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Abstract

Spectral correlation density (SCD) is widely used to characterize cyclostationary signals,

but its high computational requirements pose significant challenges. Although the fast Fourier

transform (FFT) enables efficient methods such as the FFT accumulation method (FAM)

and strip spectral correlation analyzer (SSCA), their real-time adoption remains limited.

Therefore, optimizing these methods for computational efficiency is essential to balance

accuracy and efficiency. This work focuses on reducing wordlength, leveraging parallel

hardware architectures, and minimizing computational complexity.

This study first analyzes the relationship between wordlength and signal-to-quantization-

noise ratio (SQNR) in fixed-point SCD implementation, using a canonical FAM-based es-

timator with both fixed- and mixed-point arithmetic. High performance is achieved on the

AMD/Xilinx Zynq UltraScale+ RFSoC ZCU111 platform by exploiting spatial parallelism,

pipelining, I/O optimization, and algorithmic symmetry.

Next, an SSCA implementation is proposed for large datasets on the AMD/Xilinx Versal

VCK5000 platform. It utilizes parallelism across the programmable logic (PL), double data

rate memory controller (DDRMC), and AI engine (AIE), and combines very-long instruction

word (VLIW) and single-instruction multiple-data (SIMD) architectures. The PL handles data

transfer between the DDRMC and AIE, ensuring seamless communication. This architecture

maximizes hardware efficiency and throughput for large-scale processing.

Lastly, the sparse strip spectral correlation analyzer (S3CA) is introduced, employing

the sparse fast Fourier transform (SFFT) to leverage the sparsity of the cyclic spectrum in

practical signals. It computes a sparse, downsampled channel-data product (CDP) and applies

a modified SFFT to estimate the SCD efficiently. This approach reduces computation and

enhances scalability, enabling real-time spectral analysis of large datasets.
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CHAPTER 1

Introduction

A time series is said to be cyclostationary if its probability distribution varies periodically with

time. Cyclostationary time series analyses are suitable for a wide range of periodic phenomena

in signal processing, including characterization of modulation types; noise analysis of periodic

time-variant linear systems; synchronization problems; parameter and waveform estimation;

channel identification and equalization; signal detection and classification; autoregressive

(AR) and autoregressive moving average (ARMA) modeling and prediction; and source

separation [31, 57, 48]. A signal exhibits cyclostationarity if and only if the signal is correlated

with certain frequency-shifted versions of itself [30]. Cyclostationary analysis often involves

computing the spectral correlation density (SCD), also called the cyclic spectral density or

spectral correlation function. This function is the idealized temporal cross-correlation between

all pairs of narrowband spectral-component time series and reflects the correlation distribution

of the signal in terms of both spectral frequency and cycle frequency.

Based on the SCD algorithm, the computation of the entire cyclic spectrum (CS) is consid-

erably more complex and time-consuming than the computation of the conventional power

spectral density (PSD). The estimation of correlation between spectral components of signals,

as opposed to merely computing the spectral components themselves, renders the SCD a

computationally complex mechanism. This increased complexity arises primarily from the

potentially large number of correlation computations required.

The estimation of SCD algorithm for the efficient algorithm is in two main subgroups: the

frequency-smoothing (FS) algorithms and the time-smoothing (TS) algorithms. If we want to

compute the entire CS for blind estimation, TS algorithms result in more computationally

efficient algorithms than those involving FS [58].

1
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1.1 Motivation

Although the SCD method reveals extensive information about cyclostationary processes

even under low signal-to-noise ratio (SNR) conditions, the high computational complexity

of the method poses challenges for real-time applications, particularly due to the large input

sizes often involved. Although the fast Fourier transform (FFT) improves the computational

efficiency of TS algorithms—such as the FFT accumulation method (FAM) and the strip

spectral correlation analyzer (SSCA)—achieving real-time performance remains challenging.

Consequently, there has been significant interest in developing high-performance implementa-

tions of the SCD method to detect and classify cyclostationary signals using central processing

units (CPUs), graphics processing units (GPUs), field-programmable gate arrays (FPGAs),

and AI engines (AIEs).

In real-time applications, FPGA-based SCD accelerators have gained popularity due to their

utilization of on-chip high-speed arithmetic primitives in digital signal processing (DSP) and

memory blocks, along with their higher power efficiency, making them suitable for remote,

portable, real-time applications. However, achieving high resource utilization efficiency and

placement to attain maximum speed remain critical challenges for researchers in this field.

Signal-to-quantization-noise ratio (SQNR) and speed are critical factors in the implementation

of real-time SCD algorithms. Achieving the balance between these factors is challenging due

to high computational complexity and power requirements. Current literature and implement-

ations have gaps that need addressing. Specifically, the problems to be solved are:

Theoretical Analysis of SQNR for Changing Precision:

When applying SCD algorithms in hardware, one general way to reduce computational

complexity and increase speed is to shift from floating to fixed-point precision. The fixed-

point precision can also reduce the amount of intermediate memory required by utilizing

shorter wordlength, such as reducing from 24 bits to 12 bits. However, this reduction in

precision introduces quantization errors, which can degrade the SQNR of the output. The

tradeoff between SQNR and precision becomes a significant design consideration. In the

design of the real-time SCD implementation, it is necessary to develop a detailed theoretical
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and analytical model of the relationship between the different accuracies and precision of the

different parts of the algorithm. Such an analysis will help determine the optimal balance for

different conditions, ensuring that the algorithm runs as quickly as possible while maintaining

a level of SQNR that is within acceptable limits.

Custom FPGA Data Paths for Improved Parallelism and Speed:

Traditional implementations of SCD algorithms on CPUs and GPUs are constrained by the

fixed architectures of these platforms. In contrast, FPGAs offers a flexible architecture that

can be customized for specific applications. This flexibility allows for the design of custom

data paths that can enhance parallelism and improve computational speed.

A study is needed to explore how custom FPGAs data paths can be designed to maximize the

efficient use of FPGAs resources. This involves understanding the specific ways in which

FPGAs customization can enhance the performance of SCD algorithms. By leveraging the

on-chip high-speed arithmetic primitives present in DSP and memory blocks of FPGAs, it is

possible to achieve significant improvements in speed and parallelism. Understanding these

design principles will help in developing FPGA-based SCD accelerators that outperform their

CPU and GPU counterparts.

The AMD/Xilinx Versal ACAP architecture, described in merges general-purpose CPUs,

programmable logic (PL), and AIE processors optimized for AI and machine learning op-

timization. With 400 AI Engine processors executing at 1 GHz, capable of delivering 8

MACs/cycles for 32-bit floating-point data, the implementation of SCD on the Versal ACAP-

using multiple AIEs and collaborating with PL and CPU-can lead to more efficient SCD

accelerations.

Impact of Sparsity Assumption on Speed:

In SCD estimation algorithms, fixed-precision is often used uniformly throughout the design [46].

However, this approach may not be optimal for all applications. Introducing a sparsity as-

sumption can potentially improve speed. The sparsity assumption posits that the data or the

signal of interest is sparse, meaning that it contains a significant number of zero or near-zero

elements. This assumption can be leveraged to reduce computational complexity. Recent
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developments, such as the sparse fast Fourier transform (SFFT) designed by MIT [42], offer

promising techniques for reducing computation time while focusing on the most significant

variables. In the context of SCD algorithms, the symbol rate and carrier frequency are the

most significant elements after integration, the rest of the variables are near-zero elements. A

study is necessary to examine how to combine the FFT with SSCA, as the SFFT only requires

parts of input compared with FFT and we can customize the SSCA only support those input

data to SFFT to reduce the computational complexity of SSCA.

1.2 Aims

The primary objective of this research was thus to develop a scalable, high-speed solution

for cyclostationary analysis using FPGAs. The proposed solution involves designing an

FPGA-based accelerator that leverages on-chip arithmetic and memory blocks, alongside

AIEs to enhance performance and manage computational complexity. This research bridges

the gap between theoretical cyclostationary analysis and practical, real-time application,

enhancing the capability of radio frequency (RF) signal processing under constraints of speed

and accuracy.

The specific aims of this work were:

(1) Develop new techniques to theoretically analyze quantization error and hence exploit

the trade-offs between SQNR and resource utilization.

(2) Develop novel spatial architectures for parallel estimation of the SCD and implement

them on FPGAs.

(3) Develop SCD estimation techniques with reduced time complexity by exploiting

sparsity.

1.3 Contributions

Our contributions include a theoretical model that enables analysis of the trade-offs between

SQNR and precision, the exploration of customized FPGAs data paths, and taking advantage
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of sparsity to improve computational complexity. Additionally, we provide open-source code

for each method1 2 3.

Quantization Error Analysis: [44]

The first analytical SQNR model for fixed-point implementations of the FAM for estimating

SCD, enabling better tradeoffs between precision and area. Based on this model, discuss

the quantitative comparison of multiple wordlength assignment strategies and verify with

hardware implementations.

FAM Implementation on FPGAs: [44]

Design an architecture for implementing FAM on FPGA with high parallelism and mixed

precision to be used throughout. This high-level synthesis (HLS) implementation achieves

the highest reported throughput and power performance for the FAM techniques with a sparse

matrix output to minimize accelerator-to-host bandwidth.

SSCA Implementation on the Versal AI Engine:

Design the first implementation of SSCA on the Versal ACAP platform, utilizing very-long

instruction word (VLIW) and single-instruction multiple-data (SIMD) vector processors

for acceleration. The AIE’s parallel processing capabilities enhance SSCA performance

significantly. The design integrates communication between the double data rate memory

controller (DDRMC), PL, and AIE. The DDRMC manages high-speed data access, while

the PL coordinates dataflow and preprocessing tasks. Together, these components optimize

memory handling and computational efficiency, enabling a high-performance SSCA solution

that leverages the advantages of Versal’s architecture to traditional CPU- and GPU-based

implementations.

The Sparse Strip Spectral Correlation Analyzer: [45]

Developed a novel sparse strip spectral correlation analyzer (S3CA) based on the SFFT.

The S3CA approach involves computing a sparse, downsampled channel-data product,

which is then passed to a modified SFFT implementation to obtain the spectral density.

1https://github.com/Jingyi-li/FAM_Synthesis.git
2https://github.com/Jingyi-li/SSCA_Implementation.git
3https://github.com/Jingyi-li/S3CA.git

https://github.com/Jingyi-li/FAM_Synthesis.git
https://github.com/Jingyi-li/SSCA_Implementation.git
https://github.com/Jingyi-li/S3CA.git
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The computational complexity of the SSCA is reduced from O(NNP (logNP + logN)) to

O(NP logNP logN 3
√

Nκ2 logN) (refer to Chapter 5).

Publications arising from this research were:

• Chapter 3: [44] Carol Jingyi Li, Xiangwei Li, Binglei Lou, Craig T. Jin, David

Boland, and Philip H.W. Leong. 2023. Fixed-point FPGA Implementation of the

FFT Accumulation Method for Real-time Cyclostationary Analysis. ACM Trans.

Reconfigurable Technol. Syst. 16, 3, Article 41 (September 2023), 28 pages.

https://doi.org/10.1145/3567429.

• Chapter 3: [46] Xiangwei Li, Douglas L. Maskell, Carol Jingyi Li, Philip H.W.

Leong, and David Boland. 2022. A Scalable Systolic Accelerator for Estimation

of the Spectral Correlation Density Function and Its FPGA Implementation. ACM

Trans. Reconfigurable Technol. Syst. 16, 1, Article 9 (March 2023), 24 pages.

https://doi.org/10.1145/3546181.

• Chapter 5: [45] Carol Jingyi Li, Richard Rademacher, David Boland, Craig T.

Jin, Chad M. Spooner and Philip H.W. Leong, "S3CA: A Sparse Strip Spectral

Correlation Analyzer," in IEEE Signal Processing Letters, vol. 31, pp. 646-650,

2024, doi: 10.1109/LSP.2024.3364062.

Taken together, this work contributes to SCD estimation via techniques that are not only faster

and more accurate but are also more adaptable to the specific needs of different applications.

1.4 Thesis Structure

This dissertation details the design and implementation processes associated with the research.

It is organized as follows:

• Chapter 2 provides a literature review, introducing the background of cyclostationary

processes and the state-of-the-art in algorithm derivation and implementation.

• Chapter 3 details the implementation of FAM on the AMD/Xilinx Zynq UltraScale+

RFSoC ZCU111 platform with quantization error analysis.
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• Chapter 4 discusses the implementation of SSCA on the AMD/Xilinx VCK5000

platform.

• Chapter 5 introduces a new algorithm, S3CA, which accelerates the SSCA using

SFFT to achieve a more efficient algorithm.

• Chapter 6 discusses the conclusions of this work.



CHAPTER 2

Literature Review

This chapter introduces the background of SCD, including two frequently utilized algorithms:

FAM and SSCA. It also provides a literature review on the derivation of these algorithms

and their benefits and limitations. In the implementation, low precision reduces resource

requirements and computational complexity; however, this tradeoff can negatively impact the

quantization error of the outputs. Additionally, this chapter discusses error analysis for data

subject to quantization, focusing on roundoff and truncation errors arising from multiplication

and addition operations. It further examines the SQNR in the context of the decimation-in-

time (DIT) and decimation-in-frequency (DIF) FFTs algorithms, which is the major part of

the SCD algorithm.

2.1 Cyclostationary

A signal as cyclostationary of order n (in the wide sense) if and only if there is some nth-order

nonlinear transformation of the signal that will generate finite-strength additive sine-wave

components [29]. In other words, a time series is considered cyclostationary if its probability

distribution varies periodically over time. The property of cyclostationarity can generally

be exploited to enhance the reliability of information gleaned from data sets if the signal is

corrupted.

If a time series is given by x(t) = a cos(2παt + θ), where α ̸= 0, it contains a fi-

nite additive sinusoidal component with frequency α. The spectral parameter x̂(α)
∆
=

limT→∞
1
T

∫ T/2

−T/2
x(t)e−j2παt dt is non-zero, indicating the presence of a strong frequency

component at α. The spectral density of x(t) shows spectral lines at frequencies α and −α.
8
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Therefore, the time-series x(t) exhibits first-order periodicity characteristic of cyclostationar-

ity at frequency α.

If x(t) contains a non-zero value of parameter

Rα
x(τ)

∆
= lim

T→∞

1

T

∫ T/2

−T/2

x(t+
1

2
τ)x(t− 1

2
τ)e−j2παtdt (2.1)

at frequency α ̸= 0 as a function of τ , x(t) is a time-series exhibiting second-order periodicity.

The autocorrelation Rα
x can also be interpreted as the cross-correlation between two complex-

valued frequency-shifted versions of the time-series x(t), denoted as u(t) ∆
= x(t)e−jπαt and

v(t)
∆
= x(t)ejπαt. Thus Equation (2.1) becomes:

Rα
x(τ) ≡ Ruv(τ)

∆
= lim

T→∞

1

T

∫ T/2

−T/2

u(t+
1

2
τ)v∗(t− 1

2
τ). (2.2)

The Fourier transform of the Rα
x is the cross-spectral density Sα

x of u(t) and v(t) and defined

as

Sα
uv(f)

∆
= Sα

x (f) =

∫ ∞

∞
Rα

x(τ)e
−j2πfτdτ, (2.3)

which is also the SCD of the two spectral components of x(t) with frequencies f + 1
2
α and

f − 1
2
α. Thus, the Sα

x is also defined as:

Sα
x (f) = lim

T→∞
lim

∆t→∞
SuvT (t, f)∆t = lim

T→∞
lim

∆t→∞

1

∆t

∫ ∆t/2

−∆t/2

1

T
UT (t+ ζ, f)V ∗

T (t+ ζ, f)dζ,

(2.4)

in which the UT (t, f)
∆
= XT (t, f + 1

2
α) and VT (t, f)

∆
= XT (t, f − 1

2
α).

XT (t, f) presents the complex demodulates of x(t) and is defined as:

XT (t, f)
∆
=

∫ t+T/2

t−T/2

x(ζ)e−j2πfζdζ. (2.5)

In other words, XT (t, f) is the complex envelope of the narrow bandpass component of x(t)

with center frequency f and approximate bandwidth 1
T

.
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2.2 Spectral Correlation Analyzers

In cyclic spectral analysis, algorithms compute the correlation between the spectral com-

ponents of two real or complex-valued signals. This process is computationally intensive,

requiring numerous Fourier transforms, which highlights the growing demand for more effi-

cient algorithms [59]. The complexity poses challenges, even for hardware implementations

using discrete-time versions. Therefore, improving computational efficiency in estimating the

spectral correlation is crucial.

The discrete-time versions of Equation (2.3) and Equation (2.1) become:

Sα
x (f)

∆
=

∞∑
k=−∞

Rα
x(k)e

−j2πfk (2.6)

and

Rα
x(k)

∆
= lim

N→∞

1

2N + 1

N∑
n=−N

[x(n+ k)e−jπα(n+k)][x(n)ejπαn]∗, (2.7)

where Sα
x (f) represents the cross spectrum of two frequency-shifted signals x(n)e−jπαn and

x(n)ejπαn. The sampling interval is denoted as Ts, and the input signal duration is ∆t = NTs,

which is ideally infinite. The cycle frequency resolution provided by SCD is ∆α = 1/∆t.

The discrete set of spectrum frequency fk = k∆f , where ∆f is the frequency resolution of

the analyzer. Thus, the value of Sα
x (f) is located in the frequency/cycle-frequency plane, also

known as the bifrequency plane, with resolutions of ∆f and ∆α. In practical applications,

handling an infinite input signal duration is not feasible, making the computational complexity

of a naive implementation of Sα
x (f) effectively unbounded and impractical. To address this,

N is assumed to be large, resulting in ∆t∆f ≫ 1, which allows for an estimate to be made.

An approximation using very long input data N (matching the size in Equation (2.7)), with k

ranges from −N
2

to N
2

can be employed to estimate the result. The computational complexity

of this approximate version is O(N2).

Two common techniques are used to estimate the SCD in cyclic spectral analysis algorithms:

average in frequency (frequency-smoothing), and the average in time (time-smoothing).
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2.2.1 Frequency Smoothing Algorithms

The frequency-smoothing algorithm computes the set of demodulates by first calculating

the frequency spectrum and then down-converting the input signal segments of length ∆t.

Consequently, the input sequence x(n) is transformed as follows [58]:

X∆t(k) =
N−1∑
n=0

a(n)x(n)e−j2πkn/N , (2.8)

where −N/2 ≤ k ≤ N/2− 1 and a(n) represents a data tapering window of length N . The

same process is applied to the input sequence y(n) to compute Y∆t(k). The frequency bins

of X∆t(k) and Y∆t(k) are then cross-multiplied, and the resulting products are averaged to

achieve frequency-smoothing with a window size of M :

Sα
xy∆t

(f)∆f =
1

M

⌊M/2⌋−1∑
k=⌊−M/2⌋

X∆t(f + ⌊α
2
⌋+ k(

fs
N
))Y ∗

∆t(f − ⌈
α

2
⌉+ k(

fs
N
)). (2.9)

In this equation, the frequency resolution of Sα
xy∆t

(f)∆f is given by ∆f = M(fs/N), the

cycle frequency resolution is ∆α = fs/N , and Sα
xy∆t

(f)∆f is smoothed using a window size

of M .

If an FFT is employed to compute the Fourier spectrum, the computational complexity for

calculating X∆t(k) is O(N log2N). When estimating only a single point on the bifrequency

plane, the computational complexity is O(M). However, if all points on the bifrequency plane

are estimated, the computational complexity escalates to O(N2).

2.2.2 Time Smoothing Algorithms

In contrast to the frequency-smoothing algorithm, the time-smoothing algorithm estimates

the cyclic spectrum within a block. Figure 2.1 illustrates the basic implementation of the

discrete-time smoothed cyclic cross periodogram, where a data tapering window of length

T seconds slides over the data for a time span of ∆t seconds, then computes the cyclic

cross periodogram by averaging the product over a sliding time interval of approximately ∆t
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FIGURE 2.1. Implementation of the time-smoothed cyclic cross periodogram

samples. For a fixed spectrum frequency f and cycle frequency α, the SCD method function

performs as the time-smoothing technique of cross-spectral analysis.

The conventional time-smoothed cyclic cross periodogram is given by:

Sα
xyT

(n, f)∆t =
1

T
⟨XT (n, f + α/2)Y ∗

T (n, f − α/2)⟩∆t. (2.10)

The cyclic cross periodogram is the correlation between the spectral components XT (n, f +

α/2) and YT (n, f − α/2) obtained by passing inputs x(n) and y(n) through the narrowband

bandpass filters centered at frequencies f + α/2 and f − α/2, respectively. Similarly, in a

practical implementation, the input data length is finite value ∆t; a data tapering window

(e.g., Hamming, Chebyshev, etc) of length T seconds is applied to the complex demodulates,

sliding across the entire window of input data to capture the spectral correlation effectively.

To achieve a reliable estimate, ∆t must be significantly greater than T .

In Figure 2.1, the length of the input signal is N = ∆t/fs as fs is the sampling frequency

(Ts = 1/fs is the sampling interval). The tapering window length of complex demodulates

NP = T/fs.



2.2 SPECTRAL CORRELATION ANALYZERS 13

Δt 

time
n

|   T   |

(A) A complex-valued signal x(n) with a
sample period of Ts = 1/fs

time

n
frequency

Δt=1/Δα

Δf=1/T
α
f

(B) Complex demodulates of signal x(n)

FIGURE 2.2. Complex demodulate of a single complex-valued signal

To compute the spectral cross-correlation Sα
xyT

(n, f), the complex demodulates can be math-

ematically expressed as

XT (n, f) =

NP /2−1∑
−NP /2

a(r)x(n+ r)e−j2πf(n+r)Ts (2.11)

where a(r) is a data tapering window. The frequency resolution of complex demodulates

is ∆f = ∆a = fs/NP . Figure 2.2 illustrates the output of the complex demodulate of a

complex-valued signal.

Then based on Figure 2.1, the output of two complex demodulates are correlated and followed

by a lowpass filter with a memory length of ∆t = NTs seconds. The complex demodulate

frequencies f1 = f + α/2 and f2 = f − α/2 are related to the spectrum frequency f and the

cycle frequency α. In other words, f = (f1 + f2)/2 and α = f1 − f2. Then Equation (2.10)

becomes:

Sα0
xyT

(n, f0)∆t =
∑
r

XT (r, f1)Y
∗
T (n, f2)g(n+ r). (2.12)

The computational complexity of a complex demodulate measured is O(NNP +NN2
P ), and

of Equation (2.12) via FFT is O(NN2
P +N2

P (N/2) log2N).

Figure. 2.3 shows the estimated SCD function Sα0
xyT

(n, f0)∆t of a direct-sequence spread-

spectrum (DSSS) binary phase-shift keying (BPSK) signal with 10 dB SNR, and the corres-

ponding alpha profile which captures the maximal SCD values along the spectral frequency

axis for each cyclic frequency α, as defined in [25]:

alpha profile = max
f

(Sα0
xyT

(n, f)∆t). (2.13)
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FIGURE 2.3. The SCD function and alpha profile of DSSS BPSK signal

The purpose of the alpha profile is to reduce the data volume caused by high α resolution. By

retaining only the peak SCD value per α, the dimensionality and storage bandwidth are cut

while still retaining the cyclic frequency information in the SCD output.

The frequency-smoothing algorithms compute a single point estimate at a time, whereas the

time-smoothing algorithms calculate point estimates of the cyclic spectrum in blocks, making

them more computationally efficient for blind applications where the entire bifrequency plane

is needed; therefore, this thesis focuses on time-smoothing and will explore further methods

to reduce the computational complexity in the commonly used FAM and SSCA algorithms

within this approach.

2.2.3 Computational Efficiency

Fourier Transform: The computational efficiency of time-smoothing algorithms can be

significantly enhanced by utilizing a computationally efficient Fourier transform to perform the
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necessary summations. In Equation (2.11) and Equation (2.12), a Fourier transform enables

efficient computation of time-smoothing and the complex demodulates. By manipulating

Equation (2.11) into the following form:

XT (n, f) = [

NP /2−1∑
r=−NP /2

a(r)x(n+ r)e−j2πfrTs ]e−j2πfnTs , (2.14)

the summation in the brackets can be efficiently computed using an NP -point FFT, where

the exponential coefficient in Equation (2.11) changes from e−j2πf(n+r)Ts to e−j2πfrTs in the

NP -point FFT; the subsequent exponential coefficient, e−j2πfnTs , then corrects the output of

the NP -point FFT to match the complex demodulates.

To achieve time-smoothing using the Fourier transform, a frequency shift ϵ is introduced to

the complex demodulate product sequence before smoothing. Consequently, Equation (2.12)

is modified as follows:

Sα0
xyT

(n, f0)∆t =
∑
r

XT (r, f1)Y
∗
T (r, f2)g(n+ r)e−j2πϵrTs (2.15)

where |ϵ| < ∆a. Additionally, the cycle frequency parameter α0 has been redefined to

f1 − f2 + ϵ.

If ϵ = q∆α, Equation (2.15) becomes

Sα0
xyT

(n, f0)∆t =
∑
r

XT (r, f1)Y
∗
T (r, f2)g(n+ r)e−j2πrq/N , (2.16)

which means the sum in Equation (2.16) can be efficiently evaluated by an N -point FFT.

Based on this computation, the estimation of N point product is centered at (f0, f1− f2). The

qth point causes a variable frequency resolution of ∆f = ∆a− |q|fs/N , and a constant cycle

frequency resolution of ∆α = fs/N .

Decimation: The computational efficiency of the time-smoothing algorithm can also be

enhanced by decimating the outputs of the bandpass filters using an appropriate factor. The

input data is sampled at intervals of L samples to the filter, which results in processing only

P = N/L samples per point estimate, thereby reducing the overall computational complexity

of the algorithm by a factor of L. After decimation, the output sampling rate decreases to
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FIGURE 2.4. The FFT accumulation method

fs/L with the filter output window being NP samples long. The computational complexity

decreases as the factor L increases, and the likelihood of cycle leakage also increases. This

leakage becomes significant when L equals NP , and aliasing begins to occur once L surpasses

NP . The decimation version of Equation (2.11) and Equation (2.12) become:

XT (pL, f) =

NP /2−1∑
r=−NP /2

a(r)x(pL+ r)e−j2πf(pL+r)Ts (2.17)

and

Sα0
xyT

(pL, f0)∆t =
∑
r

XT (rL, f1)Y
∗
T (rL, f2)gc(pL+ rL) (2.18)

where n = pL and gc is a comb filter with the bandwidth of fs/L Hz in cycle frequency. The

determination of appropriate values for L should consider the cycle leakage and cycle aliasing

alongside the reduced computational complexity. In SSCA, the sampling rate of XT (n, f∗)

cannot be decimated as it should match the sampling rate with y(n). Thus, the determination

of appropriate values for L will be discussed only in the context of the FAM method.

2.2.4 The FFT Accumulation Method

The FAM incorporates similar computationally efficient techniques as those discussed in

Section 2.2.3. Figure 2.4 illustrates the signal flow for the FAM method, where the first task
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is to compute the complex demodulates, XT and YT (in Equation (2.20)), and substituting

y(n) = x(n). Channelization is performed using an NP -point FFT that is applied to the data in

steps of L samples. The outputs of the FFT are then downconverted to the baseband to obtain

decimated complex demodulate sequences. Based on Equation (2.14) and Equation (2.17),

the complex demodulates are computed as follows:

XT (pL, fm) = [

NP /2−1∑
r=−NP /2

a(r)x(pL+ r)e−j2πfmrTs ]e−j2πfmpLTs

= FFTNP
[a(r)x(pL+ r)]e−j2πfmpLTs ,

(2.19)

where the downconversion coefficient is e−j2πfmpLTs used to correct the FFT output to

complex demodulate sequences. The center frequency fm of each complex demodulates

XT (pL, fm) is fm = mfs, in which the m is in the range of [−NP/2, NP/2− 1].

After the complex demodulates of two input signals are computed, conjugate product

sequences XT (pL, f∗)Y
∗
T (pL, f∗) are formed, and a P -point FFT to compute the time-

smoothing (P = N/L). Based on Equation (2.16) and Equation (2.18), the time-smoothed

estimate becomes:

Sα0
xyT

(pL, fkl)∆t =
∑
r

XT (rL, fk)Y
∗
T (rL, fl)gd(p+ r)e−j2πrq/P

= FFTP [XT (rL, fk)Y
∗
T (rL, fl)gd(p+ r)],

(2.20)

where α0 = fk−fl+ q∆α, fkl = (fk+fl)/2, k and l are in the range of [−NP/2, NP/2−1],

and gd(r) = gc(rL). Thus, Equation (2.20) can be efficient evaluated by a P -point FFT.

In FAM, the value of L is crucial, as it has to balance reducing computational complexity

and avoiding severe cycle frequency leakage. Reference [18] recommends L = NP/4.

This recommendation is based on the relationship between the number of P -point FFT

and L, given by P = N/L. A larger L reduces the computational complexity of FAM

significantly. However, to avoid the possibility of severe cycle frequency leakage, the L should

be less than NP/2. Choosing the L = NP/4 has an additional benefit: the downconversion

coefficient simplifies to e−jπmp/2 = {j,−j, 1,−1}, eliminating the need for multiplication in

the downconversion section. The computational complexity of FAM is O(NPP (log2NP +
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FIGURE 2.5. The strip spectral correlation analyzer

NP log2 P )). If minimizing computation time is crucial, L can be increased to NP/2. Further

derivations and implementation details are presented in Section 3.1.

2.2.5 The Strip Spectral Correlation Analyzer

The SSCA is another FFT-based time-smoothing algorithm that computes the correlation

products between spectral and temporal components. Figure 2.5 shows the dataflow of SSCA.

Comparing with the Figure 2.4, the difference between the SSCA and FAM is that instead

of multiplying the complex demodulate XT (n, fk) with Y ∗
T (n, fk), it is multiplied by y∗(n).

The channelizer decimation factor L is set to 1 to match the sampling rate of the two terms.

Thus the complex demodulate is same as Equation (2.14) and the equation of SSCA is

Sα0
xyT

(n, f0)∆t =
∑
r

XT (r, fk)y
∗(r)g(n− r)e−j2πrq/N , (2.21)

where α0 = fk + q∆α and f0 =
fk−q∆α

2
. Equation (2.21) can be efficiently evaluated with an

N -point FFT. The products will lie along the frequency-skewed family of lines α = 2fk − 2f

to result in a strip for each fk. The SSCA provides a highly desirable feature for the estimator

as it allows uniform output in ∆f and ∆t∆f . The computational complexity of SSCA is

O(NNP log2NP + NPN log2N). Additional derivations and a deeper exploration of the

SSCA implementation are provided in Section 4.1.
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2.2.6 Other SCD Estimation Algorithms

In recent years, researchers have developed new approaches for estimating spectral correlation

that build upon conventional SCD algorithms.

Antoni et al. introduced the cyclic modulation spectrum (CMS), which relies on an envelope-

like procedure applied to a discrete short-time Fourier transform (STFT), followed by a

subsequent series of discrete Fourier transform (DFT) operations along the remaining time

axis [7, 13]. The CMS offers advantages such as simplicity, ease of interpretation, and,

importantly, computational efficiency. However, a key limitation of this method is its inability

to detect cycle frequencies beyond the maximum cycle frequency, αmax, relative to the spectral

resolution, ∆f [14].

Another approach is the averaged cyclic periodogram (ACP), which involves calculating a

discrete-time correlation between the signal’s DFT and a version shifted by a specific cycle

frequency (α) [6]. The spectral correlation is computed separately for different segments of

the signal, and the results are averaged to reduce variance. However, compared to the CMS,

the implementation of ACP suffers from a significant loss of computational efficiency as the

input length increases. This inefficiency is primarily due to the large number of complex

multiplications required for the α-shift of the DFT [14].

To address some of these challenges, Antoni et al. proposed the fast spectral correlation

(FSC) algorithm, which is an efficient method for calculating spectral correlation [8]. The

FSC algorithm works by decomposing the products of STFT lines around a specific spectral

frequency to derive the spectral correlation. The method incorporates amplitude and phase

corrections to enhance estimation accuracy. However, its application is restricted due to the

block shift requirement, which confines its use to cases with low cycle frequency ranges.

Additionally, as the cycle frequency range increases, FSC requires high memory which is

unsuitable for platforms with limited memory.
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To offer a more computationally efficient solution, Borghesani and Antoni proposed an

alternative method that approximates the ACP, offering a reduction in computational effort

but at the cost of doubling the memory requirement [14].

Jaafar K. Alsalaet derived a new method, the fast averaged cyclic periodogram (FACP), which

precisely calculates the ACP. It reduces computational cost and overcomes memory limitations

by leveraging the frequency-shifting property of the Fourier transform [1]. Although the

FACP is highly effective in vibration analysis, it requires greater computational complexity

when dealing with large cycle frequencies compared to FAM.

2.3 Quantization Error Analysis

Quantization is the process of mapping a continuous range of values into a finite set of discrete

levels, which occurs because digital systems have limited bit resolution, meaning certain

values cannot be represented precisely and must be approximated by truncating or rounding to

their nearest available unit. The mismatch between the accurate value and its approximate unit

is known as a quantization error. Quantization error analysis is essential before implementing

SCD algorithms in hardware because a tradeoff between resource utilization and estimation

accuracy can be obtained via quantization. By analyzing these errors, we can predict their

impact on system performance, make informed decisions about resource allocation, and aid

in designing the implementation. This analysis is crucial for optimizing the system to achieve

the best possible balance between computational efficiency and accuracy.

2.3.1 Quantization Noise Model

This thesis represents signals as B-bit two’s complement fractions

a = −aB−1 +
B−2∑
i=0

ai2
i−(B−1), (2.22)

where ∀i, ai ∈ {0, 1}, and range a ∈ [−1, 1). In this representation, the most significant bit

determines the sign, and the remaining F = B − 1 bits are used for the fraction.
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FIGURE 2.6. Quantization noise model (x′(n) = x(n) + n)

Oppenheim et al. [54] and Widrow et al. [68] have developed a statistical quantization analysis,

illustrated in Figure 2.6. All operations where a signal x is quantized to x′ by quantizer Q

are modeled by an additive noise source n, which is assumed to be uncorrelated, uniformly

distributed ∈ [−2−F−1, 2−F−1) and with variance σ2 = (2−F )2

12
.

For the analysis in this dissertation, the computations only involve a series of multiplication

and addition operations. Therefore, it is necessary to account for the quantization errors

introduced by these blocks in order to deduce a quantitative analysis for the whole system.

2.3.1.1 Roundoff

For two’s complement fractions, the number of fraction bits for the product result is 2F

which is rounded to F bits to match the wordlength. In this case, the quantization error is
(2−F )2

12
− (2−2F )2

12
and is approximated as

σ2
m =

(2−F )2

12
. (2.23)

Moreover, for the multiplication of two complex values, four real multiplications contribute

to the variance [64, 54]:

σ2
cc = 4σ2

m =
(2−F )2

3
. (2.24)

For a real number multiplied with a complex number, it is

σ2
rc = 2σ2

m =
(2−F )2

6
. (2.25)
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2.3.1.2 Truncation

Quantization errors are also introduced by addition. An F -bit addition, in general, has an

F + 1 bit result with no quantization error. To scale this back to F -bits without overflow

requires a right shift which introduces a noise term with variance [54, 68]

σ2
ad =

(2−F )2

8
. (2.26)

As the addition of two complex numbers computes the real and imaginary components

separately, the variance [54, 68] becomes:

σ2
ac = 2σ2

ad =
(2−F )2

4
. (2.27)

2.3.1.3 Quantization Error for Complex Multiplication

W. Schlecker et al. derive the quantization error for the multiplication result of two quantized

signals (in real number) [60] as

SNR =
σ2
x1σ

2
x2

σ2
x1σ

2
e2 + σ2

x2σ
2
e1 + σ2

e1σ
2
e2 + σ2

eq

(2.28)

where σ2
x, σ2

e , and σ2
eq are the variance of input signal, input error, and the error generated by

multiplication.

2.3.1.4 Quantization Error Analysis for the Fixed-Point Fast Fourier Transform

The FFT [16] employs a butterfly structure and Figure 2.7 illustrates the noise model of the

DIT Radix-2 FFT and the DIF Radix-2 FFT for different quantization scheme [64], where

N is the number of points of the FFT. This involves m = log2N stages. The noise model

introduces round off (σ2
cc) and truncation (σ2

ac) terms to the system. For the kth (1 < k < m)

stage, the input is xk−1 + σ2
k−1 and the output is xk + σ2

k, with [a] and [b] denoting the upper

and lower part of the butterfly structure.
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There are two different schemes for computing the quantization error analysis of FFT al-

gorithm. Scheme 1, similar to the reference [54], introduces the roundoff error after the

multiplication and incorporates an attenuation factor of 1/2 before the addition at each stage

to avoid overflow. Scheme 2 is a variant of Scheme 1, assuming a 1-bit overflow occurs in

each addition operation of the FFT computation.

Radix-2 DIF Scheme 1:

To avoid overflow, an attenuation factor of 1/2 is introduced in each stage. Thus, the variance

of signal and noise have to be multiplied by 1/4 before introducing the truncation noise term.

Therefore, the variance is

σ2
k[a] = (σ2

k−1[a] + σ2
k−1[b])

1

4
+ σ2

ac1 + σ2
cc (2.29a)

σ2
k[b] = (σ2

k−1[a] + σ2
k−1[b])

1

4
+ σ2

ac2 + σ2
cc. (2.29b)

In summary, the quantization noise arising from the FFT operation is modeled as the sum

of the roundoff (σ2
R) and truncation (σ2

T ) components. As N = 2m the variance of those two

noise terms generated from each butterfly and passed to the final stage are

σ2
R = σ2

cc(
N

2
)(

1

N
)(
N

2

1

4m−1
+

N

22
1

4m−2
+ ...+

N

2m
1

4m−m
)

= σ2
cc(1−

1

2m
)

(2.30)

and

σ2
T = σ2

ac(N
1

4m−1
+

N

2

1

4m−2
+ ...+

N

2m−1

1

4m−m
)

= 4σ2
ac(1−

1

2m
).

(2.31)

Thus, the output noise variance is

σ2
E = σ2

T + σ2
R =

4

3
2−2F (1− 1

2m
). (2.32)
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(A) Radix-2 DIF Scheme 1 (B) Radix-2 DIF Scheme 2

(C) Radix-2 DIT Scheme 1 (D) Radix-2 DIT Scheme 2

FIGURE 2.7. Quantization noise model of butterfly structure for different FFT
algorithms and scheme (kth Stage, 1<k<m)

However, when w ∈ {1,−1, j,−j}, the error from multiplication will be zero. Therefore, the

last two stages of DIF do not introduce noise. The variance of those noises is computed as:

σ2
w =

σ2
cc

2
(2
N

2

1

4m−1
+ 22

N

22
1

4m−2
+ ...+ 2m−1 N

2m−1

1

4
+

N

2

N

2m
)

= σ2
cc(

5

6
− 4

3N2
).

(2.33)

After extracting Equation (2.33) from the Equation (2.32), the final expression of FFT quant-

ization noise becomes

σ2
F = σ2

E − σ2
w =

2−2F

3
(
19

6
− 4

N

4

3N2
). (2.34)

Radix-2 DIT Scheme 2:

Similar to the variance in each stage of Radix-2 DIF, the variance of Radix-2 DIT is

σ2
k[a] = (σ2

k−1[a] + σ2
k−1[b] + σ2

cc)
1

4
+ σ2

ac1 (2.35a)

σ2
k[b] = (σ2

k−1[a] + σ2
k−1[b] + σ2

cc)
1

4
+ σ2

ac2. (2.35b)
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The variance of roundoff and truncation generated from each butterfly and passed to the final

stage are

σ2
R = σ2

cc(
N

2
)(

1

N
)(N

1

4m
+

N

2

1

4m−1
+ ...+

N

2m−1

1

4
)

=
1

2
σ2
cc(1−

1

2m
)

(2.36)

and

σ2
T = σ2

ac(
N

2

1

4m−1
+

N

4

1

4m−2
+ ...+

N

2m
1

4m−m
)

= 2σ2
ac(1−

1

2m
).

(2.37)

The output noise variance is

σ2
E = σ2

T + σ2
R =

2

3
2−2F (1− 1

2m
). (2.38)

Remove those noises which are supposed to be zero and the final expression of FFT quantiza-

tion noise variance becomes

σ2
DIT.S2 =

2−2F

3
(2− m+ 1.5

N
). (2.39)

2.4 FFT Algorithms and Architectures

The DFT underpins modern spectral analysis. Its naive evaluation requires O(N2) complex

operations, rendering large transforms prohibitive on resource-constrained platforms. The

FFT, anticipated by Gauss and brought to prominence by Cooley and Tukey in 1965, reduces

this cost to O(N log2N), thereby enabling ubiquitous deployment in audio, image, radar, bio-

medical, industrial monitoring, and, more recently, deep-learning accelerators that implement

large-kernel convolutions in the frequency domain [20, 43, 55].
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2.4.1 Algorithmic Derivatives

Over six decades of research have produced a rich taxonomy of FFT variants, each exploiting

mathematical symmetries or bespoke data layouts to trade arithmetic complexity, memory

traffic, and control overhead for specific application needs [15, 24, 65]:

• Radix-2 FFT. The canonical Cooley–Tukey DIT/DIF factorizations recursively

decompose an N -point DFT into two N/2-point sub-DFTs offering the simplest

control flow and twiddle-factor schedule [65].

• Higher-radix FFTs. Radix-4, -8, and -16 variants further reduce the number of

complex multiplications at the expense of more elaborate butterflies and twiddle

tables, often preferred in vector processors and FPGA pipelines where wide data

paths are inexpensive [65].

• Split-radix FFT. Combining radix-2 and -4 decompositions, the split-radix al-

gorithm attains the lowest known arithmetic count for power-of-two lengths without

incurring irregular memory accesses [67].

• Mixed-radix and prime-factor FFTs. When N contains small co-prime factors,

mixed-radix FFT or Good–Thomas prime-factor algorithms eliminate zero-padding

and facilitate efficient multidimensional factorizations [34, 62, 65]. A more general

approach, known as the common factor map (CFM) decomposition FFT, extends the

mixed-radix methodology by incorporating customizable factor mappings tailored to

arbitrary radix combinations [34]. We utilize and explain the CFM decomposition of

FFT in Section 4.1.3.

• Winograd short-length FFTs. Winograd’s convolution reformulation minimizes

multiplications for very small N and serves as the base-case kernel in many hier-

archical FFT libraries [69].

• Multidimensional FFTs. For images, volumetric data, and MIMO channel estima-

tion, separable row–column strategies or cache-oblivious Morton-order traversals

generalize 1D FFT kernels while preserving locality [65].

• SFFT. For signals that are sparse in the frequency domain, the SFFT uses randomized

sampling, filtering, and hashing to achieve sub-linear complexity, recovering only
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the dominant frequency bins. It is especially useful when only a small number of

significant frequency components need to be recovered [38]. Further details are

provided in Section 5.1.

• Approximate FFT. To reduce power and silicon area, approximate transforms

prune butterflies or substitute exact multipliers with quantized operators, yielding

near-lossless accuracy for edge and low-power DSP nodes [10].

• Streaming FFT. Streaming variants of the FFT support real-time processing of

continuous signals by applying overlap-save or overlap-add techniques. They enable

convolution and spectral estimation in systems with finite memory, such as software-

defined radios and embedded spectrum analyzers [55].

This work begins with the canonical radix-2 Cooley-Tukey FFT in Section 3, establishing a

baseline SCD implementation. Section 4 and 5 then extend the design to a CFM decomposition

FFT and a SFFT, respectively, to address large window sizes. Although these variants yield

significant speed and resource benefits, many other FFT formulations could be leveraged

to meet different application constraints. Investigating such alternatives offers a promising

avenue for future work.

2.4.2 Hardware Realizations

Algorithmic innovations have been mirrored by architecture-aware implementations that

expose algorithmic parallelism while respecting hardware constraints:

• CPUs. FFTW dynamically explores a space of radix, split-radix, and mixed-radix

plans to select the fastest configuration for a given problem size and cache hier-

archy [26]. Although highly portable, its sophisticated planner and runtime twiddle

generation incur non-trivial memory overheads.

• GPUs. Graphics processors offer massive data-parallel throughput ideally matched

to FFT butterflies. NVIDIA’s CUFFT delivers batched, multi-dimensional, and

streamed transforms through hand-tuned CUDA kernels and autoselected decompos-

ition plans, supporting real-time, high-throughput signal workloads [22].
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• FPGAs. Fine-grained parallelism and deep pipelining make FPGAs attractive

for low-latency, energy-efficient FFTs. Available support spans everything from

“push-button” IP blocks to highly specialized research cores. For turnkey integration,

commercial vendor IP such as the Xilinx LogiCORE FFT IP [40] and Intel FFT

IP [21] offer fully parameterizable designs. Open-source and auto-generated options

include Xilinx Vitis DSP Library FFT kernels [2], the OpenCores Versatile FFT [70],

and SPIRAL-generated FFT libraries [23]. Beyond these general-purpose solutions,

there are also other implementations for specific applications like: high-throughput

pipeline architectures [33], million-point FFT [56], SFFT cores[49], approximate

FFT [47], short-time FFT [11], and multidimensional FFT [5].

In summary, the convergence of algorithmic diversity and architecture-specific optimizations

provides a versatile toolkit that can be tuned—from sparse to streaming variants and from

CPU libraries to FPGA IP—for the distinct performance, power, and accuracy envelopes

demanded by contemporary signal-processing systems.

2.5 Summary

This chapter has reviewed the theoretical background and practical implementation of cyc-

lostationary signal processing algorithms, focusing on FAM and SSCA methods. It has also

explored recent developments aimed at reducing computational complexity and memory

usage, discussing both their benefits and limitations.

Additionally, the chapter also reviews the analysis of quantization errors in fixed-precision

data, focusing on roundoff and truncation errors that arise during multiplication and addition,

essential for understanding the tradeoffs involved in implementing these algorithms on digital

platforms. Furthermore, it evaluates the SQNR of the DIT and DIF FFT, which are critical

components of SCD algorithms.



CHAPTER 3

FFT Accumulation Method Implementation on FPGAs

The SCD is an important tool for extracting statistical features from signals, particularly in

the field of communications [31]. By leveraging its integral properties, the SCD enhances

the reliability of information derived from data sets, even in the presence of corrupted

signals. Achieving real-time or near real-time signal processing in communications is crucial,

making the acceleration of SCD essential. In Chapter 2.1, it is evident that extracting

the cyclostationary features requires high computational complexity due to the correlation

between the two spectra. This chapter aims to accelerate one of the methods of SCD, which

is the FAM.

Although the SCD method reveals rich information about cyclostationary processes even

under low signal-to-noise ratio conditions, its high computational complexity makes it dif-

ficult to apply in real-time applications. Thus there has been interest in developing high-

performance implementations of the FAM method to detect and classify cyclostationary

signals on CPUs [61], GPUs [52], and FPGAs [12, 46].

To maximize performance, fixed-point implementations of signal processing techniques

should be considered as they are more computationally efficient than floating-point imple-

mentations and can lead to improved hardware efficiency at the cost of a quantization error.

This chapter analyzes the relationship between wordlength and SQNR in fixed-point imple-

mentations of the SCD function. A canonical SCD estimation algorithm, the FAM using

fixed-point arithmetic is developed. Closed-form expressions for SQNR are derived and

compared at different wordlengths.

29
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An open-source1, scalable high-speed FPGA-based SCD accelerator, utilizing on-chip high-

speed arithmetic primitives present in the DSP and memory blocks is presented. The design

is synthesized from a C description using HLS tools [53], allowing the calculations to be

verified and performance metrics such as speed and performance to be determined. Previous

work in references [59, 52, 18] use floating-point calculations and are unable to achieve the

performance of this proposed design.

The contributions of this chapter are:

• The first analytical SQNR model for fixed-point implementations of the FAM tech-

nique for estimating SCD, enabling aggressive tradeoffs between precision and

area.

• A quantitative comparison of two wordlength assignment strategies, FAM_M1,

which employs a fixed wordlength throughout the data path, and FAM_M2 with

mixed precision.

• A parallel architecture for computing the SCD using fixed-point arithmetic with the

FAM_M1 and FAM_M2 wordlength assignments. The architecture is highly parallel

and allows mixed precisions to be used throughout.

• An HLS implementation of the architecture which, to the best of our knowledge,

achieves the highest reported throughput and power performance for the FAM

technique. It employs our SQNR model to minimize resource requirements through

careful precision optimization and sparse matrix output to minimize accelerator-to-

host bandwidth.

3.1 Background

The section builds upon Section 2.2.4, providing a more detailed description of the FAM.

1https://github.com/Jingyi-li/FAM_Synthesis.git

https://github.com/Jingyi-li/FAM_Synthesis.git
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Alpha
Profile

(A) The SCD function of signal x(n) (B) Sparse SCD with only 0.457% non-zero values

FIGURE 3.1. The SCD function and sparse SCD of OOK signal from Deep-
Sig [39] at SNR = -8 dB

3.1.1 The FAM Technique

Due to the parallel FFT-based computation and regular data access patterns, the FAM

technique is a commonly used estimator for the SCD, particularly for a small number of

cycle frequencies. In Section 2.2.4, the description of the SCD function follows that of

Roberts et al. [59] and Brown et al [18]. The FAM first computes the discrete-time complex

demodulate of a continuous time as Equation (2.19), then we correlate demodulates XT (n, fk)

with YT (n, fl) separated by α0 (fk = f0 + α0/2, fl = f0 − α0/2) over the time window

∆t = NTs using a complex multiplier followed by a low pass filter (LPF) with bandwidth

approximately 1/∆t to achieve the SCD function as Equation (2.20). Figure 3.1 shows an

on-off keying (OOK) modulated in-phase and quadrature (I/Q) signal x(n) with complex

demodulate XT (rL, fm), an estimated SCD function Sα0
xyT

(n, f0)∆t, the alpha profile and the

sparse SCD S
′α0
xyT

(n, f0)∆t.

Using Equation (2.13), the alpha profile reduces the data dimensionality from three to two.

Implementing the method in [52] further compresses storage, retaining only 2N values instead

of 2N ×NP .

The sparse SCD matrix is formed from the full SCD matrix by setting values smaller than a

threshold value (Tred) to zero. It captures the critical information and greatly reduces storage
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requirements compared to the full SCD matrix. The sparse SCD is defined as:

S
′α0
xyT

(n, f0)∆t =

 Sα0
xyT

(n, f0)∆t if (Sα0
xyT

(n, f0)∆t ≥ Tred)

0 otherwise
. (3.1)

3.1.2 FAM Algorithm

Based on Equation (2.19) and Equation (2.20), the FAM algorithm can be implemented in the

following steps.

Step 1 Data collection and in a step of L = NP/4 samples:

The size of input window samples is N + NP , and then convert to a block of P × NP

two-dimensional data in step of L = NP/4 samples (P = N/L = 4N/NP ).

xb(pL, r) = x(pL+ r), r = 0, 1, ..., NP − 1, p = 0, 1, ..., P − 1 (3.2)

Step 2 Compute P NP -point FFTs of each row of xb:

Define a(r) for r = 1, 2, ..., NP to be an NP -point FFT data-tapering window (e.g. rectangular,

Hamming, Chebyshev, Kaiser ...).

xT (p, k) = FFTSNP
{a(r)xb(pL, r)}, k = −NP/2, ..., NP/2− 1 (3.3)

The FFTSNP
is the NP -point FFT operation centered at the frequency k = 0.

Step 3 Downconvert the FFT output to baseband:

XT (p, k) = xT (p, k)e
−jπpk/2 (3.4)

Step 4 Compute the weighted product from Equation (2.20):

Define g(p) for p = 0, 1, ..., P − 1 to be a P -point data-tapering window (e.g. as above but

different shape).

For k1, k2 = −NP/2, ..., NP/2− 1:

Xg(p, k12) = XT (p, k1)X
∗
T (p, k2)g(p) (3.5)
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Step 5 Compute the spectral correlation functions:

For q = −P/2, ..., P/2− 1, k1, k2 = −NP/2, ..., NP/2, n = 1, ..., P and m = 1, ..., (NP )
2

Sx(q, k12) = FFTSP{Xg(n,m)} (3.6)

where FFTSP is the P -point FFT operation.

Step 6 Map Sx(qL, k12) to Sα
x (f):

The mapping is performed using the equations

f =
k1 + k2
2NP

α =
k1 − k2
NP

+
q

PL

where f and α are normalized with respect to fs = 1, which means −0.5 ≤ f ≤ 0.5 and

−1 ≤ α ≤ 1.

3.1.3 FPGA Implementation

FPGA implementation can be designed using very high speed integrated circuit hardware

description language (VHDL), Verilog, and HLS. VHDL and Verilog, which were introduced

in the 1980s, provide register-transfer-level (RTL) abstractions. Electronic design automation

(EDA) tools convert these RTL specifications into a digital circuit model and generate detailed

specifications for the device implementing the digital circuit.

HLS emerged as another step of higher abstraction level, allowing designers to focus on

broader architectural issues instead of individual registers and cycle-to-cycle operations. HLS

supports C/C++ as the input language, making it simpler and more user-friendly with a lower

learning curve. Designers can add specific information to the program using directives (e.g.,

#pragma) to guide the tool in creating the most efficient design. The HLS process then

synthesizes an RTL hardware design that can be further processed through the hardware

design flow.
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FIGURE 3.2. Loop pipeline

There are three main #pragma directives in HLS to enhance implementation efficiency and

throughput: unroll, pipeline, and dataflow.

Parallel: By default, loops in C/C++ are implemented sequentially, meaning the synthesis

tool generates logic for a single iteration, which is executed repeatedly in sequence by the

RTL design. In the Vitis HLS tool, the UNROLL pragma allows for some or all iterations of

loops to be executed in parallel by creating multiple copies of the loop body in the RTL design.

This transformation enables loops to improve data access speed and throughput, effectively

enhancing overall performance. However, this method increases resource utilization, as

multiple hardware copies of the loop body require additional logic and memory, which can

lead to area constraints and power consumption challenges in the FPGA.

Pipeline: In the Vitis HLS tool, designers can implement a function or loop to execute

operations concurrently, reducing the initiation interval (II) using the PIPELINE pragma. As

illustrated in Figure 3.2, assuming each stage requires one cycle to complete, the II of each

loop in the function is initially 3, requiring 8 cycles to perform the last output write for 3

iterations. However, with loop pipelining, only 4 cycles are needed to perform the last write,

saving 4 cycles and enhancing overall efficiency. This optimization, however, comes at the

cost of increased resource utilization, as pipelining requires additional registers, logic, and

potentially larger routing resources to handle concurrent operations effectively.
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FIGURE 3.3. Dataflow pipeline

Dataflow: The DATAFLOW pragma in Vitis HLS is similar to PIPELINE in that it enables

pipelining at the task level, allowing functions and loops to overlap their operations. However,

data dependencies between different tasks can impact the flow, as subsequent functions can

only access arrays that have finished being written or read in the previous task. DATAFLOW

optimization allows operations in a function or loop to start running before the previous

function or loop has completed all operations, effectively enabling concurrent execution

and improving overall throughput. When using the DATAFLOW pragma, careful attention

must be given to synchronization mechanisms to avoid dynamic hazards or unintended stalls,

ensuring efficient and correct execution.

When the DATAFLOW pragma is specified, the HLS tool creates channels like ping pong

RAMs or FIFOs to support dataflow between sequential functions or loops which enables

consumer functions or loops to start before producer functions or loops complete and reduces

latency and improves RTL throughput in task-level.

3.2 FAM Quantization Error Analysis

This section computes the quantization error analysis for the fixed precision FAM algorithm,

referred to as FAM_M1. (The following section covers a mixed precision FAM algorithm,

referred to as FAM_M2.) The tapping-window function a(n) is the Hamming Window [63] in

complex demodulate, the g(n) is a square window in the second FFT and decimation-in-time

Radix-2 FFT in Scheme 2 for both the integration. Figure 3.4 illustrates the signal flow
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FIGURE 3.4. SCD signal flow graph for FAM_M1 (fixed precision)

TABLE 3.1. Summary of gain and quantization error for each block of
FAM_M1 and FAM_M2

Blocks Gain Block Error Output Error Output Signal Integer bits

FAM_M1
FAM_M2

Framing 1 - - Ps 1
Windowing GW = 1

1.592
[17] σ2

w = σ2
rc σ2

N.W = σ2
rc PS.W = Ps

1.592
1

Down Conversion 1 - - - 1

FAM_M1
First FFT GF1 = 1/NP σ2

F1 = σ2
F_M1 σ2

N.F1 = σ2
N.W/NP + σ2

F1 PS.F1 = PS.W/NP 1
Conjugate Multiply GCM σ2

CM = σ2
cc σ2

N.CM PS.CM 1
Second FFT GF2 = 1/P σ2

F2 = σ2
F_M1 σ2

N.F2 = σ2
N.W/P + σ2

F2 PS.F2 = PS.CM/P 1

FAM_M2

First FFT GF1 = NP σ2
F1 = σ2

F_M2 σ2
N.F1 = σ2

N.WNP + σ2
F1 PS.F1 = PS.WNP log2NP + 1

Normalization 1 GNorm1 = q21 σ2
q1 = σ2

rc σ2
N.q1 = σ2

N.F1q
2
1 + σ2

q1 PS.q1 = PS.F1q
2
1 1

Conjugate Multiply GCM σ2
CM = σ2

cc σ2
N.CM PS.CM 2

Normalization 2 GNorm2 = q22 σ2
q2 = σ2

rc σ2
N.q2 = σ2

N.CMq22 + σ2
q2 PS.q2 = PS.CMq22 1

Second FFT GF2 = P σ2
F2 = σ2

F_M2 σ2
N.F2 = σ2

N.q2P + σ2
F2 PS.F2 = PS.q2P log2P + 1

Normalization 3 GNorm3 = q23 σ2
q3 = σ2

rc σ2
N.q3 = σ2

N.F2q
2
3 + σ2

q3 PS.q3 = PS.F2q
2
3 1

diagram for FAM_M1. The gain and variance introduced by each block in Figure 3.4 are

calculated using the equations from the previous subsection and summarized in Table 3.1. In

the figure, the noise introduced in each block is the block error (σ2
∗), the output error (σ2

N.∗) is

the sum of the block error and the output error from previous block multiplied by the gain of

the current block, and the power of the signal passing out of each block is the output signal

(PS.∗) where ∗ refers to a particular block in the signal flow.

Framing + Windowing:

The Framing block rearranges the data sequence x(n) into P segments, becomes xb(pL, r),

defined as x(pL+0 : pL+NP −1) where p = 0, ..., P −1 and r = 0, ..., NP −1. The power

of the input signal is Ps. For the Windowing block, xW = a(r)xb(pL, r) in Equation (3.3)
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shows the multiplication between the inputs and the Hamming Window [63] yielding a

rounding error (σ2
w = σ2

rc). In addition, the power correlation factor of the Hamming Window

is 1.59 (≈ 1/(RMS(HammingWindow))) where RMS is root-mean-square. The signal

power after window section becomes PS.W = Ps/1.59
2 So, there is approximately a 4 dB

(≈ 10log10(1.59
2)) reduction in SQNR after windowing.

The First Fast Fourier Transform:

The DIT FFT blocks are employed to implement Equation (3.3). The noise power is given

by Equation (2.34) where NP is the points of FFT, m1 = log2(NP ) denotes the stages of the

FFT. The gain of this block is 1/NP , meaning that the power of the signal and variance of

the noise from the previous window section passing through the FFT section are attenuated

by this gain. Based on Equation (2.39), the variance of the noise generated from the FFT is

σ2
F1 = σ2

DIT.S2 =
2−2F

3
[2− m1+1.5

N
].

Down Conversion:

To implement the complex demodulate, the FFT output needs to be down-converted. To

control cycle leakage and aliasing, L is set to NP/4 and therefore the phase correction,

e−j2πmpL/NP , can only take the values (j,−j, 1,−1) and does not introduce quantization error

or gain to either signal or noise from previous sections.

Conjugate Multiplication:

The function of this block is to compute a complex dot product in Equation (3.5) and the

underlying computation is to multiply an input with its conjugate. The error analysis assumes

the signals are all independent. Hence, the derivation of signal power after complex conjugate

multiplication based on Equation (2.28) becomes

P 2
S.CM = P 2

s1P
2
s2 (3.7)

and the variance of the output noise becomes

σ2
N.CM = P 2

s1σ
2
s2 + P 2

s2σ
2
s1 + σ2

s1σ
2
s2 + σ2

CM (3.8)
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where σ2
s1 and σ2

s2 denote the input noise sources, Ps1 and Ps2 are the power of two input

signals, and σ2
CM = σ2

cc is the quantization error introduced by the complex multiplication.

We assume those two signals are independent but have the same input signal and noise power

(PS.S = Ps1 = Ps2 and σ2
N.S = σ2

s1 = σ2
s2). Thus, Equation (3.8) can be simplified to

σ2
N.CM = 2P 2

S.Sσ
2
N.S + σ4

N.S + σ2
CM where σ4

N.S is approximated as zero due to its high order.

The power of the output signal, PS.CM , is P 2
S.S .

The Second Fast Fourier Transform:

The second FFT is of size P . Similar to the first FFT, the noise power of the Second FFT

is given by Equation (2.39) where P is FFT size and m2 = log2(P ) is the number of stages.

The gain of this block is 1/P .

3.2.1 SQNR Noise Model for FAM_M1

The FAM_M1 model employs a fixed wordlength for all signals. This is achieved by truncating

multiplications and right-shifting additions so that the result remains in the range [−1, 1).

Combining all the noise terms in Figure 3.4, the output noise variance (σ2) of FAM_M1 can

be reduced to the following form

σ2
FAM_M1 = [(σ2

WGF1 + σ2
F1
)GCM + σ2

CM ]GF2 + σ2
F2

= WW2−2FW +WF12
−2F1 +WCM2−2FCM +WF22

−2F2

=
∑

#∈{W,F1,CM,F2}

W#2
−2F#

(3.9)

where W# and F# are the parameters and the number of fraction bits of each section. The

power of the output signal is

PFAM_M1 = Pi.sGWGF1GCMGF2 (3.10)

where Pi.s is the power of the input signal. The detailed derivation for the FAM_M1 is given

in Appendix A1.1.
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FIGURE 3.5. SQNR performance for the FAM_M1 method at different
wordlengths

FIGURE 3.6. SCD signal flow graph for FAM_M2 (mixed precision)

The SQNR for the FAM_M1 method is

SQNR = 10 log10(
PFAM_M1

σ2
FAM_M1

). (3.11)

Figure 3.5 shows the SQNR analysis using Equation (3.11) for both sine wave and square

wave input using the FAM_M1. A low SQNR results from scaling of each addition operation

through a right shift (division by 2) which is necessary to avoid overflow.
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FIGURE 3.7. Quantization noise model of butterfly structure of Radix-2 DIT
with only the rounding error (kth Stage, 1<k<m)

3.3 Improving FAM SQNR

Since quantization noise is determined by the number of fractional bits, each right shift in the

FAM_M1 model degrades the SQNR. Therefore, we introduce a new FAM_M2 model, which

uses mixed precision to improve the SQNR by increasing the number of bits per addition and

rescaling to avoid overflow [35]. Figure 3.6 describes the signal flow diagram for FAM_M2

which incorporates the normalization blocks, highlighted in red boxes, to restrict values back

to B bits. Consequently, this design is a mixed precision one, and only rounding errors are

introduced. Since overflow cannot occur in either FFT or the conjugate multiplications, the

Framing, Windowing, and Down Conversion blocks remain unchanged from FAM_M1.

The First Fast Fourier Transform + Normalization 1:

Figure 3.7 illustrates the new noise model for DIT Radix-2 FFT, which has only roundoff

noise, accompanied by a normalization to adjust the weight of the signal after the first FFT,

conjugate multiplication and second FFT. The other settings are the same as in FAM_M1.

To compute the new noise model for the FFT, the variance for both the lower and upper parts

of the kth butterfly become

σ2
k[a] = σ2

k[b] = σ2
k−1[a] + σ2

k−1[b] + σ2
cc (3.12)

In the kth stage, NP/2 points are multiplied with twiddle factors, introducing an error that

doubles when passing through each of the m− k + 1 subsequent stages. Thus, the variance
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of output of the FFT can be computed from Equation (3.12) to

σ2
E_M2 = σ2

cc

NP

2

1

NP

(2m + 2m−1 + ...+ 2)

= (2m − 1)σ2
cc.

(3.13)

Removing the quantization error of the twiddle factor ∈ {j,−j, 1,−1} from the Equa-

tion (3.13), the variational expression for the FFT quantization error is

σ2
F_M2 = (

2m

6
− 1)

2−2F

3
. (3.14)

The noise power of the new system is given by Equation (3.14). Because additions in each

FFT stage require an additional integer bit to avoid overflow, the complex output is scaled

via the (real) normalization factor q1 so the real and imaginary parts are ∈ [−1, 1). This

introduces variance σ2
q1.

Conjugate Multiplication + Normalization 2:

The computation part is the same as the previous method. The normalized factor for this part

is q2, which rescales to produce a variance σ2
q2.

The Second Fast Fourier Transform + Normalization 3:

The second FFT is P points to estimate the sum with q3 normalization factor and variance

σ2
q3.

3.3.1 SQNR Noise Model for FAM_M2

Combining all the noise and gain values of Figure 3.6 and using the definitions in Table 3.1,

the output noise variance and power of output signal can be written as

σ2
FAM_M2 = [((((σ2

WGF1 + σ2
F1
)GNorm1 + σ2

q1
)GCM + σ2

CM)GNorm2 + σ2
q2
)GF2

+ σ2
F2
]GNorm3 + σ2

q3

= WW2−2FW +WF12
−2F1 +WCM2−2FCM +WF22

−2F2

=
∑

#∈{W,F1,CM,F2}

W#2
−2F#

(3.15)
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and

PFAM_M2 = Pi.sGWGF1q
2
1GCMq22GF2q

2
3. (3.16)

The detailed derivation for the FAM_M2 is given in Appendix A1.2.

3.4 Implementation

The FAM algorithm can be decomposed into three sections: DEMODULATE, FFT2, and

Sparse SCD. Figure 3.4 indicates the details of the first two parts, and the Sparse SCD

will be presented in Section 3.4.3. This section first shows a naive baseline implementation,

followed by a second design where computational efficiency is maximized through parallelism.

Finally, a technique for I/O bandwidth reduction which improves system-level performance

is described. An HLS-based parallel architecture is designed and integrated into a Zynq

processing system on the Xilinx ZCU111 board, on top of which a Jupyter notebook is

developed to visualize the results.

C/C++-based synthesis via Vivado HLS was chosen in preference to a register transfer

language (RTL) design flow such as VHDL or Verilog because it allows non-FPGA experts to

modify the code, directly supports fixed-point types, and has high design productivity.

The ap_fixed [41] bit-accurate fixed-point library, greatly facilitated the comparison of our

theoretical SQNR models with simulations, and hardware implementations in Verilog could

be generated from the same source code. In this library, a fixed-point data type is represented

using the C++ template ap_[u]fixed<W,I,Q,O,N>, where W is the wordlength in bits,

I the number of integer bits, Q the quantization mode, O the overflow mode and N is the

number of saturation bits in the overflow wrap mode [41].

3.4.1 Baseline Implementation

An implementation based on Figure 3.6 was first developed. The system accepts a window

of input data and calculates all the outputs for each block, and the results are streamed to
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Algorithm 1: Baseline implementation
Input: Stream in.
Output: Stream out.
# pragma HLS DATAFLOW
xin[0 : P − 1, 0 : NP − 1] ← Framing(in.read()) ▷ Framing
xw[0 : P − 1, :] ← xin[0 : P − 1, :] ∗ a[:] ▷ Windowing
xT [0 : P − 1, :] ← NP-dimensional FFT(xw[0 : P − 1, :]) ▷ First FFT
XT [0 : P − 1, :] ← Down Conversion(xT [0 : P − 1, :]) ▷ Down Conversion

for i← 0 to NP − 1 by 1 do ▷ Conjugate Multiplication
for j ← 0 to NP − 1 by 1 do

CM [:, i ∗NP + j] ← XT [:, i] ∗ conj(XT [:, j])
end

end

M [:, 0 : NP ∗NP − 1] ← P-dimensional FFT(CM [:, 0 : NP ∗NP − 1])
▷ Second FFT

Pa[:, :] ← M [P/2 : (3P/4− 1), 0 : NP ∗NP − 1]
Pb[:, :] ← M [P/4 : (P/2− 1), 0 : NP ∗NP − 1]
out.write() ← {Pa, Pb}
return out

subsequent blocks. The parallelism between blocks is achieved via DATAFLOW pragmas in

the HLS description. The pseudocode for the baseline implementation is listed in Algorithm 1.

The blocks operate independently in a pipelined manner, so the throughput is equal to the

throughput of the block with the highest II. The Second FFT part requires O(N2
P ) operations

and hence is the computational bottleneck.

3.4.2 Computation Optimization

To optimize the design we employ spatial parallelism by instantiating DSTRIDE parallel

units for the DEMODULATE computation and FSTRIDE parallel units for FFT2. We note that

DEMODULATE (framing, windowing, NP -point FFT and down-conversion) is computed row-

wise, whereas FFT2 requires column-wise inputs (Algorithm 1). This makes their boundary

a natural place for a pipeline stage.
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Algorithm 2: Merging of Algorithm 1
Input: Stream in.
Output: Stream out.
# pragma HLS DATAFLOW
xb[0 : P − 1, 0 : NP − 1] ← Framing(in.read()) ▷ Framing

for i← 0 to P − 1 by 1 do ▷ DEMODULATE
xw[:] ← xb[i, :] ∗ a[:] ▷ Windowing
xT [:] ← NP-dimensional FFT(xw[:]) ▷ First FFT
XT [i, :] ← Down Conversion(xT [:]) ▷ Down Conversion

end

for i← 0 to NP − 1 by 1 do ▷ FFT2
for j ← 0 to NP − 1 by 1 do

CM [:, i ∗NP + j] ← XT [:, i] ∗ conj(XT [:, j])
M [:] ← P-dimensional FFT(CM [:, i ∗NP + j])
Pa[:] ← M [P/2 : (3P/4− 1)]
Pb[:] ← M [P/4 : (P/2− 1)]
out.write() ← {Pa, Pb}

end
end
return out

Our overall strategy is to create a pipeline where the DEMODULATE and FFT2 stages have a

similar throughput interval. In Algorithm 2, we merge related blocks in the same loop so that

we can circulate arrays with NP items in complex demodulation, or pass arrays with P items

in the second part of the loop. Streams are characterized by reading or writing once in each

loop, and the HLS PARTITION pragma is used to parallelize array accesses.

The pseudocode for computing the DEMODULATE and FFT2 stages is presented as Al-

gorithm 3. Referring to Figure 3.4, the xw, xT , and XT variables represent the output arrays

of windowing, first FFT, and down conversion steps (described in Section 3.2) respectively.

We implement the FFT for the DEMODULATE block using the Xilinx FFT library. The FFT IP

core library computes the unscaled fixed point precision DIT FFT and rounds to the specified

wordlength after the butterfly, which means the rounding error comes from the real and

imaginary part of the complex result.
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FIGURE 3.8. SCD signal flow graph (CM+FFT) based on HLS design with
FSTRIDE=2 (Part 2)

The DEMODULATE computation requires less resources than the following FFT2 part, and

so compile-time parameters are introduced to balance the throughput interval of each stage.

In Algorithm 3, DSTRIDE controls the degree of parallelism. The save_in function is

used for buffering. The final stage of DEMODULATE, array_reorder, is transferring the

matrix from the size of DSTRIDE × (P/DSTRIDE)×NP to NP × P and reordering in

preparation for FFT2.

Figure 3.8 illustrates the dataflow for the FFT2 part of the FAM implementation. The

initial stages prepare data for parallel Conjugate Multiplication + FFT (CMF) units (Fig-

ure 3.9). FSTRIDE determines the degree of parallelism used in the CMF units. A total

of FSTRIDE×CMF units are operated in parallel, with each CMF unit optimized for min-

imal initiation interval. Together this has execution time = N2
P IICMF/FSTRIDE. For

high performance, we wish to have IICMF = 1. This can be achieved under the following

conditions represented in Figure 3.9:

• an array and its conjugate should be passed to the CMF unit each cycle;

• arrays must use PARTITION to read or write values each cycle;

• the inner for loops must be UNROLLed;
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FIGURE 3.9. CMF unit dataflow

• the computation of each stage and the buffers for the result in the P -point FFT must

all be independent;

• the P -point FFT executes all butterflies in parallel.

The FFT2 part of Algorithm 3 shows the pseudocode for Figure 3.8. Before passing the

data to the CMF unit, we split and save the conjugate values into FSTRIDE matrices of size

NP/FSTRIDE × P and PARTITION as dim = 2 (the second dimension is partitioned).

The data is then transferred and run into the FSTRIDE× CMF units synchronously. To accept

the coming data set in the next cycle, the CMF is fully expanded by UNROLL in a for loop to

compute the complex multiplication, and the result is stored in a new CM array. This is then

passed to the P -point FFT, and similarly, after each stage of the FFT, the results are saved

and passed in a new array while all the butterfly functions in the for loop are fully expanded

and computed.

The FFT2 requires a Plog2(P )/2 butterfly operation and, as illustrated in Figure 3.8, requires

one complex multiplication (two real multiplications and four real additions) and two complex

additions (four real additions). In FFT2, executing all butterflies in parallel will cause high

computational complexity. For the twiddle factor whose value is (j,−j, 1,−1), the butterfly

calculation can be done by addition only. Therefore, we replace the first two stages of the

FFT with pure addition, so that the complex multiplication of 2/log2(P ) can be reduced.
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Algorithm 3: Optimization through spatial parallelism
Input: Stream in.
Output: An array of stream Out with a size of FSTRIDE × P/2.
# pragma HLS DATAFLOW

▷ DEMODULATE
xin[:][:, :] ← save_in(in.read())

▷ The size of xin is [DSTRIDE][P/DSTRIDE,NP ]
for i← 0 to P/DSTRIDE − 1 do

for n← 0 to DSTRIDE − 1 do
# pragma HLS UNROLL
Preprocess:
{
# pragma HLS DATAFLOW
xw[n][i, :] ← xin[n][i, :] ∗ a[:]
X[n][i, :] ← NP-dimensional FFT(xw[n][i, :])
Y [n][i, :] ← Down Conversion(X[n][i, :])
}

end
end
XT [:, 0 : P−1] ← array_reorder(Y [0 : DSTRIDE−1][0 : P/DSTRIDE−1, :])

▷ FFT2
for n← 1 to FSTRIDE do

# pragma HLS ARRAY_PARTITION variable = Xn.conj complete dim = 2
Xn.conj[:, :] ← Conjugate(XT [n : FSTRIDE : NP − 1, :])

end
for i← 0 to NP − 1 by 1 do

Xtemp[:] ← XT [i, :]
for j ← 0 to NP − 1 by FSTRIDE do

# pragma HLS PIPELINE = 1
for n← 0 to FSTRIDE − 1 by 1 do

# pragma HLS UNROLL
CMF unit:
{
CM [:] ← Xtemp[:] ∗Xn.conj[j + n, :]
M [:] ← P-dimensional FFT(CM [:])
Pa[:] ← M [P/2 : (3P/4− 1)]
Pb[:] ← M [P/4 : (P/2− 1)]
Out[n ∗ (P/2) : (n+ 1) ∗ (P/2)].write() ← {Pa[:], Pb[:]}
}

end
end

end
return streamOut[0 : FSTRIDE ∗ P/2]
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FIGURE 3.10. The SCD function is reduced either via thresholding or com-
puting the alpha profile.

TABLE 3.2. Parameters chosen for our design. We set L = NP/4 and P =
N/L.

Parameters N NP P L DSTRIDE FSTRIDE
value 2,048 256 32 64 1 or 4 2

3.4.3 I/O Optimization

As illustrated in Figure 3.10, the architecture first computes the entire SCD matrix (dotted

box) using the approach just described. The number of streams between SCD function to

sparse SCD matrix section in Figure 3.10 is FSTRIDE × P/2. The result is a dense matrix,

but this chapter is only interested in entries with high correlation, those values being less than

1% of the complete matrix. The right-hand box illustrates a block to create a sparse SCD

matrix. It thresholds multiple parallel streams and then multiplexes them into a single one.

The bottom box also illustrates the alpha profile, which is not implemented but could be easily

included following the implementing method in [52], which selects, for each α, the maximum

magnitude in the SCD matrix and projects it onto the alpha axis via Equation (2.13) [52,

12, 46]. This collapse reduces the output from 2N × NP samples to 2N , a compression

factor of 1/NP . The downside is that detection performance becomes tied to the chosen NP .

The sparse SCD matrix alternative retains the full plane, dropping only coefficients whose

magnitude is below a custom-set threshold. Therefore, it preserves an additional dimension

of SCD output while avoiding the storage of near-zero values.

Both returning a sparse matrix and generating the alpha profile reduce the amount of data

transferred from the accelerator to the host system. This is fortunate because the SCD matrix
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has dimension 2N × 2NP , e.g., for the example of Figure 3.1(A), the value of NP and N are

set in Table 3.2, the output has 524,288 values. In comparison, the sparse matrix format in

Figure 3.1(B) has only 2,396 values but is able to capture the features of interest.

This implementation of the FAM method just described outputs FSTRIDE × P/2 parallel

streams, each having a width of N2
P/FSTRIDE values. As the number of CMF cells

increases, the number of output streams increases, which requires more I/O transactions.

Algorithm 4 describes how this implementation filters and outputs the target value with

associated position information and eventually merges the multiple data streams into a single

one. After the threshold, a converter function combines the nonzero value and its coordinates

into an INT64 data type which is streamed to the Multiplex function, which combines data

from the parallel streams to produce a stream of outputs that includes value and the label

information (frequency label (flabel) and cycle frequency label (alabel)).

3.4.4 Exploiting Symmetry

The Section 3.1.1 has shown that the representation of the SCD estimation Ŝα
x (f) is a 2-D

feature map with the f and α axes. It is symmetrical in the bi-frequency dimension [30] as

indicated in Equations (3.17) and (3.18).

Ŝα
x (f) = Ŝα

x (−f) (3.17)

Ŝ−α
x (f) = Ŝα

x (f)
∗ (3.18)

Thus, it is sufficient to compute a quarter of the SCD matrix Ŝα
x (f), reducing computation

by 25%. Figure 3.11 shows an example for NP = 256 and N = 2, 048 (the i and j symbols

are from the FFT2 section of Algorithm 3). Note that only Pa and Pb contribute to the

SCD matrix, represented by the light and dark colors of the same color. For each color in

Figure 3.11, different rows of XT are represented, and for the same color from left to right j

1Algorithm 4: for FSTRIDE = 2;
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Algorithm 4: Sparse SCD
▷ Threshold

Input: FSTRIDE array stream In1,...,FSTRIDE , each of size of P/2 and sequence
order countn.

Output: FSTRIDE array stream Out1,...,FSTRIDE .
for j ← 1 to FSTRIDE by 1 do

# pragma HLS UNROLL
for i← 0 to P/2− 1 by 1 do

# pragma HLS UNROLL
if Inj[i] > THRESHOLD then

alabel ← alpha_label(countn)
flabel ← frequency_label(countn)
Outj[i] ← (INT64)pack{Inj[i], alabel, f label}

end
countn = countn+1

end
end
return stream (Out1,...,FSTRIDE[0 : P/2])

▷ Multiplex
Input: FSTRIDE array stream In1,...,FSTRIDE , each of size P/2.
Output: Three streams value, alabel and flabel.
for j ← 1 to FSTRIDE by 1 do

for i← 0 to P/2− 1 by 1 do
{value, alabel, f label} ← unpack(Inj[i])

end
end
return stream (value, alabel, f label)

increases from 1 to NP representing the rows of the conjugate matrix, which are arranged

in the SCD matrix in the staggered order shown in Figure 3.11. Moreover, in Figure 3.11,

the shaded area is the quarter SCD, and it is obtained by changing i ∈ [0 : 1 : NP − 1] to

i ∈ [0 : 1 : NP/2− 1] and j ∈ [0 : 1 : NP − 1] to j ∈ [i : 1 : NP/2− 1− i] in Algorithm 3.

3.4.5 Cycle Count Summary

After applying the optimizations described above, the pipelining scheme for the DEMODULATE

and FFT2 blocks is illustrated in Figure 3.12. Since the FFT2 stage is the computational

bottleneck, we design the II of FFT2 to meet throughput requirements and then ensure the
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FIGURE 3.11. An example of an SCD matrix (symbol i and j are from Al-
gorithm 3 FFT2)

throughput interval of DEMODULATE (IIDEMODULATE) is less than or equal to IIFFT2. We

apply a DATAFLOW pragma so that the II of each block is equal to the maximum throughput

interval over the sub-blocks multiplied by the number of iterations. For the parameters in

Table 3.2, the IIFFT2 of the full and quarter SCD matrix computations are 32,768 and 8,192

respectively. From synthesis reports, the II of save_in, preprocess, and save_out

are 1, 875 and 4. Therefore, the initiation intervals of the sub-blocks of DEMODULATE are

IIsave_in = NP ∗ P = 8, 192, IIPreprocess = max{IIW , IIIP , IIDC} ∗ P/DSTRIDE =

874∗32/DSTRIDE = 27, 968/DSTRIDE, IIsave_out = NP ∗P = 8, 192. Thus to match

IIFFT2, DSTRIDE should be set to 1 and 4 for computing the full and quarter SCD matrix.
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FIGURE 3.12. A cycle-aware system flowchart with pipeline stage details

3.5 Results

The IP blocks for FAM_M1 and FAM_M2 are created separately using the Vivado HLS

2020.1 High-level synthesis tool. Then Vivado 2020.1 was used to generate bitstreams which

were tested on a Xilinx ZCU111 RFSoC board which uses a Zynq UltraScale+ XCZU28DR-

2FFVG1517E device. We verified the accuracy between the computational expressions of

the two methods FAM_M1 and FAM_M2, and the actual operation and compared a range of

information regarding SQNR and resource and energy consumption. Although the ZCU111 is

larger than needed for just the IP blocks, it was chosen so we could accommodate designs with

larger wordlengths and more parallelism. Moreover, future work will integrate the FAM core

with high-speed ADCs and deep learning. The implementation is parameterized, so arbitrary
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FIGURE 3.13. SQNR performance for the FAM method in our models
FAM_M1 and FAM_M2 (theory) at different wordlengths B (F = B − 1)
(Red: Sine Wave; Blue: Square Wave; Green: Deepsig)

values are supplied. In our experiments, FAM parameters matching the literature [12, 52]

were used and these are summarized in Table 3.2. The choice of parallelization parameters is

FSTRIDE = 2 and DSTRIDE = 1 (Full SCD) or DSTRIDE = 4 (Quarter SCD).

3.5.1 SQNR

Bit-accurate simulations were made through a direct implementation of the FAM_M1 and

FAM_M2 algorithms in C. The ap_fixed type in Vivado HLS was used for fixed point

arithmetic. The simulations were compared with the mathematical derivations using sine-

waves, square-waves, and samples from the DeepSig RADIOML 2018.01A dataset [39].

On FPGA devices, wordlengths up to 18 bits are supported by the embedded DSP blocks,

and additional bits can be implemented using the programmable logic, so experiments were

focused around this and higher values.

Figure 3.13 shows the SQNR for different uniform wordlengths for Deepsig, Sine Wave, and

Square Wave signals using the different methods (FAM_M1 and FAM_M2). The FAM_M2

techniques have considerably improved SQNR compared with FAM_M1. For each signal

and method, it can be seen in Figure 3.13 that there is a 6 dB improvement in the SQNR with
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each additional bit because 2−2(F−1) = 4× 2−2F . The traces in Figure 3.13 are input-signal

dependent because Equation (3.10) and Equation (3.16) depend on the input power. Note that

for different input signals, the normalization involves different scale factors, which affects a

direct comparison with FAM_M2.

SQNR vs Number of Bits: One of the benefits of the proposed approach is that it enables the

best bit allocation achieving the highest SQNR to be determined. Noting that Equation (3.9)

and Equation (3.15) are simple sums of products and the SQNR is given by Equation (3.11),

the proposed approach to minimizing this expression results in each block providing an equal

contribution to σ2. Given the W# values, and assigning F bits to the FFT2 stage, we make

each sum term in Equation (3.9) and Equation (3.15) equal via the allocation in Table 3.3.

TABLE 3.3. Reduce wordlength with less impact on SQNR

Methods Window FFT1 CM FFT2

DeepSig FAM_M1 F − 13 F − 8 F − 3 F
FAM_M2 F − 1 F − 1 F F

SineWave
SquareWave

FAM_M1 F − 11 F − 6 F − 2 F
FAM_M2 F − 6 F − 4 F − 1 F

TABLE 3.4. Bit allocation for best SQNR using exhaustive search (Fsum = 72
Signal: DeepSig) vs Uniform

Methods Uniform Window FFT1 CM FFT2 SQNR

FAM_M1 No 11 (24-13) 16 (24-8) 21 (24-3) 24 46.04
Yes 18 18 18 18 15.87

FAM_M2 No 17 (19-2) 17 (19-2) 19 19 84.29
Yes 18 18 18 18 82.85

Table 3.4 illustrates the potential benefits of using a non-uniform wordlength throughout the

computation. This example is run on the Deepsig input, with the optimal bitwidth allocation

computed by an exhaustive search over all of the possible bit allocations, for a fixed number

of total bits Fsum = 72. We can see that using a non-uniform number of bits enables one to

achieve a higher SQNR. Note that exhaustive search results have reached similar bitwidth

configurations to our formulas from Table 3.3; the minor difference being that the formula for

FAM_M2 is not designed for a maximum of Fsum = 72 total bits.
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(A) The comparison of theory and Vivado simu-
lation (B) Absolute error between theory and simulation

FIGURE 3.14. Simulation result in average bits FAM_M2 (Red: Sine Wave;
Blue: Square Wave; Green: Deepsig)

3.5.2 Vivado HLS Simulation

Bit-accurate simulations using Vivado_HLS were used to verify the theoretical results of

Section 3.3. The designs are described in C, compiled, and executed to obtain a bit-exact

result. Since the theory directly calculates SQNR from the SCD parameters, it is orders of

magnitude faster than simulation using HLS.

Figure 3.14(A) shows the average SQNR with non-uniform accuracy for FAM_M2 for

theoretical and HLS simulations with different input signals, where the average number of

bits = (BW + B1 + BCM + B2)/4 (B# ∈ [14, 26] in steps of 4). Figure 3.14(B) shows the

difference between the theoretical and Vivado simulations in Figure 3.14(A). The quantization

error analysis aims to evaluate the general error behavior across different signal precisions. We

assume that errors are introduced after each addition and multiplication operation. However,

for a Sine Wave signal, most of the data, except for the spectral components, approach

zero after the first FFT stage. As a result, the difference between the theory and simulation

is larger than the Square Wave. The result shows the models described in Section 3.2.1

and Section 3.3.1 can serve as an accurate estimate of the lower bound for SQNR. We

further verified the models with other parameter settings (NP , L, and P ) and found similar

correspondence between simulation and theory.
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(A) Different wordlength (B) Different SQNR

FIGURE 3.15. FAM methods for DSP utilization at different conditions

Given that the bit-accurate simulations match the theoretical results, the methodology de-

scribed in Section 3.5.1 can be used to search for non-uniform bits allocation to optimize

performance for a given resource budget.

The Vivado_HLS synthesis reports the LUTs and DSPs utilization for each design. The

DSP48E2 slice contains a 27 bit by 18 bit two’s complement multiplier. In Figure 3.15(A),

the DSPs utilization of FAM_M1 doubles when the wordlength is increased from 19 to 20

bits. This is because in this number system, 1 integer bit is used for the sign and the remaining

18 bits are used as fraction bits. For FAM_M2, as we assume that there are enough integer

bits for the FFT sections and conjugate multiplication, the DSP utilization increases as the

number of bits increases. In Figure 3.15(A), at the same wordlength, FAM_M2 requires more

DSPs than the FAM_M1. Hence in Figure 3.15(B), at the same SQNR, FAM_M2 consumes

fewer DSPs. Furthermore, a non-uniform allocation can be searched based on the area model

to balance DSP usage with the SQNR.

3.5.3 FPGA Implementation

The performance of the design is evaluated by comparing it with the state-of-the-art hybrid

FPGA-GPU implementation [12] and the state-of-the-art GPU implementation [52], both

of which perform alpha-profile calculations in terms of resource utilization, throughput, and



3.5 RESULTS 57

FIGURE 3.16. Verification flow

power consumption. The alpha profile (Figure 3.1(A)) is a one dimensional output, but our

sparse SCD (Figure 3.1(B)), includes the frequency axis and, as explained in Section 3.4.3,

provides richer information.

The verification process is shown in Figure 3.16. Based on the parameter settings in the

previous section, we first apply the baseline implementation of the FAM method, then derive

the FAM_M1 and FAM_M2 methods with the implementation optimization mentioned in Sec-

tion 3.4.2 and Section 3.4.3 in Vivado HLS. Then the SQNR of the full DEMODULATE+FFT2

was checked using a bit-accurate C simulation. Then, we generate an IP block for each of

the two FAM methods with sparse SCD. Bitstreams are then generated in Vivado and tested

via a Jupyter Notebook, which controls the execution of this FAM accelerator on the FPGA

board. The output of the Jupyter Notebook is compared with a floating point. This chapter

chooses 16 and 24 bits as the wordlength for the design to trigger the doubling of the number

of DSPs required for implementation (see Figure 3.15(A)). In terms of implementation, the

data transfer between IP blocks will use AXI, which supports wordlengths in 16 bit multiples.

Table 3.5 gives a comparison of FPGA resource usage and operating frequency between an

FPGA-GPU hybrid design [12], a recent FPGA Verilog design by Li et al. [46], the baseline

implementation, and our optimized implementation. It can be seen that the hybrid FPGA-GPU

design uses very few FPGA resources since the FPGA is responsible for only a small part

of the overall algorithm and it runs at a much lower clock frequency. While Li et al. [46]

achieved a high clock frequency, it has higher resource utilization for the same wordlength.

Even though our baseline implementation achieves a maximum clock frequency of 330 MHz,

its initiation interval is 29 M cycles, so it takes 87.88 ms to process a window. In contrast, our
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FIGURE 3.17. Speedup breakdown for full-size SCD compared to baseline
implementation in cycles. The total speedup is the product of all these optim-
izations.

TABLE 3.5. Comparison of FPGA resource usage and operating frequency

wordlength LUTs FFs BRAMs DSPs Power (W) SQNR (dB) Fmax

Full SCD Hybrid FPGA-GPU design [12] - 69 ( 0.1%) 153 ( 0.1%) 4 ( 2.9%) 0 (0%) - - 140MHz
Avaliable on ZedBoard - 53,200 106,400 140 220 - - -

Full SCD
Baseline implementation 16 bit 38,345 (9.0%) 46,557 (5.5%) 23 (2.1%) 226 (5.3%) 2.912 71.05(70.88) 330MHz
Optimized FAM_M1 16 bit 72,140 (17.0%) 63,699 (7.5%) 161 (14.9%) 736 (17.2%) 6.002 5.41(3.83)1 200MHz
Optimized FAM_M2 16 bit 85,050 (20.0%) 74,722 (8.8%) 162 (15.0%) 934 (21.9%) 6.102 71.05(70.88)1 200MHz

Quarter SCD
Li et al. [46] 16 bit 150,802 (35.5%) 150,824 (17.7%) 264 (24.4%) 1,054 (24.7%) 12.52 - 530MHz
Optimized FAM_M2 16 bit 97,603 (23.0%) 89,477 (10.5%) 177 (16.4%) 1,048 (24.5%) 7.732 71.05(70.88)1 200MHz
Resources on ZCU111 - 425,280 850,560 1,080 4,272 - - -

1 The theory values are in parentheses
2 Total on-chip power estimated by Vivado

optimized design achieves only a clock frequency of 200 MHz, but it takes only 33k clock

cycles and has an execution time of 0.165 ms per window.

The optimization steps described in Section 3.4 include pipelining, parallelism, I/O, and

symmetry. Figure 3.17 shows a bar chart with the performance gain achieved by each

optimization. Since the computational bottleneck is FFT2, we set FSTRIDE to 2, doubling its

performance. Pipelining minimizes the II and achieves a speedup of 14. The I/O optimization

parallelizes this stage with a speedup of 32 (value of P). Therefore the total speedup for the

full-size SCD is the product of all of these factors, 2× 14× 32 = 896. Finally, symmetry as

shown in Figure 3.17 allows this design to avoid computing the full SCD, reducing computing

for the Quarter SCD by a factor of 4, and improving the speedup to 3,584.

The FAM_M2 is also compared with FAM_M1. In Table 3.5, FAM_M2 achieves a higher

SQNR for the same wordlength, but requires more resources. Thus, in Figure 3.18 the

implementation resource utilization is plotted from 14 bits to 26 bits, showing that even

at 24 bits FAM_M1 utilizes more resources than FAM_M2 at 16 bis but still has a lower
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(A) FAM_M1 utilization rate (B) FAM_M2 utilization rate

FIGURE 3.18. Comparison of FPGA resource utilization between FAM_M1
and FAM_M2 (wordlengths from 14 bits to 26 bits)

SQNR (53.32 dB in Figure 3.13), this indicates that the improvement in SQNR for FAM_M2

outweighs the additional resources. We also explored 16 bit, a half-precision floating point

that uses 5 exponent bits and 10 fractional bits. This achieved an SQNR of 60 dB with 4×

higher DSP utilization than the optimized 16 bit FAM_M2.

Referring to the FFT2 block in Figure 3.6, we denote the number of real-valued multiply-

accumulate (MAC) operations required per window for the conjugate multiplication, norm2,

FFT2 and norm3 blocks as OCM , On2, OFFT2, and On3 respectively. Since these components

account for the majority of FAM operations, we estimate the total number of MACs (NMAC)

as (Article 6 of reference [29]):

NMAC ≈ OCM +On2 +OFFT2 +On3 (3.19)

≈ 4N2
PP + 2N2

PP + 2N2
PP log2 P + 2N2

PP. (3.20)

Counting a MAC as 2 operations, number of cycles, Ncycles = N2
P , and clock frequency

fclk = 200MHz, we estimate the numerical performance in billion operations per second to

be

GOPS =
2NMAC × fclk

Ncycles

(3.21)

≈ 460. (3.22)
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TABLE 3.6. Comparison of throughput and power consumption for the same
configuration of FAM

Full SCD1 Full SCD2 Quarter SCD1 Quarter SCD2

GPU [12] GPU [12] FPGA+GPU [12] Optimized GPU [52] FPGA [46] Optimized

Platform Tegra K1 Tesla K20 ZedBoard+Tegra K1 ZCU111 Tesla K40 ZCU111 ZCU111
Initiation Interval (ms) 111.61 8.98 50.95 0.164 0.303 0.065 0.041
Throughput (MS/s) 0.018 0.228 0.040 12.5 6.8 31.5 50
Speedup 1 12.3 2.1 677.6 366.7 1,704.4 2,710
Computational Performance (GOPS) 0.14 1.75 0.30 460 13.0 60.4 460
Power (W) 3.5 51 5 35(6.1)5 55.53 12.54 37(7.7)5

Energy (mJ) 390.64 457.98 254.75 1.006 16.82 0.81 0.326

Signal-to-quantization noise ratio (dB) - - - 737 - - 737

1 Output is the alpha profile.
2 Output is the sparse SCD.
3 Power consumption is estimated by scaling to the result of [12].
4 Power consumption is reported by Vivado report_power [46].
5 The system power of entire ZCU111 board (power consumption is reported by Vivado report_power).
6 Energy is calculated using Vivado report_power value.
7 An example of FAM_M2 using 16 bits. The system supports quantization error analysis for custom wordlengths.

When computing one-quarter of the SCD, the GOPS do not change as Ncycles and NMAC

are both reduced by the same amount. Furthermore, the designs in references [12, 46, 52]

referenced in Table 3.6 calculate the alpha profile by first computing a full-sized or quarter

SCD matrix.

We also measured the CPU performance of the FAM_M2 design using single-precision

floating point arithmetic. The GNU gcc compiler was used with “-Wall –std=c++14 -O3”

parameters which gave the best performance. On an Intel Core i7-9700 operating at 3.00GHz

with 8 cores; Memory: 32 GB; and System: Ubuntu 18.04.5 LTS, a profile confirmed that

93% of the time was spent in FFT2 (15 ms).

Power consumption was measured using an Ecoflow River Pro inverter. The Table 3.6 reports

the system power (power consumption measured at the AC power supply for the ZCU111

transformer) and total FPGA power (dynamic + static) as reported by the Vivado report_power

command in parentheses. Figure 3.19 shows the EcoFlow AC power supply powering the

ZCU111. It is unclear to the authors whether the power consumption figures in reference [12]

refer to system power or dynamic power, and power consumption is not reported in [52].

Li et al. [46] extrapolated Nvidia K40 performance (2,880 CUDA cores, 745 MHz clock) to a

more recent RTX 3080 Ti GPU (8,960 CUDA cores, 1,365 MHz clock) and estimated a po-

tential performance improvement of 5.5x [46]. The HLS design can achieve this performance.



3.5 RESULTS 61

FIGURE 3.19. Measuring the power consumption of the ZCU111 via AC
power supply

TABLE 3.7. Performance of two FAM methods running on FPGAs in 16 bits
for different sizes of SCD matrices

Size of SCD SCD Function Time (ms) Interface Delay (ms) Execution Time (ms) SQNR (dB) Error1

FAM_M2 Full 0.164 0.161 0.266 73.41 2−13.7

Quarter 0.041 0.055 0.088 73.66 2−14

1 The max error compared with floating point.

FIGURE 3.20. Interface delay

However, the RTX 3080 Ti has a maximum power consumption of 350W so we believe this

design will be more energy efficient.

Table 3.7 lists the execution time measured on the ZCU111 FPGA board. The execution

time is the average time over 100 windows of input data and is larger than the FAM time

due to data transfer overheads. Figure 3.20 is a block diagram illustrating the interface delay

of the system. To estimate the SCD function execution time, the threshold and multiplexer

blocks were removed, keeping only the data transfer. In Table 3.7, it can be seen that the

total execution time is close to the sum of SCD time and data transfer delay. The error of
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the sparse SCD output is also calculated, and the maximum error compared to floating-point

results for 16 bit data (15 fraction bits) was 2−13.7 and 2−14 for full-size or quarter-size sparse

SCDs. The sparse SCD matrix was verified with the expected value.

3.6 Summary

The work described in this chapter derives explicit expressions to estimate SQNR for the

FAM technique in fixed precision (FAM_M1) and mixed precision (FAM_M2). This enables

an understanding of how different blocks contribute to overall SQNR, and area-precision

tradeoffs to be navigated in an analytical manner. Based on the quantization error analysis,

the FAM_M2 significantly improves SQNR with a minor increase in DSP resources (16 bit

wordlength) and is hence preferable. The simulations confirm that the analytic result matches

the bit-exact simulation to within 1 dB.

An HLS-based FPGA design is implemented on a Xilinx Zynq UltraScale+ XCZU28DR-

2FFVG1517E RFSoC with the FAM_M1 and FAM_M2 quantization schemes. Using less

than 25% of the available LUT and BRAM resources on the device, it consumes 7.7 W total

on-chip power and has a power efficiency of 12.4 GOPS/W, which is an order of magnitude

improvement over an Nvidia Tesla K40 GPUs implementation [52]. In terms of throughput, it

achieves 50 MS/sec, which is a speedup of 1.6 over a recent optimized FPGAs implementation.

High performance was achieved by exploiting spatial parallelism, pipelining, I/O optimization,

and symmetry. Together, these techniques enable a design with state-of-the-art throughput

and energy consumption.

The quantization error analysis is also significant for SSCA, with the detailed derivation

provided in Appendix A2. Since SSCA is a time-smoothing method as FAM, its implementa-

tion on the same FPGA platform follows a similar approach. Therefore, we prefer to explore

the implementation of SSCA on a different architecture. This work can also be extended to

block floating point and other number systems. It can be integrated with data acquisition and

deep neural networks for prediction in real-time applications.



CHAPTER 4

Versal-Based Implementation of a Strip Spectral Correlation Analyzer

Recall that if the probability distribution of a time series exhibits periodic variations, the

series is considered as cyclostationary [31, 30]. Cyclostationary signals display periodic

statistical properties, which can be characterized using the SCD. The SCD captures the

idealized temporal cross-correlation between all pairs of narrowband spectral components,

providing a comprehensive representation of the signal’s correlation as a function of spectral

and cycle frequency.

Since the 1990s, computationally efficient algorithms for estimating the SCD have been

studied [32, 59, 6]. Building upon the FFT, Roberts et al. introduced the FAM and the

SSCA. The SSCA is widely used due to its computational efficiency and uniform frequency

resolution [59, 8].

This chapter studies the real-time implementation of the SSCA, accelerated by the AIE and

FPGA, on the AMD/Xilinx VCK5000 Gen4x8 QDMA Versal ACAP platform, which is a

highly integrated system-on-chip (SoC) that unifies CPUs, DSPs, I/O, RAM control, and PL

into a single device. The implementation is available as open-source on GitHub 1. The aim is

to optimize performance and resource utilization, enabling efficient cyclostationary analysis

across the entire bifrequency plane. This accelerates signal processing by utilizing the parallel

architecture of the AIE.

The main contributions of this chapter are:

1https://github.com/Jingyi-li/SSCA_Implementation.git
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FIGURE 4.1. The strip spectral correlation analyzer signal flow

• A comprehensive design methodology for implementing the SSCA on the Versal

heterogeneous platform, leveraging AIE acceleration and optimizing communication

between the DDRMC and AIE through the PL for seamless data management.

• The development of a novel SSCA implementation utilizes a decomposed FFT for

the second FFT stage to better accommodate hardware constraints. This approach

adjusts the SSCA structure to minimize intermediate matrix storage by incorporating

a naive decomposed FFT, resulting in a highly efficient processing structure that is

well-suited for large-scale inputs.

• The implementation demonstrates a significant performance improvement, achieving

a 2.36x speedup compared to GPU implementations and a 99.1x speedup compared to

CPU implementations. Additionally, it showcases optimized utilization of the Versal

platform resources, including AIE, PL, and DDR memory, effectively balancing

computational throughput and resource efficiency.

The rest of this chapter is structured as follows: Section 4.1 provides background on the

conventional implementation of SSCA on the VCK5000. Section 4.2 introduces a derivation

of SSCA based on the decomposed FFT. Section 4.3 discusses the floating-point implement-

ation of SSCA with support for large input datasets. Section 4.4 presents the experimental

results, followed by a summary in Section 4.5. This chapter focuses on the floating-point

implementation of SSCA. Thus, the quantization error analysis of fixed-point and mixed-point

precision are covered in Appendix A2.
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4.1 Background

This section expands on the concepts introduced in Section 2.2.5, offering a more compre-

hensive and detailed explanation of the SSCA.

4.1.1 Strip Spectral Correlation Analyzer

The SSCA description and implementation are based on April’s derivation as presented

in reference [9]. As shown in Figure 4.1, the initial step involves computing the complex

demodulate, XT , at frequency f , from the discrete-time input values x(n) ∈ C,

XT (n, f) = [

NP /2−1∑
r=−NP /2

a(r)x(n+ r)e−i2πfrTs ]︸ ︷︷ ︸
NP−point FFT

e−i2πfnTs︸ ︷︷ ︸
down conversion

(4.1)

where n is a sample index, a(r) is a length T = NPTs data tapering window function, Ts is

the sampling period and NP is the number of samples [9].

Next, the complex demodulate XT is multiplied by the conjugate input x∗(n) [19] and

windowed to produce the channel-data product (CDP) for k ∈ [−NP/2, NP/2− 1].

Xg(n+m, k) = XT (n+m, fk)x
∗(n+m)g(m) (4.2)

where the ∗ operator is a complex conjugate, g(m) is a length ∆t = NTs windowing function,

and m ∈ [−N/2, N/2 − 1]. The center frequencies of XT are set to fk = k(fs/NP ) for

fs = 1/Ts.

Finally, the N -point FFT of each of the NP CDP values is computed resulting in the SCD

estimate

Sfk+q∆α
X (

fk
2
− q

∆α

2
)∆t =

N/2−1∑
m=−N/2

Xg(n+m, k)e−i2πqm/N (4.3)
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where cycle frequency α = fk + q∆α, ∆α = fs/N , q ∈ [−N/2, N/2 − 1], and f =

(fk − q∆α)/2 [9, 29]. In the implementation, both f and α are normalized based on fs = 1,

which maps the Sα
X(f) to a range f ∈ [−0.5, 0.5] and α ∈ [−1, 1].

4.1.2 SSCA Implementation

Based on the Equation (4.1) and Equation (4.3), the SSCA algorithm can be implemented in

the following steps.

Step 1 Data collection:

The size of input window samples is N + NP , then converted to a block of N × NP two-

dimensional data.

xb(n, r) = x(n+ r), r = 0, 1, ..., NP − 1, n = 0, 1, ..., N − 1 (4.4)

Step 2 Compute N NP -point FFTs of xb:

The a(r) is the NP -point data-tapering window, same in FAM. The computation is:

xT (n, k) = FFTSNP
{a(r)x(n, r)} (4.5)

where n = 0, 1, ..., N − 1, r = 0, 1, ..., NP − 1, k = −NP/2, ..., NP/2− 1, and FFTSNP
is

the NP -point centered FFT operation.

Step 3 Downconvert the FFT output to baseband:

XT (n, k) = xT (n, k)e
−j2πnk/NP , n = 0, 1, ..., N − 1, k = −NP/2, ..., NP/2− 1 (4.6)

Step 4 Compute the weighted product from Equation (2.21):

Define g(n) for n = 0, 1, ..., N − 1 to be a N -point data-tapering window (e.g. same choice

as FAM). The weight product Xg is computed as:

Xg(n, k) = XT (n, k)x
∗(n+NP/2)g(n) (4.7)

where n = 0, 1, ..., N − 1 and k = −NP/2, ..., NP/2− 1.
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FIGURE 4.2. Computing N -point DFT by M1 and M2-point FFT (N =
M1M2)

Step 5 Compute NP N -point FFTs for spectral correlation function:

The Sx(q, k) can be computed as:

Sx(q, k) = FFTSN{Xg(n, k)} (4.8)

where q = −N/2, ..., N/2− 1, k = −NP/2, ..., NP/2− 1, n = 0, 1, ..., N − 1, and FFTSN

is the N -point centered FFT operation.

Step 6 Map Sx(q, k) to Sα
x (f):

Use the following formulas for mapping:

f =
k

2NP

− q

2N

α =
k

NP

+
q

N

(4.9)

where f and α are normalized with respect to fs = 1, which means −0.5 ≤ f ≤ 0.5 and

−1 ≤ α ≤ 1.

4.1.3 Common Factor Map Decomposition FFT

For very large N -point FFTs, the complete transform can exceed the on-chip memory and

compute resources available. A practical solution is to partition the computation while

remaining mathematically equivalent to the full transform. I. J. Good [34] showed that
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a one-dimensional N -point DFT can be expressed as a multi-dimensional transform with

a common factor mapping. For example, an N -point DFT can be computed as a two-

dimensional DFT. In this case, the spectral computation involves a matrix DFT, where

an N = M1M2-point DFT is computed using M1- and M2-point DFTs with a complex

multiplication stage.

The DFT of the N -point input signal x(n) is given by:

x̂(k) =
1

N

N−1∑
n=0

x(n)e−j2π nk
N , 0 ≤ k ≤ N − 1. (4.10)

The input x(n) can be decomposed into an M1 times M2 matrix as:

x(m1,m2) = x(M2m1 +m2), (4.11)

for 0 ≤ m1 ≤M1 − 1 and 0 ≤ m2 ≤M2 − 1. The output transform sequence is recovered

by the mapping:

x̂(M1m
′
2 +m′

1) = x̂(m′
1,m

′
2), (4.12)

for 0 ≤ m′
1 ≤M1 − 1 and 0 ≤ m′

2 ≤M2 − 1. The N -point DFT from Equation (4.10) can

be computed using an M1M2-point matrix DFT as:

x̂(m′
1,m

′
2) =

M2−1∑
m2=0

M1−1∑
m1=0

x(m1,m2)e
−j2π

(M2m1+m2)(M1m
′
2+m′

1)

M1M2

=

M2−1∑
m2=0

{
M1−1∑
m1=0

x(m1,m2)e
−j2π

m1m
′
1

M1 }︸ ︷︷ ︸
M1−point DFT on m2th column

e
−j2π

m2m
′
1

M2M1︸ ︷︷ ︸
rotate factor

e
−j2π

m2m
′
2

M2

︸ ︷︷ ︸
M2−point DFT on m1th row

(4.13)

Figure 4.2 illustrates the dataflow for computing an N -point DFT using M1- and M2-point

FFTs. The input signal is first reshaped from a N × 1 vector to an M1 ×M2 matrix. This

reshaped matrix is then processed by applying an M1-point FFT to each column, followed by

a complex multiplication with the rotation factor defined in Equation (4.13). The resulting

product is then passed through an M2-point FFT for each row, and finally, the matrix output

is mapped to an N × 1 spectrum output.
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FIGURE 4.3. AMD/Xilinx Versal ACAP Architecture

4.1.4 Versal ACAP Architecture Overview

In this section, we provide a brief introduction to the system architecture of the AMD/Xilinx

Versal ACAP, using the VCK5000 as an example. This is followed by an overview of the

structure of a single AIE and the connections between different components: AIEs↔AIEs,

PL↔AIEs, and DDRMC↔PL, respectively.

Versal ACAP Architecture of VCK5000:

The AMD/Xilinx VCK5000 Versal development card utilizes AMD’s 7nm Versal™ adaptive

SoC architecture, specifically designed for AIE development using Vitis and AI inference

development with partner solutions [66]. This board is equipped with the Versal AI Core

XCVC1902-2MSEVSVA2197 Adaptive SoC (VC1902), which features 400 AIE cores. Each

core consists of VLIW and SIMD vector processors capable of operating at up to 1 GHz [3].

Figure 4.3 presents the overall architecture of the Versal Card, emphasizing the AIE array

on the right [3]. The PL in the VCK5000 can be customized to meet specific application
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FIGURE 4.4. Versal ACAP structure of AIE

requirements, incorporating DSP capabilities for integration. Additionally, the board incor-

porates an ARM-based host for handling general-purpose processing tasks. The AIE cores

are programmable using C/C++, while the host can be programmed in C/C++ or Python. The

PL can be developed with both RTL and C/C++ code utilizing HLS.

All three components, AIE, host, and PL, work independently, interconnected through I/O

peripherals like PCIe and DRAM controllers, into a heterogeneous SoC supported by a

network-on-chip (NoC). The VCK5000 also includes four DDR4 off-chip memory modules,

each providing a peak bandwidth of 25.6 GB/s.

The Architecture of a Single AIE:

Figure 4.4 shows the architecture of a single AIE, a key processing element in the AIE

array of the Versal ACAP. This structure comprises the AIE core, on-chip memory, and

interconnections with other AIEs to support collaborative tasks. Each AIE is a specialized

processor optimized for high-performance parallel computations, which includes a memory

interface, scalar and vector units, two load units, a store unit, and an instruction fetch and

decode unit. The AIE cores employ VLIW instructions, enabling multiple operations to
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execute in parallel within a single clock cycle. The SIMD architecture allows a single

instruction to operate on multiple data elements simultaneously, supporting up to 8, 32, and

128 MAC operations per cycle for FP32, INT16, and INT8 data types, respectively. The two

load units and one store unit access the data memory through the address generation unit

(AGU) with a latency of one cycle.

Each AIE processor has 32KB of local data memory, consisting of eight memory banks,

and can access up to 96KB of neighboring on-chip memory, including the other three ports

simultaneously, without bank conflicts. The AIE can transfer data to adjacent AIEs using

shared memory in a ping-pong buffer scheme. Additionally, the AIE supports a direct stream

interface (cascade stream and AXI stream) for data transfer with other AIEs. Unlike the

on-chip memory access, the cascade connection offers a 384 bit fine-grained streaming

mechanism for transferring data between accumulator registers in neighboring AIEs via

unidirectional connections that alternate in different rows. For non-adjacent AIEs, data

transfer occurs through the AXIS stream network, managed by a switch box with a 32 bit

width per wire, providing two input and two output connections for each AIE.

Data Transmission within the VCK5000:

The AXI4-Stream interfaces are the primary method for data transmission between the

AIE and PL, as well as between the DDRMC and PL. In the VC1902 device, there are 50

columns of AIE array interface tiles, of which only 39 are available to the PL interface via the

programmable logic input/ouputs (PLIOs). This includes six streams from AIE to PL and

eight streams from PL to AIE. On the PL domain, each interface tile has eight 64 bit input

channels and six 64 bit output channels running at the PL clock frequency. To match the

speed of the AIE, the bit width is intended to be increased to 128 bit with the halved number

of channels. On the AIE domain, there are eight 32 bit input channels and six 32 bit output

channels per AIE array interface tile.

The PL can transfer data with the DDRMC through the AXI NoC IP, which supports both

the AXI memory-mapped protocol and the AXI4-Stream protocol. The sp option in the

connectivity section of the system configuration file can be used to specify the connection [4].
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FIGURE 4.5. Reshape Xg from size [N × NP ] to [M1 ×M2 × NP ], where
N = M1M2.

4.2 Method

In this chapter, we design a large-scale SSCA that supports an input size of N = 220, which

corresponds to 1 million points, with NP = 64 channelizers. As described in Section 4.1.2,

given an input size of N and NP channelizers, the intermediate output CDP matrix is [N×NP ].

This matrix is then processed using an N -point FFT for each channelizer to obtain the final

SCD output.

However, the VCK5000 hardware cannot execute the complete 1-million-point FFT on the

AIE in a single pass. Therefore, it is necessary to modify the SSCA structure to ensure

compatibility with the VCK5000’s constraints.

4.2.1 SSCA_2DFFT

The strip spectral correlation analyzer utilizing a decomposition FFT (SSCA_2DFFT) is a

novel structure designed to compute the SSCA using a common factor map decomposition FFT

(2DFFT) while adjusting the CDP computation order to match the required input sequence

for the 2DFFT, as described in Equation (4.13). The implementation eliminates the need for

large intermediate matrices and avoids external memory access. The naive approach replaces

the N -point FFT in each channelizer with the decomposed FFT described in Section 4.1.3.

Figure 4.5 illustrates how to reshape Xg for the decomposed FFT. The NP channelizer

computations are performed simultaneously in Xg and can be executed in parallel with the
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decomposed FFT. Therefore, the NP decomposed FFTs can be treated as a whole, computing

Xg for the decomposed FFT as needed.

The SSCA_2DFFT is processed in two stages. Stage 1 computes M1-point FFTs for each of

the M1 rows of Xg, repeating this process for NP channelizers across all M2 columns. Xg

is computed only once when needed during Stage 1. The results are then multiplied by a

rotation factor and stored. Stage 2 involves computing the M2-point FFT for each row and

channelizer using the values from Stage 1.

To achieve this, Equation (4.1) becomes:

X2D
T (m1,m2, f) = XT (m1M2 +m2, f)

=

 NP /2−1∑
r=−NP /2

a(r)x(m1M2 +m2 + r)e−j2πfrTs


︸ ︷︷ ︸

NP -point FFT

e−j2πf(m1M2+m2)Ts︸ ︷︷ ︸
down conversion

(4.14)

where n is replaced with n = m1M2 +m2, for 0 ≤ m1 ≤ M1 − 1, 0 ≤ m2 ≤ M2 − 1, and

N = M1M2. If M2 is divided by NP , the down conversion can be simplified to e−i2πfm2Ts

for all iterations of m1.

After multiplying with the conjugate input x∗(m1M2 +m2), the CDP can be expressed as:

X2D
g (m1,m2, k) = Xg(m1M2 +m2, k)

= X2D
T (m1,m2, fk)x

∗((m1M2 +m2) +m)g(m),
(4.15)

for k = −NP/2, . . . , NP/2− 1 and fk = k(fs/NP ).

The final SCD can then be estimated by computing the 2DFFT for the NP CDP values as:
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S2D
x (m′

1,m
′
2, k)∆t = Stage 2{Stage 1{X2D

g (m1,m2, k)}}, (4.16)

in which the Stage 1 is

S2D
x.s1(m

′
1,m2, k)∆t =

M1−1∑
m1=0

X2D
g (m1,m2, k)e

−j2π
m1m

′
1

M1︸ ︷︷ ︸
M1-point FFT

e
−j2π

m2m
′
1

M2M1︸ ︷︷ ︸
rotate factor

(4.17)

and the Stage 2 is

S2D
x (m′

1,m
′
2, k)∆t =

M2−1∑
m2=0

S2D
x.s1(m

′
1,m2, k)∆te

−j2π
m2m

′
2

M2︸ ︷︷ ︸
M2-point FFT

, (4.18)

for 0 ≤ m′
1 ≤M1 − 1 and 0 ≤ m′

2 ≤M2 − 1.

Finally, S2D
x (m1,m2, k) is mapped to Sα

x (f) using the following relationships:

f =
k

2NP

− M1m
′
2 +m′

1 −N/2

2N

α =
k

NP

+
M1m

′
2 +m′

1 −N/2

N

where f and α are normalized with respect to fs = 1, resulting in −0.5 ≤ f ≤ 0.5 and

−1 ≤ α ≤ 1.

4.2.2 SSCA_2DFFT Implementation

Based on Section 4.1.2 and Section 4.2.1, the SSCA_2DFFT algorithm can be implemented

through the following steps:

Step 1 Data collection:

The input window samples, of size N +NP , are converted into a 3D matrix with dimensions

M1 ×M2 ×NP , where N = M1M2. M2 is chosen such that it is divisible by NP :

xb(m1,m2, r) = x(m1 ∗M2 +m2 + r), (4.19)
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for r = 0, 1, ..., NP − 1, m1 = 0, 1, ...,M1 − 1 and m2 = 0, 1, ...,M2 − 1.

Step 2 Compute M1 NP -point FFTs for xb(:,m2, :) for each m2:

xT (m1,m2, k) = FFTSNP
{a(r)x(m1,m2, r)} (4.20)

where n = 0, 1, . . . , N − 1, r = 0, 1, . . . , NP − 1, k = −NP/2, . . . , NP/2− 1, and FFTSNP

is the NP -point FFT operation.

Step 3 Downconvert the FFT output to baseband:

XT (m1,m2, k) = xT (m1,m2, k)e
−j2πm2k/NP , (4.21)

where e−j2π(m1∗M2+m2)k/NP is simplified to e−j2πm2k/NP since M2 is divisible by NP , and

k = −NP/2, . . . , NP/2− 1.

Step 4 The weight product Xg is computed as:

Xg(m1,m2, k) = XT (m1,m2, k)x
∗(m2M2 +m2 +NP/2)g(m2M2 +m2). (4.22)

Step 5 Compute NP M1-point FFTs of Xg(:,m2, :) and multiply by rotate factors in Equa-

tion (4.16). For each m2, computes:

Xs1(m1,m2, k) = FFTSM1{Xg(m1,m2, k)} × rotate_factors (4.23)

where FFTSM1 is the M1-point FFT operation.

Step 6 Repeat Step 1 to Step 5 for m2 from 0 to M2 − 1.

Step 7 Compute M1NP M2-point FFTs to obtain the SCD:

Sx(m1,m2, k) = FFTSM2{Xs1(m1,m2, k)} (4.24)

for FFTSM2 is the M2-point FFT operation.

Step 8 Map Sx(m1,m2, k) to Sα
x (f) with a recenter for N ×NP matrix output.
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FIGURE 4.6. Dataflow of SSCA_2DFFT on Versal

4.2.3 Methodology for Estimating AIE Tile Requirements

The VCK5000 platform offers 23.9 MB of on-chip SRAM and four 4 GB off-chip DDR.

Since an intermediate matrix in single-precision complex format requires 8×N ×NP bytes,

off-chip memory is needed if N ×NP > 220.

Each AIE tile features eight single-port data memory banks (32KB total), enough for two-step

1K (1,024-element) single-precision complex computations via a ping-pong buffer. Our

design uses NP channelizers ranging from 25 to 28, and a second FFT window size N from

212 to 220. Because each tile processes a 1K array, the AIE tiles required for computing Xg

(Equation (4.2)) is

ACDP = 1 + ⌈log2(NP )/2⌉, (4.25)

where A denotes the number of AIE tiles. The first tile performs the downconversion and

conjugate multiplication, while the remaining tiles implement the NP -point FFT using a



4.3 IMPLEMENTATION OF THE SSCA ON VERSAL 77

pipelined radix-2 structure. The window function is merged into the first FFT stage. Up to

210/ log2(NP ) windows of CDP can operate in parallel within those ACDP AIE tiles.

For the large-point FFT—the N -point FFT is decomposed into M1 and M2 = N/M1. Thus,

the number of AIE tiles required is:

A2DFFT = ⌈log2(M1)/2⌉+ 1 + ⌈log2(M2)/2⌉, (4.26)

where M1, M2 < 1K. Additionally, one extra tile is allocated for multiplication with

the rotation factor. The design computes 1K/M1 instances of M1-point FFT and 1K/M2

instances of M2-point FFT in parallel.

Thus, the total AIE tiles needed for SSCA_2DFFT is

ASSCA_2DFFT = ACDP + A2DFFT . (4.27)

Replicating ASSCA_2DFFT modules enables further parallelization.

4.3 Implementation of the SSCA on Versal

We designed the implementation for N = 220, NP = 64, and M1 = M2 = 1024. Figure 4.6

illustrates the implementation of a large-size SSCA on the Versal platform (VCK5000). The

Versal PL supports a custom program to manage the input dataflow from the DDRMC to the

AIE, as well as to facilitate data transfer between AIE kernels.

The PL initially passes a group of data to the CDP kernel (CDP), then transposes the output

and sends it to FFTs1 includes the M1-point FFT and complex multiplies with the rotation

factors. The 2DFFT process is designed to first complete all M1-point FFTs for M2 iterations,

followed by the M2-point FFTs (FFTs2) for M1 iterations. Unfortunately, the intermediate

matrix used to store the output of the M1-point FFT is too large to fit within the available PL

memory, requiring storage in the DDR memory.
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Algorithm 5: AIE section pseudocode
Function CDP(datain_even, datain_odd): ▷ Channel Data Product

data_win, data_fft, data_dc, data_out = zeros(M1, 1); ▷ M1 = 16NP

xc = zeros(16, 1);
static int itr = 0;
data_win, xc←Window(chebwin[NP ], datain_even, datain_odd);
data_fft← NP-dimensional FFT(data_win); ▷ Step 2
data_dc← Down_Conversion(data_fft, int(itr/NP )); ▷ Step 3
data_out = data_dc× xc; ▷ Step 4
itr = (itr == (M2 ∗NP ))? 0 : (itr + 1);
return data_out;

Function FFTs1(datain_even, datain_odd, tow): ▷ 2DFFT stage 1
data_fft, data_out, rotate_factor = zeros(M1, 1);
if itr%NP == 0 then

rotate_factor ← Compute_rotate_factor(tow);

data_fft←M1-dimensional FFT(data_even, data_odd); ▷ Step 5
data_out = data_fft× rotate_factor;
itr = (itr == (M2 ∗NP ))? 0 : (itr + 1);
return data_out;

Function FFTs2(datain_even, datain_odd, tow): ▷ 2DFFT stage 2
data_out = zeros(M2, 1);
data_out←M2-dimensional FFT(data_even, data_odd); ▷ Step 7
return data_out;

To address this, the PL writes the output of the FFTs1 operation sequentially to the DDRMC

and later reads it for the FFTs2 operation, applying a stride to achieve the necessary transpose.

The detailed design and implementation are described in this section.

4.3.1 Architecture Design on AIE

In this implementation, with M1 = M2 = 1024, to match the data size between kernels,

the CDP is designed for 1024 input data, which is 16 sets of NP = 64 samples, and the

window index follows the input index requirements of FFTs1, which is controlled in PL. The

algorithm for the portion executed in the AIE is described in Algorithm 5, which follows the

description provided in Section 4.2.2.
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FIGURE 4.7. Ping-pong buffer

FIGURE 4.8. Input buffer for CDP (size of M1 × (NP + 8))

4.3.2 Design Strategies on PL

The PL section manages data transfer between DDRMC and AIE. As illustrated in Figure 4.7,

a ping-pong buffer approach maximizes communication efficiency. While the PL loads

data from DDRMC to Buffer_a_1, the AIE processes the data already stored in Buffer_a_0,

reducing idle time and improving overall efficiency.

Input Buffer for CDP:

The connection between DDRMC and PL uses a 512 bit data bus. Since the input data for AIE

consists of single complex values of 64 bits, the PL loads LANE = 8 consecutive complex

values (512 = 8× 64 bits) into the buffer each cycle. The PL then manages the data transfer

efficiently to ensure continuous and timely delivery to the AIE.

The Figure 4.8 and Algorithm 6 show how PL efficiently loads data sets and passes them to

AIE. The buffer size is M1 × (NP + LANE), thus it supports LANE × NP iterations to

send data to CDP.

Transpose Buffer for AIE and FFTs1:

To match the input requirements of FFTs1, a transpose operation is required for the output

of CDP, where the matrix size is [M1 ×NP ]. Due to the large matrix size, this transposition
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Algorithm 6: Input for CDP
Function LoadA(memin, idx): ▷ Load to buffer

buffA = zeros(M1, NP + LANE);
for i← 0 to M1 − 1 do

for j ← 0 to NP/LANE do ▷ LANE = 512/64
buffA[i, LANEj : LANE(j + 1)− 1] =
memin(j +M1i/LANE + idx);

return buffA;

Function SendA(buffA, data_odd, data_even, idx): ▷ Send to AIE
for i← 0 to LANE − 1 do

for j ← 0 to NP − 1 do
data_even.write(buffA[M1

NP
j : 2 : M1

NP
(j + 1)− 1, i : i+NP − 1]);

data_odd.write(buffA[M1

NP
j + 1 : 2 : M1

NP
(j + 1)− 1, i : i+NP − 1]);

FIGURE 4.9. Transposing the matrix for ping-pong buffer

is performed in the PL. A ping-pong buffer is utilized to balance data loading from CDP and

transferring it to FFTs1, as depicted in Figure 4.9.

Optimizing Transpose Loading from DDR to PL:

The input buffer for FFTs2 needs to be loaded in transpose order, as the data saved from

FFTs1 is stored sequentially. However, accessing data with a stride reduces the access speed

of DDRMC. To mitigate this, the buffer size in PL is increased to accelerate the loading

process. For the matrix size as [M2 × NP ], continuous access for NP data is efficient, but

accessing data with a stride of every M1NP/LANE values takes more cycles to access in

DDRMC. Thus, instead of loading [M2 ×NP ] data to the PL, we load [M2 ×CNP ] for every

C iteration, effectively reducing the access time by a factor of C.
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FIGURE 4.10. Check the accuracy

4.4 Result

In this section, we implement the dataflow illustrated in Figure 4.6 on the VCK5000 board,

with the AIE running at 1 GHz and PL running at 312.5 MHz. We then compare its perform-

ance with the conventional SSCA implementation running on an Intel(R) Xeon(R) Silver

4208 CPU at 2.10 GHz and NVIDIA GeForce RTX 2060 at 1.47 GHz, on Ubuntu 20.04.6

LTS. Additionally, we verify the accuracy of the results against the output of the conventional

SSCA. In the conventional SSCA, N is 1,048,576 and NP is 64. In the SSCA_2DFFT, NP

is the same as the conventional SSCA, which is 64, but the second FFT is replaced from

N -points to N = M1 ×M2, where M1 = M2 = 1, 024.

4.4.1 Accuracy

Accuracy was tested using a DSSS BPSK signal with 10 dB SNR, processing gain of 31, chip

rate 0.25 and sample rate normalized to 1, resulting in cycle frequencies that are multiples

of the data rate (0.25/31). Figure 4.10 illustrates the progress of accuracy checking. To

compare the output of SSCA_2DFFT with conventional SSCA, the system converts the

complex floating-point data into two separate INT32 numbers for the real and imaginary

components, which are then passed to the DDRMC. The system also computes the coefficients

for SSCA_2DFFT, including the initialization of FFT twiddle factors, window coefficients,

2DFFT rotation factors, and exponent coefficients in downconversion using the matched
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FIGURE 4.11. Alpha profile for conventional SSCA and SSCA_2DFFT

TABLE 4.1. Utilization in VCK5000

PL AIE Array
Register LUT LUTasMEM BRAM URAM AIE tile PLIO

Total resources 1,739,432 860,336 446,367 933 463 400 -
SSCA_2DFFT_PL 15,475 (0.89%) 11,824 (1.37%) 1,575 (0.35%) 349 (37.41%) 192 (41.47%) 15 (3.75%) 13

coefficients as the conventional SSCA computation. The average relative error between the

output of the conventional SSCA and SSCA_2DFFT is 1.08e-6. Figure 4.11 shows the alpha

profile of SSCA and SSCA_2DFFT computed based on Equation (2.13) with only half of the

profile plotted due to symmetry.

4.4.2 Utilization

The CDP module includes four AIE cores that compute M1/NP sets of NP data in each

iteration, utilizing a ping-pong buffering scheme to pass data between cores efficiently. In

the FFTs1 and FFTs2 modules, five AIE cores are used to compute the M1-point FFT,

with an additional core in FFTs1 for the computation of rotation factors. Moreover, the

stream connections utilize 20 out of 450 available links, and 13 PLIO connections are used

for interfacing inputs and outputs with the PL.

Table 4.1 shows the utilization of resources in the PL section, indicating a significant con-

sumption of BRAM and URAM, mainly for intermediate ping-pong matrix between the

DDRMC and AIE components.
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FIGURE 4.12. Rooflines of SSCA implementations

TABLE 4.2. Execution time (SSCA with N = 220 and NP = 64)

Execution Time Speedup vs CPU
CPU 11.3 s 1
GPU 269 ms 42
VCK5000 114 ms 99.12

In the SSCA implementation, the CDP module requires 4 AIE tiles that compute M1/NP

sets of NP data in each iteration, and this utilises a ping-pong buffering scheme to exchange

data between tiles. In the FFTs1 and FFTs2 modules, 5 AIE tiles are used to compute the

M1-point FFT, with an additional tile in FFTs1 for the computation of rotation factors. This

totals 15 AIE tiles (Table 4.1), matching Equation (4.27).

4.4.3 Performance

The code running in CPU was compiled using g++ version 9.4.0 with the “-O2” optimization

flag. The GPU code was compiled using nvcc, with the host compiler set to g++. The

compilation targeted CUDA architecture “sm_70”, using C++17 standard with the “-O3”

optimization flag. Additionally, the code linked against the cuFFT library to support efficient

FFT operations [22]. Table 4.2 presents the execution times for the CPU, GPU, and VCK5000
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platforms. The VCK5000 achieved a speedup of 99.12x compared to the CPU and 2.36x

compared to the GPU.

As shown in the roofline plot of Figure 4.12, the SSCA implementation reaches 88.30 GFLOPs,

achieving 37% of its 15-tile peak (240 GFLOPs). The performance of SSCA is constrained

by the bandwidth between PL and DDRMC. In our system, communication with 15 AIE

tiles saturates this available bandwidth. With increased off-chip bandwidth, additional AIE

tiles could be utilised to further enhance performance. On the RTX 3090, the SSCA imple-

mentations is memory-bound, achieving 46.39 GFLOPs, also far below the GPU’s ceiling of

35 TFLOPs.

We measure power consumption on the VCK5000 and GPU using the “xbutil” and “nvidia-

smi” command-line tools, respectively. For SSCA, the VCK5000 consumes 8 W, on top of an

idle power of 23 W. The GPU requires 103 W with an idle of 33 W. Consequently, compared

to GPU, the VCK5000 achieves a 24.5x higher for SSCA.

4.5 Summary

This chapter presents the implementation of SSCA_2DFFT on the Versal ACAP, an efficient

approach that enhances the traditional SSCA architecture. By replacing the second large-point

FFT with a vectorized FFT and restructuring the computation of CDP to accommodate the vec-

torized FFT’s input, the implementation significantly optimizes performance. This approach

removes the need for a large intermediate matrix and avoids accessing the DDR between

the CDP and FFTs1, instead storing the intermediate data directly in the PL. The result is a

99.12x speedup compared to a CPU and a 2.36x improvement over a GPU implementation of

conventional SSCA.



CHAPTER 5

S3CA: A Sparse Strip Spectral Correlation Analyzer

The SCD is widely used to characterize cyclostationary signals, and the SSCA is commonly

used to estimate the SCD. Although the SSCA utilizes the FFT for computational efficiency,

its real-time implementation still poses challenges as large input sizes are often involved.

This chapter presents a S3CA based on the SFFT. The S3CA approach involves computing

a sparse, downsampled CDP, which is then passed to a modified SFFT implementation to

obtain the spectral density.

The SSCA method was considered to be limited to smaller-size signals due to its large memory

requirements [59, 18]. For fine resolution and sufficient integration for the cycle frequency α,

SSCA also requires a large input signal window. Additionally, SSCA focuses on computing

the cycle frequency, which is only a small portion of the total output, leading to inefficiencies

when only the cycle frequency is of interest. There is considerable interest in developing a

novel method capable of scanning the entire frequency/cycle-frequency plane while estimating

the cycle frequency with reduced memory requirements and computational complexity.

Figure 5.1 is a signal flow diagram for the SSCA. In both the channelizer and FFT blocks, the

primary computational complexity involves executing FFTs: NP -point FFTs for the former

and N -point for the latter. In practice, the value of N is commonly set within the range

of 216 to 224. NP represents the number of channelizer bands and is typically chosen from

25 to 29. The cyclic spectrum is sparse in cycle frequency f for all known practical digital

signal types [31]. It is continuous in spectral frequency for each cycle frequency exhibited

by the signal. When the cycle frequencies are unknown in advance of processing, the entire

frequency/cycle-frequency plane must be computed and searched over to find the significant

peaks.

85
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FIGURE 5.1. The strip spectral correlation analyzer signal flow

The SFFT is a recent algorithm designed for efficiently computing a FFT where the frequency

domain is approximately κ-sparse, meaning κ coefficients are non-zero [38, 37]. This chapter

presents the S3CA, which enables fast and accurate estimation of the SCD. The implement-

ation is available as an open-source1. It is particularly useful for real-time applications

involving large signal sizes, as computation and memory requirements are reduced.

The main contributions of this chapter are:

• An algorithm, based on the SFFT, that reduces the computational complexity of the

SSCA from O(NNP (logNP + logN)) to O(NP logNP logN 3
√

Nκ2 logN).

• An additional optimization in which only a subset of channelizer outputs are com-

puted and stored. This reduces space complexity of an intermediate matrix from

O(N ×NP ) to O(logN 3
√

Nκ2 logN ×NP ).

• A comparison of execution time and sparsity between the S3CA and an SSCA using

FFTW version 3.3.10 [27].

The remainder of this chapter is organized as follows. The Section 5.1 provides the background

on the sparse fast Fourier transform. Section 5.2 describes the sparse strip spectral correlation

analyzer. Section 5.3 presents the experimental results, and a summary is drawn in Section 5.4.

1https://github.com/Jingyi-li/S3CA.git

https://github.com/Jingyi-li/S3CA.git
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Frequencies Buckets
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FIGURE 5.2. Bucketization with aliasing filter (σ = 3)

5.1 Background

In this section, we present the fundamental theory of SFFT [36]. Although this technique

could be applied to any of the versions in reference [36], the following description in this

chapter refers to SFFT 2.0.

5.1.1 Sparse Fast Fourier Transform

For an input u ∈ CN , the notation û ∈ CN is used for its FFT. The SFFT û′ is an approx-

imation to û and assumed κ-sparse. Reference [36] proposes a number of different SFFT

algorithms [42].

Almost all sparse Fourier transform algorithms are composed of Frequency Bucketization,

Frequency Estimation, and Collision Resolution steps.

Frequency Bucketization:

Frequency Bucketization hashes the Fourier coefficients of û into a limited number of buckets

and sums the values within each bucket. Since û is assumed to be sparse, only a few buckets

are expected to contain non-zero values, which are of primary interest.

Normally, a filter is chosen to suppress the Fourier coefficients, which hashes the Fourier

coefficients into buckets using a small number of input time samples. As illustrated in

Figure 5.3, the aliasing filter exhibits a spike-train structure with a period of σ, and its

frequency domain characteristics involve the summation of Fourier coefficients that are

equally spaced by N/σ. For example, if b is the subsampled version of u (e.g b(i) = u(i ∗ σ))
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FIGURE 5.3. Filters used for frequency bucketization

where σ is a subsampling factor that divides N , an aliased version of û is computed as:

b̂(i) =
σ−1∑
m=0

û(i+m(N/σ)) (5.1)

In Figure 5.2, after the aliasing filter, the frequencies are equally spaced by an interval

B = N/σ and hash to the same buckets, which can be efficiently computed with a B-point

FFT taking O(Blog(B)) time. However, the aliasing filter is not well-suited for advanced

randomization techniques, and consequently, its effectiveness can only be demonstrated for

average-case input signals rather than for worst-case scenarios. [36]

The ideal filter for Frequency Bucketization should employ only a minimal number of input

time samples to hash the frequency coefficients into their corresponding buckets effectively.

As illustrated in Figure 5.3, both the rectangular and sinc filters are considered ideal within

their respective domains: the rectangular filter in the time domain and the sinc filter in

the frequency domain. However, in the frequency domain, the rectangular filter exhibits

polynomial decay, causing "leakage" of frequency coefficients between buckets, similar to the

leakage observed with the sinc filter in the time domain. Thus, an optimal filter for Frequency

Bucketization would have a profile resembling a rectangular shape in the frequency domain

while still using a minimal number of time samples.

Figure 5.3 also presents a flat window filter, which is constructed by multiplying a Gaussian

function with a sinc function in the time domain. The leakage between buckets for this
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filter is negligible due to the rapid exponential decay of the Gaussian function in both time

and frequency domains. Consequently, the resulting hash function for such a filter can be

expressed as h(f) = ⌈f/(N/B)⌉.

Frequncy Estimation:

The concept of frequency estimation involves determining the position f and corresponding

values û(f) of the non-zero frequency coefficients. Since û is sparse, most buckets likely

contain one non-zero frequency coefficient at most, with only a few containing multiple

non-zero coefficients. The frequency estimation focuses on identifying buckets with a single

non-zero frequency coefficient and then estimating both its value û(f) and its associated

position f . In cases where multiple non-zero coefficients are present in a single bucket,

a collision resolution process is employed to detect and resolve such collisions, which is

described below.

The non-zero frequency coefficient b̂(i) = û(f) can be directly obtained from the bucket’s

value if no collision occurs. However, determining the exact frequency position f is complic-

ated by aliasing, which causes multiple frequencies to map to the same bucket. To address this,

the phase-rotation property of the Fourier transform is used to compute f . As noted in [50],

a time shift τ in the input signal results in a corresponding phase rotation in the frequency

domain, changing the value in the bucket from b̂(i) = û(f) to b̂(τ)(i) = û(f) · e2πjfτ . It is

crucial to keep τ as small as possible to prevent phase wrapping, which occurs when large

values of f cause the phase to wrap around every 2π.

Collision Resolution:

In the process of collision resolution, there are two primary steps: first, detecting whether

a collision has occurred in a bucket, and second, resolving it. This principle also applies

to the phase-rotation property when dealing with multiple values in the same bucket, such

as two frequency collisions in the same bucket, the value is b̂(i) = û(f1) + û(f2). When

a time shift τ is introduced to the input signal, the bucket’s value transforms into b̂(τ)(i) =

û(f1) · ej2πf1τ + û(f2) · ej2πf2τ . As a result, the magnitude of the bucket changes due to the

colliding frequencies rotating by different phases. By examining the change in the magnitude

of the frequency, we can determine whether a collision has occurred.
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Frequencies
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FIGURE 5.4. Collision resolution with co-prime filters

One effective method for resolving collisions is to bucketize the spectrum multiple times

using aliasing filters with co-prime sampling rates. According to the Chinese Remainder

Theorem, these co-prime aliasing filters ensure that any two frequencies that collide in one

bucketization will not collide again in subsequent bucketizations. This approach leverages the

uniqueness of remainders when frequencies are mapped into buckets, allowing for accurate

resolution of collisions across multiple bucketizations.

For instance, as illustrated in Figure 5.4, consider a scenario with three non-zero frequency

coefficients in the frequency domain. With a subsampling factor of four, the blue frequency is

aliased into a separate bucket, while the clay and red frequencies are aliased into the same

bucket, causing a collision. By changing the subsampling factor to three, which is co-prime to

four, the blue and clay frequencies are aliased into the same bucket. Since the blue frequency

was identified in the previous stage, its value can be subtracted from the bucket, isolating the

clay frequency. Through this process, the spectrum can be successfully recovered despite

initial collisions.

5.1.2 SFFT 2.0

The SFFT 2.0 algorithm applies two randomized inner loops to obtain a high probability of

achieving an error bound: 1) Frequency bucketization involves using a random hash function

to hash the κ non-zero Fourier coefficients of û into a small number of buckets, and 2)
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FIGURE 5.5. An example of the SFFT with N = 8, σ = 3, τ = 6, w = 3,
B = 2, and κ = 2. (A) shows the input signal u, N = 8; (B) is the permuted
u (P3,6u); (C) after filtering with G to restrict the time domain length of P3,6u
to 3; (D) subsampled P3,6u to 2 buckets to get v; (E) v̂, the FFT of v; (F) The
2-sparse approximation of û that is bucketized into subfigure (E).

Frequency estimation finds the frequency locations of non-zero Fourier coefficients and their

corresponding magnitudes. Information obtained from the two inner loops is combined in an

outer loop to form the final output.

Figure 5.5(A) to (E) illustrates the steps involved in frequency bucketization (FB). Let B

be the number of buckets and is an integer that divides N ; σ an integer invertible mod N ;

and κ the number of non-zero Fourier coefficients desired in the output. Figure 5.5(B) is

the permuted frequency spectrum, achieved via the time domain permutation operator Pσ,τ ,

τ ∈ [0, N − 1]. If (Pσ,τu)(i) = u((σi+ τ) mod N), then (P̂σ,τu)(σi) = û(i)e−j2πτ [38].

Figure 5.5(C) represents the output of a w-dimensional filter function G, which is restricted

to a subset of the input in both the time and frequency domain. In this work, a Dolph-

Chebyshev function [63] is used, which has little leakage between buckets, and this restricts

the time-domain region of interest to w = O(B log N
δ
) coordinates (δ is the maximum ripple



92 5 S3CA: A SPARSE STRIP SPECTRAL CORRELATION ANALYZER

Algorithm 7: FB pseudocode
Function FB(u, σ, τ, w,B, G,N): ▷ Frequency Bucketization

for i← 0 to w − 1 do
v[i mod B] += u[(i · σ + τ) mod N ] ·G[i];

v̂ ← B-dimensional FFT(v);
return v̂;

in the passband or stopband), and performs bandpass filtering in the frequency domain [38].2

Figure 5.5(D) to (E) shows that the subsampled FFT v̂ = û(iN/B) of an N -dimensional

vector u can be computed via the B-point FFT of v =
∑N/B−1

j=0 u(i + Bj) for i ∈ [0,B −

1] [38].

Algorithm 7 provides the pseudo-code of Frequency Bucketization, which computes the sum

of the frequency coefficients and returns the corresponding values depicted in Figure 5.5(A)

to (E). This process constitutes the core of the location loops and estimation loops. Location

loops involve multiple iterations of FB with randomly chosen values of σ and τ (where σ is

odd and τ ∈ [0, N −1]). For a given value of d in the location loops, only dκN/B coordinates

from the list of candidate coordinates I are retained, which are expected to have a high

probability of being "good". These "good" probability coordinates are those that are likely

to appear in more than one iteration of the location loops. To identify candidate coordinates

with a high likelihood of being among the κ non-zero coordinates, the top dκN/B candidate

coordinates are selected from the set I based on their frequency of appearance across multiple

iterations, as these coordinates have a significant probability of being correct. Estimation

loops use multiple iterations of FB to exactly determine the coefficients ûI for the given set of

coordinates I by reversing the filter applications in FB.

Additional FB loops are applied using the Mansour filter described in [51] to further restrict

the locations of the large coefficients in SFFT 2.0. In this version, SFFT 2.0 employs FB with

a parameter M , where M divides N , and outputs a subset T ⊂ [0 : M − 1] containing the

2κ largest frequency coefficients. It is then assumed that all "large" coefficients j satisfy the

2The support of the G filter, i.e. the coordinates of the non-zero coefficients, is limited to the interval
[−(w − 1)/2, (w − 1)/2], and computations outside of this interval are removed.
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Algorithm 8: Modified SFFT 2.0 pseudocode
Function SFFT_2.0(u, κ,B,L,M,G, d,N,Σ,Υ):

for r ← 0 to L− 1 do ▷ Mansour filter
v̂ ← FB(u, N

M
,Υ(2,r),M,M, ones(M, 1), N);

Tr ← indices of 2κ largest elements of v̂;
▷ Tr ⊂ [0,B− 1]

T ← T0 ∪ · · · ∪ TL−1;
for r ← 0 to L− 1 do ▷ location loop

v̂ ← FB(u,Σ(0,r),Υ(0,r), w,B, G,N);
J ← indices of dκ largest elements of v̂;
Ir ← {i ∈ [0, N − 1] | hσ(i) ∈ J, i mod M ∈ T};

▷ hσ(i) = round(Σ(0,r)iB/N)

I ← I0 ∪ · · · ∪ IL−1;
I ′ ← i values that occur frequently in sets I;
for r ← 0 to L− 1 do ▷ estimation loop

v̂ ← FB(u,Σ(2,r),Υ(2,r), w,B, G,N);
ûr
I′ ← estimate frequency spectrum from v̂, I ′;

û′
i = median({ûr

i | i ∈ I ′});
return û′;

FIGURE 5.6. The naive sparse strip spectral correlation analyzer implementa-
tion replace the N-point FFT with the SFFT.

condition that j mod M in T , which is highly efficient and ensures that there is no leakage

at all.
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FIGURE 5.7. Vector Xg representing the input for an NP -channel SFFT

5.2 S3CA Algorithm

This section presents the S3CA technique. A naive S3CA implementation can be implemented

by simply replacing the NP N -point FFTs with SFFTs in Equation (4.3), with the input to the

kth FFT being the Xg(:, k) vector. This is shown in Figure 5.6 and Figure 5.7, which involves

computing the entire matrix Xg, but most values are not used.

However, as described in the previous section, the FB step within each SFFT only requires

w inputs, based on Pσ,τ , where σ an integer invertible mod N , and τ ∈ [0, N − 1], are both

drawn from a random distribution. In Algorithm 7, the indices of the w inputs form a set

W = {i ∗ σ + τ mod N | i ∈ [0, . . . , w − 1]}. In SFFT 2.0, the Frequency bucketization

and Frequency estimation steps both involve iterations of FB processing. The union of all sets,

W ′
i = W0 ∪W1 ∪ . . . , represents the indices required for the SFFT to compute κ non-zero

frequency coefficients for channelizer i via iterations of FB. The sparse FFT processing of each

channelizer operates independently; however, if σ and τ are randomly selected in FB for NP

channelizers, the indices Xg must prepare are W ′ = W ′
0∪W ′

1∪· · ·∪W ′
NP

. In Figure 5.8, if all

the channelizers choose the random σ and τ for iterations of FB across different channelizers,

the set of indices that Xg needs to prepare is reduced to W ′
0 = W ′

1 = · · · = W ′
NP−1, leading

to a shared and compact set of indices W ′ = W ′
0.
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FIGURE 5.8. Vector Xg(W
′, 1 : NP ) serving as the input for the NP -channels

SFFT with identical parameters applied across all channels

This strategy significantly reduces the input data preparation required by Xg, since values can

be computed and shared across all channelizers simultaneously. To bound the computational

and memory requirments, the maximum size of W ′
i is bounded by |W ′

i | ≤ wL, where L is

the number of FB iterations per channelizer. The total number of unique input indices across

all channelizers satisfies |W ′| ≤ min(wLNP , N).

To achieve this, we describe a procedure COMPIDX, which precomputes a subset of indices

W ′ for the channelizer, and corresponding arrays Σ of σ and Υ of τ for the SFFT. The

channelizer now only computes the outputs XT (W
′, k) instead of XT (n, k), then the CDP,

X ′
g = Xg(W

′, k), using Equation (4.2). All CDP outputs are then used by the subsequent

Np N -point SFFTs. The output of S3CA is a sparse matrix and only returns non-zero values

and corresponding location information. An equivalent approach is using lazy evaluation to

avoid computing unnecessary inputs to the SFFT.

Algorithm 8 shows how we modified FB to use the precomputed σ and τ , with the SFFT

updated to make use of this function. Algorithm 9 gives the pseudocode for COMPIDX

and S3CA. x is the input signal with length of N , and NP is the number of channelizers.

COMPIDX, which is the dashed block in Figure 5.9, randomly selects σ and τ required by
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Algorithm 9: S3CA pseudocode
Procedure COMPIDX(L, w,B, N): ▷ Compute Indices for X ′

g

Υ← zeros(3,L), Σ← zeros(2,L);
for r = 0 to L− 1 do

Υ(2,r) ← uniform(0,B− 1);
Υ(0,r),Υ(1,r) ← uniform(0, N − 1);
Σ(0,r),Σ(1,r) ← 2∗ uniform(0, N/2− 1) + 1;
W r

0 ← {i ∗ Σ(0,r) +Υ(0,r) mod N | i ∈ [0, w − 1]};
W r

1 ← {i ∗ Σ(1,r) +Υ(1,r) mod N | i ∈ [0, w − 1]};
W r

2 ← {i ∗N/B+Υ(2,r) | i ∈ [0,B− 1]};
W ′ ← {W r

j | j ∈ {0, 1, 2}, r ∈ [0,L− 1]};
return W ′,Σ,Υ;

Procedure S3CA(x,N,NP ,L, w,B, N,G):
W ′,Σ,Υ← COMPIDX(L, w,B, N);
X ′

g ← Xg(W
′, k); ▷ Equation (4.2), k ∈ [−NP

2
, NP

2
− 1]

for k = −NP

2
to NP

2
− 1 do

û′
k ← SFFT_2.0(X ′

g, κ,B,L, G, d,N,Σ,Υ);

value, α, f ← map(û′);
return value, α, f ;

our modified FB to compute W for each new input window. It then returns the set W ′ of

all required indices, the array Σ of σ and the array Υ of τ .3 In Figure 5.9, each channelizer

performs an independent N -point FFT. Consequently, in our implementation, in each of the

different FB calls, the same σ and τ values are used for all k and the w inputs are Xg(W,k).

This necessitates a modified SFFT that can accommodate the shared σ and τ .

Table 5.1 compares the computational complexity of SSCA and S3CA. Referring to Figure 5.1

the SSCA channelizer requires a total of N evaluations of Equation (4.2); and the FFT block

NP evaluations of Equation (4.3) (using the FFT). In contrast for the S3CA channelizer, the

required number of Np-point FFT evaluations is equal to the sampling complexity of the

SFFT, NSFFT = O(logN 3
√

Nκ2 logN) [36].

3In Algorithm 8 and 9, we present the loop value L and buckets value B for simplicity; performance can be
improved with different values of L and B for the three for loops in SFFT.
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FIGURE 5.9. The S3CA technique accelerates the SSCA via: (1) the COMP-
IDX block that evaluates a subset of the inputs and (2) replacing the N-point
FFT with the SFFT.

TABLE 5.1. Comparison of computational complexity between SSCA and
S3CA

SSCA S3CA
Channelizer O(NNP logNP ) O(NSFFTNP logNP )
Np× FFT O(NPN logN) O(NPNSFFT )
Sα
X(f) O(NNP (logNP + logN)) O(NSFFTNP logNP )

5.3 Results

We implemented the SSCA and S3CA using the C programming language and the FFTW

library [28]. Experiments were conducted using Ubuntu 20.04.6 LTS on an Intel(R) Xeon(R)

Silver 4208 CPU running at 2.10 GHz with 256 GB of memory. All the code was compiled

using g++ version 9.4.0 with the “-O2” optimization flag, as recommended in Reference [42].

5.3.1 Accuracy

To evaluate the accuracy of our designed S3CA compared to the conventional SSCA, we

choose a simple digital modulation scheme, BPSK, to verify whether S3CA can detect peaks

in the cycle frequency similar to SSCA. Additionally, We use DSSS BPSK to check S3CA’s

ability to identify multiple peaks. The results are presented below.
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FIGURE 5.10. Convertional SSCA, reference and S3CA at four different cycle
frequencies. All three are very similar.

Verification with BPSK Signal:

Figure 5.10 is validated through the use of a noise-free BPSK signal with a symbol rate

of 0.1 and a carrier offset of 0.05. We compare the cycle frequency at 0, 0.1, 0.2, and 0.3

with reference to theoretical expectations. In Figure 5.10, the result of conventional strip

spectral correlation analyzer is denoted as SSCA, and S3CA represents the sparse strip spectral

correlation analyzer. The reference is the theoretical expectations at each cycle frequency.4 In

4Detailed on the cyclostationary.blog (https://cyclostationary.blog/2016/02/24/second-order-estimator-
verification-guide/).
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FIGURE 5.11. SCD estimates and alpha profiles using SSCA (A) and (B), and
S3CA (C) and (D), their residual (E), and L1-norm of the residue for different
κ (F).

the implementation, we set N to 216 and NP to 26 for both SSCA and S3CA, and κ to 40 for

S3CA. The rest of the parameters for S3CA are selected in the same way as in the paper.

For more details, we present the outputs in dB, and the output of S3CA successfully captures

the peaks of the SSCA at each cycle frequency.

SCD Estimation of BPSK Signal:

We compare the SCD estimation of a BPSK signal with a 10 dB SNR and the same symbol

rate and carrier offset as the previous example. We increase N to 220 for both SSCA and

S3CA, and keep NP and κ unchanged. Figure 5.11(A) shows a 3-D plot of the largest κNP

magnitude SSCA outputs, SXSSCA
, with its alpha profile corresponding to the largest alpha

value over all frequencies below. Figure 5.11(B) shows the S3CA output, SXS3CA
, with

sparsity parameter κ = 40, and its alpha profile in Figure 5.11(D). In Figure 5.11(C), the

residual with the average L1-norm of the residue below in Figure 5.11(F).

The symbol rate of 0.1 is easily discernible from the alpha profile presented in Figure 5.11.
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FIGURE 5.12. SCD estimates and alpha profiles using SSCA (A) and (B), and
S3CA (C) and (D), their residual (E), and L1-norm of the residue for different
κ (F).

SCD Estimation of DSSS Signal:

We also test accuracy using a DSSS BPSK signal with 10 dB SNR, processing gain of 31,

chip rate 0.25, and sample rate normalized to 1, in which case the cycle frequencies are

multiples of the data rate (0.25/31). The Figure 5.12 shows the SCD estimates with N = 220

and NP = 26. We configure the remaining parameters of S3CA in accordance with the default

parameters outlined in the SFFT library [38]. Figure 5.12(A) shows a 3-D plot of the largest

κNP magnitude SSCA outputs, SXSSCA
, with its alpha profile corresponding to the largest

alpha value over all frequencies below. Due to symmetry, the non-redundant interval of

normalized cycle frequency, α, is in [0, 1]. To highlight the important details, the display area

of the alpha profile is restricted to [0, 0.25]. Figure 5.12(B) shows the S3CA output, SXS3CA
,

with sparsity parameter κ = 80, and its alpha profile in Figure 5.12(D). In Figure 5.12(C), the

residual, r = SXSSCA
− SXS3CA

, is shown together with the average L1-norm of the residue,∑
i |ri|/(κNP ), below in Figure 5.12(F). Again, good correspondence between the SSCA and

S3CA is observed.
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FIGURE 5.13. (A) Speedup of the naive S3CA and S3CA compared with the
conventional SSCA. (B) Speedup and X ′

g sparsity of S3CA for different values
of κ.

5.3.2 Speedup and Storage Optimization

The baseline in Figure 5.13 is the conventional SSCA. Figure 5.13(A) compares the speedup

achieved by replacing the FFT with SFFT in SSCA, labeled as naive S3CA, and the speedup

obtained by S3CA, for input window sizes from 216 to 224. For an input size of 224, the S3CA

achieves a speedup that surpasses a factor of 90 when κ is 80 and more than 100 when κ

is 50. The naive S3CA achieves a more modest speedup of 2. The baseline runtime on our

test computer is also provided. The sparsity of X ′
g is S = |W ′|/N , where |.| denotes the

number of indices in W ′, hence the storage savings over the full Xg is approximately 1− S.

Figure 5.13(B) shows the speedup and the sparsity ratio of S3CA for different κ. The output

of the SSCA has N ×NP values, whereas the output of S3CA only has κ×NP values.

5.4 Summary

In this chapter, we presented a novel S3CA method that utilizes the SFFT to achieve significant

acceleration over the conventional SSCA, particularly for digital radio signals that are always

sparse in cycle frequency. The speedup achieved was more than 30 for input windows of
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2 million samples and 100 for input windows of 16 million samples. Our S3CA avoids

unnecessary computations and employs a sparse CDP matrix to reduce memory requirements.



CHAPTER 6

Conclusion

This work explored high-speed spectral correlation density estimators for cyclostationary

analysis, focusing on two primary time-smoothing spectral correlation analyzers: the FFT

accumulation method (FAM) and strip spectral correlation analyzer (SSCA). Specifically, this

research addressed the Aims in Section 1.2 as follows:

• Aim 1 by analyzing quantization errors for both FAM (Chapter 3) and SSCA (Ap-

pendix A) techniques.

• Aim 2 was addressed by implementing the FAM on an FPGA ZCU111 platform

(discussed in Chapter 3) and the SSCA on an AMD VCK5000 platform (discussed

in Chapter 4).

• Aim 3 with a new algorithm sparse strip spectral correlation analyzer to enhance

efficiency by targeting non-zero cyclic frequencies (discussed in Chapter 5).

Initially, the quantization error analysis of the FAM was conducted to address the challenges

of hardware implementation using fixed-point precision. The FAM was implemented using

various fixed-point precision levels, and the observed quantization errors closely matched the

computed results. Subsequently, the FAM was implemented on the FPGA ZCU111 platform

using an HLS-based design. The implementation was optimized through several techniques,

including pipelining, parallelism, dataflow, I/O optimization, and symmetry, to accelerate

execution. The quantization error analysis is crucial for understanding the contribution of

fixed-point arithmetic to overall quantization error and optimizing computational complexity

and resource utilization. The study demonstrated that mixed precision and normalization
103
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techniques significantly reduced quantization errors compared to fixed precision alone. Addi-

tionally, this FPGA implementation of FAM achieved the fastest execution time compared to

existing state-of-the-art approaches. The same implementation strategies can be applied to

the SSCA on the same platform to optimize its performance.

Secondly, the implementation of SSCA on the AMD/Xilinx VCK5000 platform highlights

both the potential and the challenges of utilizing high-performance hardware for processing

large datasets. The PL effectively handles critical tasks such as data loading, transposition,

and FFT computation. However, the bandwidth limitation of 25.6 GB/s per DDR4 module,

in stark contrast to the 1 TB/s bandwidth between the PL and AIE, significantly impacts

overall performance. The Versal ACAP architecture excels in supporting repetitive and

highly parallel computations, because AIE for high-frequency operations and VLIM and

SIMD capabilities for efficient parallel processing, addressing the bottlenecks in data transfer

between the DDRMC and PL is essential. Two methods can be employed to address this

issue while avoiding reliance on the DDRMC. The first approach involves using a smaller

input window for SSCA, and the second involves optimizing the computation of a large input

window to reduce intermediate memory requirements.

To address the challenges associated with handling large datasets, the S3CA was developed to

efficiently compute cyclostationary features by targeting non-zero cyclic frequencies. This

approach leveraged the inherent sparsity in practical digital signals, significantly reducing

computational complexity, improving resource utilization, and enhancing I/O performance.

The S3CA demonstrated better performance as the system size increased and sparsity became

more pronounced, achieving speedups of over 30 for 2 million sample windows and over 100

for 16 million sample windows.

Overall, this study has shown that optimizing spectral correlation density estimators for

cyclostationary analysis on hardware platforms can achieve substantial gains in efficiency

and performance, particularly by leveraging sparsity and utilizing advanced optimization

techniques. This thesis significantly advances the real-time implementation of SCD. It

establishes a foundation for future cyclostationary signal analysis applications, such as real-

time automatic modulation classification and RF signal detection.
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6.1 Future Outlook

There are several promising directions for future research in hardware-accelerated cyclosta-

tionary analysis. First, adopting fixed-point precision for SSCA and S3CA could significantly

reduce resource utilization and allow for a thorough quantization error analysis, similar to

what was done for FAM. This would help optimize resource allocation for different stages of

SSCA and S3CA, enabling efficient implementation.

Another potential direction involves implementing real-time S3CA on hardware platforms,

such as AI Engines or FPGAs. Leveraging on-chip memory, including BRAM and URAM,

could mitigate the bandwidth limitations between DDRMC and PL components, leading to

improved performance. Implementing S3CA on hardware would enable real-time processing,

making it more applicable to practical communication systems.

Additionally, a comprehensive performance comparison between the hardware implement-

ations of FAM, SSCA, and S3CA would provide further insights into their strengths and

limitations under various conditions. Such a comparison could help determine the most

suitable approach for specific applications, depending on factors like data size, sparsity, and

resource availability.

Finally, a tool that can automatically generate implementations of these methods with custom-

ized size and precision is worth designing. This generator would provide theoretical reports of

quantization error and resource requirements, allowing users to efficiently evaluate different

configurations before committing to a full hardware synthesis. By enabling early performance

estimates and quantization error analysis, such a generator could significantly reduce the

overall design time, helping to identify the optimal configuration and saving time compared

to lengthy hardware synthesis processes. This approach would facilitate rapid prototyping

and decision-making and balance accuracy, resource usage, and performance easier.



APPENDIX A

Quantization Error Analysis Expression for SCD Function

This appendix gives a derivation of the output noise and signal variance for the FAM and

SSCA method using Fixed Precision (FAM_M1, SSCA_M1) and Mixed Precision (FAM_M2,

SSCA_M2) arithmetic. The definitions of the symbols in the expression are listed in the front

(List of Symbols).

A1 Quantization Error Analysis of FAM

The σ2
FAM is the variance of the output noise of FAM algorithm and PFAM is the variance

(power) of the output signal. In this appendix, the expressions of the output noise variance are

simplified to the format of Equation (3.9).

A1.1 FAM_M1 - Fixed Precision Model

In this section, σ2
W , σ2

F1
, σ2

CM and σ2
F2

are the noise variance generated by the quantization in

windowing, first FFT, conjugate multiplication and second FFT section respectively. Similarly,

GF1 , GCM and GF2 are the gains of each section, used to amplify the noise and signal passed

through. Details of the calculation of those parameters are described in Section 2.3.1 and

Section 3.2.1.
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σ2
FAM_M1 = ((σ2

WGF1 + σ2
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A1.2 FAM_M2 - Mixed Precision Model

Expressions for the output noise and signal variance for the FAM_M2 method are given

below.

σ2
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F1
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2
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3
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FIGURE A.1. SCD signal flow graph for SSCA_M1 (fixed precision) in black
and SSCA_M2 (mixed precision) techniques

A2 Quantization Error Analysis of SSCA

The quantization error analysis for the SSCA method and FAM method differ in that, for

the complex demodulate, the parameter L is set to 1, and instead of multiplying by the

conjugate complex demodulate, it involves the product with the conjugate x(n). Additionally,

quantization errors are introduced during downconversion due to the multiplication with

exponential factors in Equation (4.1). In Figure A.1, σ2
W , σ2

F1
, σ2

DC , σ2
CM and σ2

F2
represent the

noise variance generated by quantization in windowing, first FFT, downconversion, conjugate

multiplication and second FFT, respectively. Similarly, GF1 , GCM , and GF2 represent the

gains of each section, which amplify both noise and signal. The SSCA_M1 and SSCA_M2

utilize similar design methods and symbol definitions as described in Section 3.2.1 and

Section 3.3, respectively, as shown in Figure A.1. A detailed explanation of the symbols used

in the expressions can be found at the beginning of the thesis in the List of Symbols. This

appendix presents the derivation of quantization error analysis for the SSCA method under

different models.
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A2.1 SSCA_M1 - Fixed Precision Model
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A2.2 SSCA_M2 - Mixed Precision Model
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A3 Simulation Result

The simulations were performed by directly implementing the FAM and SSCA algorithms

in C. Fixed-point arithmetic was achieved using the ap_fixe type in Vivado HLS. The

simulation results were compared with our mathematical derivations using Sine Wave, Square
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FIGURE A.2. SQNR performance for the FAM and the SSCA method in our
models (theory) at different precisions B (F = B − 1) (Red: FAM_M1; Blue:
SSCA_M1; Green: FAM_M2; Magenta: SSCA_M2)

Wave, and samples from the DeepSig RADIO ML 2018.01A dataset [39]. On FPGA devices,

the embedded DSP blocks support precision up to 18 bits, with additional bits achievable

through programmable logic, so experiments focused on this range and higher values.

The input size was 2048 points, with the following SCD parameters: NP = 256, L = 64,

P = 32 (for FAM) or N = 2048 (for SSCA).

Figure A.2 shows the SQNR for different uniform bit precisions for the Deepsig, Sine

Wave, and Square Wave signals across the methods discussed. The M2 techniques show a

significant improvement in SQNR compared to M1. Figure A.3(A) presents the average SQNR

for FAM_M2 and SSCA_M2, comparing non-uniform precision results from theoretical

calculations and HLS simulations for different input signals. The average number of bits is

calculated as (BW + B1 + BCM + B2)/4, where B∗ ranges from 14 to 26. Figure A.3(B)

illustrates the difference between the theoretical estimates and Vivado simulation results

shown in Figure A.3(A). The findings indicate that our formulae provide an accurate estimate

of the lower bound for SQNR, with different signals showing similar or higher values. The

rightmost examples, which have positive error values (DeepSigFAM and DeepSigSSCA),

exhibit very small differences (0.3 dB).
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(A) The comparison of theory and Vivado simula-
tion in average bits (Red: DeepSig; Green: Square-
wave; Blue: Sinewave)

(B) Error between theory and simulation in aver-
age bits (Red: DeepSig; Green: Squarewave; Blue:
Sinewave)

FIGURE A.3. Comparison between theoretical calculations and Vivado simu-
lations
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