
computation of the corresponding kernel functions.

2) INFLUENCE OF DIFFERENT SNR RANGES
Fig. 8 shows the overall experiment results for different
approaches. The horizontal axis labels correspond to the
pre-processing techniques and the size of the features.
Different colors denote the three SNR groups. Here, Raw IQ
represents the accuracy for recognizing the original signals
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TABLE 11. Details of the features in experiment.

FIGURE 8. Accuracy comparison of different pre-processing techniques using one-layer LDA classifier. Different colors correspond to different
SNR ranges. Features details are in Table 11.

without any pre-processing, which serves as a baseline.
Most methods are able to improve over the baseline, with
cyclostationary analysis and the higher-order transforms

being generally better than those of the linear time-frequency
transform. Interestingly, the advantage of pre-processing is
greatly weakened at low SNR (below -5 dB). The CCSD,
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FIGURE 9. Confusion matrices for different techniques with one-layer LDA classifier.

HTC,HOS andRD-CTCF perform outstandingly well at high
and medium SNRs. However, in the range of [−5,+10] dB,
it can be seen that element HOS is slightly more sensitive to
noise compared to other methods because the scalar features
are easier to fluctuate.

3) INFLUENCE OF MODULATION TYPES
Different processing algorithms exhibit different noise immu-
nity and differ in their ability to recognize different mod-
ulations. SCD, a classical representative of cyclostationary
analysis, has a lower overall accuracy than other cyclic
correlation spectra because it cannot discriminate high order
QAMs and APSKs. However, it can distinguish between
modulations such as ASK and FSK at low SNR because of the
differences in peak size and amount [125]. As shown in Fig. 9,
the other pre-processing confusion matrices at SNR -6dB
are essentially a random chaotic distribution using an LDA
classifier, while SCD and HOS can better discriminate ASK
and BPSK signals. At SNR of 8dB, both kernel-based and
high order cyclic correlation functions have high accuracy
as in Fig. 9. Nevertheless, there are still some limitations on
M-QAMs and M-APSKs tasks.

Element HOS is the simplest to compute without much
accuracy loss, so many studies are based on this technique,
still, the shortcoming is that it is composed of some
numerical values, and some information may be lost in
the calculation process. But cyclic temporal moment or
cumulant functions (RD-CTCF) can compensate for this to

some extent with better generalization capability. Moreover,
it can be observed from Fig. 9 (b), (c) and (e) that high
order algorithms can discriminate M-QAM better than other
algorithms, but easily confuse within {32QAM, 128QAM}
set and {16QAM, 64QAM, 256QAM} set, this is because
they have the close distribution of statistical values as
in Table 4. It can be seen that the latter algorithms in
Fig. 8 generally perform more accurately than the former
ones. On top of this, HTC and CCSD are more effective
in discriminating amplitude modulations, while high order
algorithms are more prominent for those involving phase
modulation.

4) DISCUSSION
Our study shows that although the preprocessing methods
studied differ in noise sensitivity and the ability to discrim-
inate between modulation types, non-linear time-frequency
transformations lead to better accuracy than linear ones. High
order algorithms (HOS and RD-CTCF) can achieve good
accuracy while maintaining relatively low computational
complexity. The kernel-based cyclostationary techniques
(HTC and CCSD) exhibit the best overall classification
accuracy, but at higher computational cost and their ability to
handle higher-order QAM and APSK can still be improved.
Presented analysis shows that among the algorithms that
perform more accurately, HOS is characterized by the lower
order-of-magnitude required for inference time and, despite
a slightly lower performance in the [−5,+10] dB range,
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is relatively competitive with more complex algorithms in
lower and higher SNRs.

The state-of-the-art radio datasets [25] have contributed
significantly to the field of AMC by providing a benchmark
for evaluating deep learning approaches to AMC [126].
Although the classification accuracy for modulations such
as OOK, M-ASK, BPSK, QPSK, GMSK, and OQPSK
is excellent, improvements for higher-order M-APSK and
M-QAM (M > 64), especially in low SNR scenarios remain
a challenge. Most AMC systems are designed based on
known modulation patterns, while in realistic scenarios it
is possible that the modulation type was not present in the
training set. There is little presented in the literature regarding
this problem. Finally, real-time implementations in hardware
are seldom published and this is still an open issue to be
resolved for additional research.

VIII. CONCLUSION
This article highlights different signal representation tech-
niques that can be applied to AMC. We have presented a
number of common techniques and compared them under
standardized conditions. In the presence of AWGN, some
basic time-frequency transformations can effectively distin-
guish between FSK, PSK and other modulation types. HOS
features are good in identifying M-QAM and M-PSK with
low computational complexity. Second-order and generaliza-
tions to higher-order cyclostationary features perform well
in diverse interference environments such as non-Gaussian
noise and fading channels. Although the spectral correlation
function did not perform well in our tests, the introduction
of a Gaussian kernel leads to improved noise immunity over
traditional linear time-frequency transforms, and a hyperbolic
tangent kernel further improves robustness to impulse noise.
While even simple techniques have good accuracy for
low-order modulations or high SNR environments, the main
challenge for AMC research lies in high-order modulations,
low SNR environments, and coping with modulation types
not known a priori.

In practice, the best approach depends on the particular
application domain and environmental characteristics. How-
ever, in the general case of blind identification in unknown
channel environments, the kernel function-based cyclosta-
tionary and high order cyclic temporal functions are likely
to provide the best results. In addition, we provide a Python
library that can reproduce the results in this paper and hope
it can be used to improve future intelligent communication
system design and software-defined radio applications.
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