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Abstract

The prominence of machine learning-powered solutions instituted an unprecedented trend

of integration into virtually all applications with a broad range of deployment constraints

from tiny embedded systems to large-scale warehouse computing machines. Unfortunately,

the existing computer architectures are generally designed and optimized in the absence

of demand for such algorithms. At the same time, these tasks are well known for their

computation complexities and enormous memory requirements. Therefore, rethinking the

current architectures and enhancing them, whether through minor alterations or dramatic

re-designs, is crucial going forward.

Among computing platforms, field-programmable gate arrays (FPGAs) offer an excellent

trade-off between customizability and performance, where the user is in charge of designing

the datapath as well as the software. Because of that, FPGA technology stands on an

advantageous spot in the entire spectrum of solutions, from high-performance application-

specific integrated circuits (ASICs) to general-purpose processors like graphics processing

units (GPUs), which respectively suffer from low adaptation and high energy consumption.

Particularly, this is a key feature for deploying machine learning applications efficiently, as

research points to practical deployments with promising results using optimization techniques

incorporating both hardware and software.

While recent research confirms the advantages of using contemporary FPGAs to deploy or

accelerate machine learning applications, especially where the latency and energy consump-

tion are strictly limited, their pre-machine learning optimized architectures remain a barrier to

the overall efficiency and performance. Realizing this shortcoming, this thesis demonstrates

an architectural study aiming at solutions that enable hidden potentials in the FPGA techno-

logy, primarily for machine learning algorithms. Particularly, it shows how slight alterations

to the state-of-the-art architectures could significantly enhance the FPGAs toward becoming

more machine learning-friendly while maintaining the near-promised performance for the
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rest of the applications. Eventually, it presents a novel systematic approach to deriving new

block architectures guided by implementation constraints and machine learning algorithm

characteristics through benchmarking.

First, through three modifications to Xilinx DSP48E2 blocks, an enhanced digital signal

processing (DSP) block for important computations in embedded deep neural network (DNN)

accelerators, targeting the standard, depth-wise, and point-wise convolutional layers are

described. This includes 1) a flexible precision and run-time decomposable multiplier archi-

tecture for convolutional neural network (CNN) implementations, 2) a significant upgrade to

DSP-DSP interconnect, providing a semi-2D low precision chaining capability that supports

our low-precision multiplier, and 3) an improved data reuse via a register file which can also

be configured as first in first out (FIFO) buffer. Compared with the 27× 18-bit mode in the

Xilinx DSP48E2, this Precision, Interconnect, and Reuse-optimised DSP (PIR-DSP) offers a

6× improvement in multiply-accumulate operations per DSP in the 9× 9-bit case, 12× for

4× 4 bits, and 24× for 2× 2 bits. As estimated, PIR-DSP decreases the run time energy to

31/19/13% of the original value in a 9/4/2-bit MobileNet-v2 DNN implementation.

Then, two tiers of modifications to FPGA logic cell architecture are explained that deliver

a variety of performance and utilization benefits with only minor area overheads. In the first

tier, we augment existing commercial logic cell datapaths with a 6-input XOR gate in order

to improve the expressiveness of each element while maintaining backward compatibility.

This new architecture is vendor-agnostic, and we refer to it as LUXOR. We also consider a

secondary tier of vendor-specific modifications to both Xilinx and Intel FPGAs, which we refer

to as X-LUXOR+ and I-LUXOR+, respectively. As shown, compressor tree synthesis using

generalised parallel counters (GPCs) is further improved with the proposed modifications.

Using both the Intel adaptive logic module and the Xilinx slice at the 65nm technology node

for a comparative study, it is shown that the silicon area overhead is less than 0.5% for LUXOR

and 5–6% for LUXOR+, while the delay increments are 1–6% and 3–9% respectively. As

demonstrated, LUXOR can deliver an average reduction of 13–19% in logic utilization on

micro-benchmarks from a variety of domains. Binarised neural network (BNN) benchmarks

benefit the most with an average reduction of 37–47% in logic utilization, which is due to
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the highly-efficient mapping of the XnorPopcount operation on our proposed LUXOR+ logic

cells.

Eventually, with the goal of exploring this new design space in a methodical manner, a

problem formulation involving computing nested loops over multiply-accumulate (MAC)

operations is first proposed, which covers many basic linear algebra primitives and standard

DNN kernels. A quantitative methodology for deriving efficient coarse-grained compute block

architectures from benchmarks is then proposed together with a family of new embedded

blocks, called MLBlocks. An MLBlock instance includes several multiply-accumulate units

connected via flexible routings, where each configuration performs a few parallel dot-products

in a systolic array fashion. This architecture is parameterized with support for different

data movements, reuse and precisions, utilizing a columnar arrangement that is compatible

with existing FPGA architectures. On synthetic benchmarks, MLBlock offers 6× improved

performance for 8-bit arithmetic over the commercial Xilinx DSP48E2 architecture with

smaller area and delay; and for time-multiplexed 16-bit arithmetic, achieves 2× higher

performance per area with the same area and frequency.

In summary, this thesis raises the shortcomings of the contemporary FPGA architectures

for the deployment of machine learning algorithms while keeping the focus on embedded

system applications. As a result of three research studies, first, it suggests enhanced DSP

blocks and logic cells using minor alterations to the commercial and available FPGA archi-

tecture. Then, it presents a methodological approach to automate the architectural search

for an embedded block for a given benchmark; in our case, state-of-the-art embedded ma-

chine learning models. These solutions show promising speed-ups for machine learning

algorithms while maintaining the performance for other applications. These design techniques

and outcomes are an important step in moving toward efficient computer architectures for

practical deployments of machine intelligence in embedded systems in various industries, e.g.

transportation, communication, security and surveillance, aerospace, and health.
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CHAPTER 1

Introduction

1.1 Motivation and Aims

Machine learning algorithms are designed to leverage data to tackle complex problems by

automatic pattern discovery. Although these techniques were introduced decades ago, the

improvements in computing power and access to publicly available large datasets enabled

them as practical solutions. This led to an enormous interest in taking advantage of their

precise detections in a wide variety of applications. Examples include self-driving vehicles [4],

healthcare [5, 6], finance [7], scientific discovery [8], sport [9], cyber-security [10], and many

other use cases [11].

The effectiveness of machine learning algorithms in learning difficult tasks is primarily

because of their flexible mathematical model and large number of parameters. Unfortunately,

the same features that make these algorithms accurate also make them expensive to implement.

The underlying computer hardware that implements the model plays a significant role in

execution efficiency, and usually mandates software-hardware co-design to find a good

solution. This is crucial in embedded systems, where the design space is strongly influenced by

1) strict memory, energy and compute resource constraints and 2) high execution expectations.

To meet high performance goals, it is necessary to utilise hardware acceleration.

Among high-performance hardware implementation technologies, graphics processing unit

(GPU) and application-specific integrated circuit (ASIC)-based accelerators are common

but suffer respectively from high power consumption and flexibility. In contrast, field-

programmable gate arrays (FPGAs) offer a middle ground with excellent power consumption
1
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and reconfigurability, where the user can co-design the data path and acceleration algorithm

in an accelerator. Modifying the computing model opens the door for application-specific

optimizations. Research has shown promising optimization techniques, such as quantiza-

tion [11, 12, 13, 14, 15, 16, 17, 18, 19, 20], optimized-kernels [21, 22, 23, 24, 25, 26, 27],

customized data-flow [28, 29, 30, 31, 32], data pruning and compression [33, 34, 35, 36,

37, 38], approximate computing [18, 39, 40], etc, enabling practical deployment of complex

models. This benefit can only be realized if the hardware can be adapted to the alternative

computing model. FPGA customizability aligns such characteristics.

The underlying goal of FPGA architecture research is to devise flexible substrates that

implement a wide variety of circuits efficiently. FPGA architectural explorations begin

with specifying a set of target applications. During the 2000s, when the FPGA architecture

research was maturing, high-precision digital signal processing circuits in networking, signal

and image processing applications dominated the demand. Consequently, the commercial

FPGA architectures became optimized for high-precision arithmetic. They have evolved to

comprise both fine and coarse-grained reconfigurable blocks arranged in a columnar fashion.

The most basic units are logic elements (LEs) which are built from look-up tables (LUTs) and

additional logic such as adders and flip-flops. For higher area efficiency and speed, commonly-

used circuits such as memories, digital signal processing (DSP) blocks and microprocessors

are implemented as coarse-grained embedded blocks (EBs). A flexible interconnection

network is used to connect LEs and EBs to Input/Output (IO) blocks which include general

IO, memory interfaces, and transceiver blocks. Together these form a programmable system

on a chip that can implement arbitrary circuits with high performance.

During the last decade, the FPGA architectures have not dramatically changed. The improve-

ments mostly focused on component enhancements while keeping backward compatibility

rather than fundamental changes. For instance, DSP blocks improved to support even higher

precision arithmetic and wider logic operations [41]. LE structures moved toward including

more registers and higher interconnection flexibility [42]. Memory blocks got denser while
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offering various cascading and pipeline stages. More efficient routing fabric and embed-

ding dedicated hardened circuits for performance-sensitive tasks, such as high throughput

communication IP cores and central processing units (CPUs), were other architectural trends.

The demand for the deployment of embedded machine learning applications begs us to revisit

the FPGA architectures by including such algorithms in benchmarks. Such applications are

dominated by multiply-accumulate (MAC) operations which currently could be mapped to

DSPs and LEs [43]. However, DSP blocks are heavily underutilized for low-precision deep

neural networks (DNNs), while LE-based implementations are not the most efficient way

to use resources. This thesis argues for different approaches to address these inefficiencies.

In particular, firstly, a series of modifications to the DSP blocks to provide much better

performance for deploying embedded deep learning models while maintaining backward

compatibility with reasonable overheads is suggested. Next, it proposes two tiers of alteration

to the LE blocks to improve the implementation cost and performance for compressor tree

circuits. Finally, a new coarse-grained EB to (fully or partially) replace the DSP blocks,

shifting the architecture to be more machine learning algorithm friendly is proposed.

1.1.1 High-precision DSP Blocks

Machine learning algorithms are predominantly based on MAC operations. FPGA archi-

tectures accommodate such circuits by utilizing two types of resources, DSP blocks and

configurable logic elements (CLBs). However, the efficiency of such resource mappings

highly depends on arithmetic precision. Due to the historical focus on accelerating high-

precision computations, in current FPGA architectures, embedded DSP blocks that harden

MAC operations are optimised for high precision. Although different FPGA vendors offer

precision customization, due to the associated overheads, this flexibility is limited.

Meanwhile, optimising quantization techniques, the practical arithmetic precision, especially

for embedded machine learning applications, has shifted to 8-bits and below [11, 12]. This

precision range is not compatible with high-precision DSPs. For instance, while the Xilinx

(now part of AMD) DSP48E2 is capable of executing a 27×18 multiply and 48-bit accumulate
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operation, for the low precision case, it only delivers two 8 × 8 multiplies (with shared

multiplicand) with 24-bit accumulation. This is roughly a third of its potential since a

27× 18-bit multiplier occupies the area of roughly six 9× 9-bit ones [44]. As a result, even

in a state-of-the-art accelerator, DSPs impose a performance limit [45]. The Intel FPGA

architecture has similar limitations.

1.1.2 Inefficiencies in Logic Elements

CLBs may be a better match for implementing low-precision arithmetic compared with

high-precision DSPs. This is especially true where multiple operations can be fused and

implemented in a single merged circuit. This makes them a preferred FPGA resource for

implementing low-precision MAC operations for compact dot-product blocks. The design

of such circuits (also known as "parallel computer arithmetic circuits") is a well-established

field of research dating back to the works of Wallace [46], Dadda [47], Swartzlander [48],

Verma [49], and others. In the context of FPGAs, there has always been interest in specialized

arithmetic primitives, particularly those which improve performance over a wide range of

application domains. One such primitive, generalised parallel counters (GPCs), enables

fast accumulation of compressor trees. However, modern FPGA LUT based architectures

are not particularly efficient for the implementation of compressor trees [50]. Due to the

significance of resource efficiency in embedded machine learning applications, such circuits

could dramatically enhance the overall performance.

1.2 Contributions

This thesis argues the necessity of re-thinking FPGA architectures, based on the observation

that current designs are heavily optimized for high-precision digital signal processing applica-

tions. Most existing architectures were developed during the time before machine learning

algorithms were included in the design goal benchmarks. A particular focus is placed on

the embedded applications where many promising optimization techniques, such as quant-

ization, kernel customization, etc., offer a significant improvement in implementation costs
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and performance, but their implementations are not a good match to the underlying FPGA

hardware. In particular, a focus is placed on the main logic implementation blocks, namely

DSP blocks and LEs. A number of contributions in the form of architectural modifications

and block design techniques are presented. The contributions are described in detail below.

PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Net-

works: Three modifications to Xilinx DSP48E2 DSP blocks (as a case study) are suggested

to boost the computations in embedded DNN accelerators while maintaining backward com-

patibility with reasonable overheads. First, a flexible precision, run-time decomposable

multiplier architecture is presented. Second, a significant upgrade to DSP-DSP interconnect,

providing a semi-2D low-precision chaining capability is suggested. Finally, we improve data

reuse via a register file which can also be configured as first in first out (FIFO). Applying the

aforementioned techniques, a Precision, Interconnect, and Reuse-optimised DSP architecture

is presented, called PIR-DSP.

LUXOR: An FPGA Logic Cell Architecture for Efficient Compressor Tree Implement-

ations: We propose two tiers of modifications to the logic cells to deliver a variety of

performance and utilization benefits. In the first tier, augmenting existing commercial logic

cell datapaths (vendor-agnostic) with a 6-input XOR gate in order to improve the expressive-

ness of each element, while maintaining backward compatibility is proposed. A secondary

tier of vendor-specific modifications to two commercial FPGA logic cell architectures are

also given which demonstrates that compressor tree synthesis using GPCs is further improved

with the proposed modifications.

MLBlocks: Rethinking Embedded Blocks for Machine Learning Applications: explores

the design space for an embedded block in a methodical manner. Thus, instead of altering the

contemporary designs, it first proposes a problem formulation involving computing nested

loops over MAC operations, which covers many basic linear algebra primitives and standard

DNN kernels. A quantitative methodology for deriving efficient coarse-grained compute block

architectures from benchmarks is then proposed together with a family of new embedded

blocks, called MLBlocks.
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1.3 Thesis Structure

The main contributions of this thesis have been previously published in the following refer-

ences:

• Chapter 3: [1] SeyedRamin Rasoulinezhad, Hao Zhou, Lingli Wang, and Philip

H. W. Leong, "PIR-DSP: An FPGA DSP Block Architecture for Multi-precision

Deep Neural Networks", 27th IEEE Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2019.

• Chapter 4: [2] SeyedRamin Rasoulinezhad, Siddhartha and, Hao Zhou, Lingli Wang,

David Boland, and Philip H. W. Leong,"LUXOR: An FPGA Logic Cell Archi-

tecture for Efficient Compressor Tree Implementations", The 2020 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, 2020.

• Chapter 5: [3] Seyedramin Rasoulinezhad, Esther Roorda, Steve Wilton, Philip H.

W. Leong, David Boland, "Rethinking Embedded Blocks for Machine Learning

Applications", ACM Transaction Reconfigurable Technology Systems, 2022.

This thesis presents the contributions of the abovementioned publications, each as a chapter.

In addition, it takes the opportunity to present the suggested architectures as a series of

research outcomes, starting by enhancing the current architectures (DSP and LE blocks) while

keeping the backward compatibility. Then, it puts aside the backward compatibility and

proposes a new methodology to automate the FPGA EB designing process with regard to a

given benchmark, covering machine learning algorithms.

An overview of the technical details of chapters is encapsulated by Figure 1.1, where the

structure for each chapter is given below:

• Chapter 2 provides background on 1) machine learning algorithms: DNNs and

hardware-software co-design optimizations, 2) hardware accelerator platforms, 3)

FPGA technology and contemporary architectures, and 4) compressor trees, parallel

counters, and compressor circuits.
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FIGURE 1.1. An overview of the presented chapters

• Chapter 3 suggests three modifications to FPGA DSP blocks (using Xilinx DSP48E2

DSP blocks as the case study), to boost the computations in embedded DNN acceler-

ators while maintain backward compatibility with reasonable overheads. Applying

the aforementioned techniques, a Precision, Interconnect, and Reuse-optimised DSP

architecture is presented called PIR-DSP.

• Chapter 4 it proposes two tiers of modifications to the current FPGA logic cells to

deliver a variety of performance and utilization benefits. It starts by augmenting

existing commercial logic cell datapaths with a 6-input XOR gate (vendor-agnostic)

in order to improve the expressiveness of each element, while maintaining back-

ward compatibility. Then, a secondary tier of vendor-specific modifications to two

commercial FPGA logic cell architectures is suggested.

• Chapter 5 explores the design space for an embedded block in a methodical manner.

This is in contrast to altering the contemporary designs while guaranteeing backward

compatibility and sacrificing the performance (like the presented works in Chapters 3

and 4). This Chapter first proposes a problem formulation involving computing

nested loops over MAC operations, which covers many basic linear algebra primitives
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and standard DNN kernels. A quantitative methodology for deriving efficient coarse-

grained compute block architectures from benchmarks is then proposed together

with a family of new embedded blocks, called MLBlocks.

• Lastly, Chapter 6 concludes the abovementioned research outcomes and discusses

some of the understudied research questions as a suggestion for potential future

works.



CHAPTER 2

Literature Review

Architectural research starts by defining target applications and the design exploration space.

This work pursues new FPGA block architectures optimised for embedded deep learning

applications and requires a comprehensive understanding of both DNN algorithms and FPGA

technology. Background on these topics are covered in this chapter.

The evolution of machine learning algorithms has ignited an unprecedented enthusiasm for

deploying such techniques in a multitude of applications. Among different machine learning

techniques, developers are particularly interested in deep learning models as their generic

structures make them universal solutions for many applications. This comes at the cost of

computation resources and energy, which are always limited, irrespective of whether the target

hardware is high-end servers or at the edge. This compels developers to trade traditional

computation models, arithmetic precision, and sometimes accuracy for practical deployment.

Efforts to find hardware-friendly models with minimal accuracy loss resulted in a collection

of techniques. Integrating more native support for such optimisations is the goal of this thesis.

Section 2.1 introduces deep learning, and comments on the role of embedded DNNs, and

elaborates on performance-accuracy tradeoffs.

Although such optimisations benefit all platforms, customizability makes FPGAs advant-

ageous among the wide spectrum of hardware accelerators from ASICs to general-purpose

processing units. This advantage, especially for the inference task, is reached despite the fact

that FPGA architectures are generally evolved in the absence of machine learning algorithms

as highly in-demand applications. Section 2.2 advocates the gradual evolution of traditional

FPGA architectures and elaborates on various FPGA blocks and their use cases in embedded

DNN deployments. Through this introduction, previous studies, academic and commercial

9
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solutions, and potential architectural opportunities aiming for more efficient FPGA archi-

tectures support for embedded DNNs are discussed. Moreover, a three-class taxonomy to

summarise the most recent architectural innovations in designing FPGA embedded blocks

is suggested. This starts from minor modifications to the current micro-architectures and

extends to integrating domain-specific engines and rethinking new EBs.

With a focus on arithmetic circuits, a common primitive is multi-operand addition and partial

product reduction trees. These are used in parallel multipliers and utilise carry-save arithmetic.

Compressor trees are a generalisation of this class of circuits, which historically received

attention for digital signal processing applications. Effective hardware support for them is

applicable to virtually all arithmetically intensive data flow graphs. In particular, DNNs are

rich in compressor trees due to the predominance of MAC operations and in computationally

fused version dot products. Section 2.3 provides a brief introduction to compressor trees and

their implementation techniques that vary from one hardware platform to another.

In more detail, this chapter is organised as follows:

• Section 2.1, Overview of embedded deep neural networks: This section provides a

background on the context of machine learning (ML) and DNN models, summarises

basic computation kernels, and provides insights on various optimisation trends for

both DNN models and deployment techniques leading to practical embedded DNNs.

• Section 2.2, FPGA architectures and opportunities for efficient deployments: This

section presents why FPGA technology is uniquely suitable for high-performance

accelerators. The gradual evolution to state-of-the-art FPGA architectures during the

past two decades is discussed, explaining the reason as to why existing architectures

are not highly optimised for embedded DNN applications.

• Section 2.3, Compressor trees: This section explains the primary concepts regard-

ing compressor trees, including generalised parallel counter compressor circuits,

and their applicability to the FPGA technology. Finally, a brief review of prior

architectural studies to support compressor trees on FPGAs is given.



2.1 EMBEDDED DEEP NEURAL NETWORKS OVERVIEW 11

2.1 Embedded Deep Neural Networks Overview

This section starts by providing a brief background on artificial intelligence (AI), ML al-

gorithms, and deep learning. Then, it defines DNN basics, including computation kernels

and network architectures. Eventually, optimisation trends in DNN designs that seek more

practical and hardware-friendly models are introduced. These techniques are often employed

for embedded deployment, so we call such models embedded DNNs.

2.1.1 Artificial Intelligence, Machine Learning, and Deep Learning

According to John McCarthy, a founder of the AI discipline, the engineering of creating

intelligent machines that can achieve goals like humans is called AI [51]. This very broad

definition covers all methods that enable computers to reason based on rules between the

inputs and outputs of a task. Traditional symbolic reasoning builds such intelligence through

assembling human-designed rules; e.g., IBM DeepBlue [52] is a chess engine that relies on

instructions and variables defined and fine-tuned by chess masters and computer scientists.

In contrast, ML algorithms are a subset of AI solutions in which the machine can learn

rules by establishing the correlation between the inputs and outputs without being expli-

citly programmed. Such abstraction allows models to learn different tasks, at odds with

the pre-machine learning era, when a custom algorithm was required for each problem. Al-

phaZero [53] by DeepMind is another Chess engine, which in contrast, learns by self-play.

It leverages reinforcement learning, which is generalisable to other games such as Go and

Shogi.

Inspired by the human neural system, artificial neural networks (ANNs) became a group of

machine learning solutions that employ a brain-like network of artificial neurons (interchange-

ably called perceptrons) to mimic biological networks. Each artificial neuron mimics the

signal transformation function of a biological neuron using the weighted sum of input signals

and a bias value, followed by a non-linear function [54] (such as sigmoid, hyperbolic tangent,

rectified linear unit (ReLU) [55] and its variations [56, 57]) to produce an output [51]. This



12 2 LITERATURE REVIEW

computation is illustrated in Equation 2.1 where Wi, Xi and Y , and b are the weights, input

signals (activations), output signals, and the bias value respectively, and f(.) represents the

non-linear function (Figure 2.1A). The functionality of each neuron depends on the weight

and bias values (parameters) which are chosen using a training process [58].

Yj = f(
∑
i

WjiXi + b) (2.1)

In a practical setting, a neuron receives a large number of input signals, and so this com-

putation model became dominated by the dot-product between the inputs and the weight

parameters. While a multitude of more complex and realistic neuron models have been

proposed [59], the dot-product operation remains the computational bottleneck. This key

observation establishes a foundation for hardware accelerators that leverage high-performance

multiply and accumulate dot-product units for efficiently executing neural networks. It is

worth noting there are other approaches to formulate a neural system, like spiking neurons [60]

which use continuous mathematics. This topic is out of the scope of this thesis.
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FIGURE 2.1. (A) The mathematical model of a neuron. (B) A neural network
sample. (C) A deep neural network sample (convolution and fully connected
layers are defined later in Section 2.1.2)

As illustrated in Figure 2.1B, by constructing a network of interconnected neurons, a neural

network (NN) can be constructed. Although neurons can be bound in any arbitrary arrange-

ment, in practice, neurons are aggregated into layers. Such structures receive the inputs via

input nodes (or input layer) and process them layer by layer (hidden layers). Based on the

neuron types and inter and intra-layer connections, a variety of neural network architectures
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are possible. More efficient and frequently used cases will be discussed in Section 2.1.2. Fig-

ure 2.1C pictures a practical network structure, called AlexNet [61], that is built by stacking

seven layers of neurons. In the last layer (known as the output layer), the final outputs are

generated. The computation of the outputs of the NN from the inputs is called the inference

task.

In contrast to inference, training is the process of finding the best values for the model

parameters, including the weights and the bias. This is done using an optimisation algorithm

(such as gradient descent [62] or Adam [63]) to minimise a loss function. This process

compares the NN’s output with the desired output (if it is available in supervised learning)

or the output’s cost [64] (in unsupervised and reinforcement learning [65]). To optimise all

neural layers based on the same loss function, each layer’s gradients can be calculated either

from the next layer’s gradients using backpropagation [58] or directly from the final loss

function using direct feedback alignment [66].

2.1.2 Deep Neural Networks: Basic Kernels and Architectures

The DNN refers to a class of artificial neural networks that are built by stacking multiple layers

of neurons to extract higher-level features from the raw input progressively [67]. For such

architectures, the number of hidden layers is called the network depth, typically greater than

three. Generally, the deeper the model gets, the more complex features the model can extract.

During training, the initial layer(s) learn to detect simple and basic attributes (features) of the

input data, whereas the following layers augment such information to produce more complex

understandings. Layer after layer, such cognition enhances and provides better insight for the

final layers to utilise toward generating the desired outputs.

A DNN architecture can be described by its neural layers and their connections, and such

flexibility in the layer types and interconnections enables an endless number of combinations.

However, randomly picking multiple layers and arbitrarily linking them does not normally

form an efficient architecture. Adding more layers, increasing the number of neurons in layers,

or using more sophisticated neuron models and connection patterns can usually be translated
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to more architectural flexibility; consequently, higher accuracy could be expected. However,

all the above will predominantly increase the implementation costs for training and inference

tasks.

To tackle this issue, researchers initially explored the design space manually, which led to

a set of primitive layers that benefit a wide range of applications [68]. These layers are

generic and should be instantiated in a reasonable order and sized according to the target

application. These days, network architecture search (NAS) techniques [69] automate such

architectural exploration, including the best placement, sizing, and connections, aiming for

the most efficient DNN architectures by involving both the performance and implementation

costs.

A neural layer is a collection of neurons that receives a multi-dimensional tensor of input

signals (called the input feature map or activation signals) to process according to a specified

connection pattern between the input feature map elements and the neurons. This pattern

and the neuron computation model mathematically translate to multi-dimensional kernel

operations. Eventually, each neuron generates an output signal, where all those outputs

together form another multi-dimensional tensor called the output feature map. As a simple

example, assume a layer with only one neuron. Such a layer accepts a 1-D input feature

map where all input elements are connected to that neuron. Using Equation 2.1, the layer

computation is the dot-product operation between the 1D input feature map and a same size

1-D tensor of weight parameters, followed by adding a scalar value (the bias value) and then

applying a non-linear function over that. The output is a scalar value that forms a 0-D output

feature map.

2.1.2.1 Fully connected (FC) Layer

A FC layer can be realised as a layer of neurons where each neuron is connected to all

elements of the input feature map. A generalisation for a FC layer is presented in Figure 2.2A,

where a FC layer with N neurons takes an M -element feature map F as input, and produces

an N -element feature map G as output. The computation is a vector-matrix multiplication

of the input feature map with an M ×N -element kernel K followed by N -element vector
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addition for the bias values (B), and eventually passing the result through an element-wise

non-linear function (assuming all neurons in a layer use the same non-linear function, f ), i.e.:

Gj = f(
i<M∑
i=1

Ki,jFi +Bj). (2.2)

Accordingly, the computation complexity and memory footprint for this layer are in O(NM)

and O(NM), respectively, which pose challenges in practice, especially for large N and

M values. The dominant computations are the vector-matrix multiplication (or, in a finer-

grained manner, the neuron’s dot-products that share the same input vector) and the element-

wise adder and non-linear functions. Evaluation of these basic linear algebra operations

famously benefits from parallelism and data reuse [70]. To minimise the memory requirement,

besides efficiently sizing the layer parameters, N and M , lowering the data precision[71] and

benefiting sparsity [72] are two practical solutions.

FC layers offer a trainable structure to execute regression analysis models [73]. To extend

this feature, multiple FC layers can be stacked, one after another, to form a hierarchical

regression model. This led to multi-layer perceptron (MLP), a group of ANNs, that wrap

such structure (one or more FC layers) within an input layer and an output layer. This kind of

neural network can solve various tasks stochastically, such as function approximation [74]

and classification [75]. MLPs suffer from implementation costs due to their high degree

of connectivity; consequently, they are not always the most efficient solutions. Yet, to

benefit from the FC layer’s characteristics, network designers add multiple FC layers in the

decision-making stage (mostly after the feature extraction phase), where the FC layers match

the desired task, e.g. convert high-level features to a class in image recognition. Google

researchers have recently shown that FC layers and data reshaping layers alone can achieve

close to the state-of-the-art results [76].

2.1.2.2 Convolutional (Conv) Layer

The convolution operation is simply a sequence of sliding dot products. The kernel tensor is

shifted along the input tensor, and for each sliding position, the dot-product of the intersection
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FIGURE 2.2. (A) a Fully connected layer. (B) a standard convolution layer.

points in both tensors becomes an entry in the output tensor. Using this operation, a group

of neural layers called convolutional layers are derived. In these layers, a kernel slides over

the input feature map (in defined directions) to generate an output per intersection window

between them. Accordingly, the kernel is reused to generate multiple outputs utilising different

windows of the input feature map. Also, in convolutional layers, the kernel only operates over

a neighbourhood of the input feature map. This is in contrast to the FC layers, where each

neuron connects to all input feature map elements. Convolutions allow the kernel to extract

the same feature over the input tensor while mitigating implementation costs by reducing the

number of connections and parameters.
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As an example for the convolutional layer, Figure 2.2B shows a standard convolutional

(SConv) layer that takes a DF×DF×M feature map F as input, and produces a DG×DG×N

feature map Ĝ as output. The output is generated via a convolution with a DK×DK×M×N

kernel K̂ followed by adding the corresponding neuron’s bias value and applying the non-

linear function, i.e.:

Ĝk,l,n = f(

i<I,j<J,m<M∑
i=0,j=0,m=0

K̂i,j,m,nFk+i,l+j,m +Bn). (2.3)

This layer consists of N neurons where each accesses a I × J × M sliding window of

the input feature map. Hence, each neuron produces a channel of the output feature map,

which comprises (K − I + 1)× (L− J + 1) output entries (corresponding to each sliding

position). The kernel shape may limit the sliding positions (particularly when a kernel size in

a sliding dimension is more than 1), which causes neurons to skip processing the input feature

map entries on the borders in some relative positions, as in such cases, the kernel window

overpasses the input feature map borders. Padding is a technique that expands the input

feature map with extra entries on outer borders (mostly with a default value). For instance, to

maintain the input feature map dimensions in a SConv layer, the kernel slides alongside the K

and L dimensions when the kernel sizes are I and J , respectively. Therefore, the input feature

map should be padded by (I − 1)/2 and (J − 1)/2 on each side of the K and L dimensions.

Besides the SConv layer, there are many other convolutional layer choices that are defined by

various kernel shapes, sliding directions and steps. For instance, the kernel shape indicates

the neuron’s spatial access pattern to the input feature map. Expanding (or shrinking) a

kernel along a dimension enables (or disables) the activations to extract spatial features in

that direction [21]. Kernel dilation [77], pursue the same goal by keeping the number of

neuron’s connections unchanged while exponentially expanding the convolution receptive

field (Figure 2.3A). On the other hand, the sliding specifications control in which direction(s)

and rate(s) a neuron should sample the input feature map to measure its configured feature.

This is beneficial when a temporal or spatial change in the input feature map is expected

(Figure 2.3B). As evident in the figure, changes to the sliding affect the number of times a

neuron operates and hence the output feature map size.
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FIGURE 2.3. (A) Dilation in convolution layers. (B) Sliding direction and
step. (C) A 2D convolution layer vs (D) A 2D deconvolution layer

Based on customizing the abovementioned specifications, variants with different performance

and implementation costs can be derived. Some efficient variations will be covered later in

Section 2.1.4.

The deconvolution layer (also known as transposed convolution) is another convolutional

layer which is the opposite process of the convolution layer. A kernel slides over the output

feature map, where each sliding position corresponds to an entry in the input feature map. The

kernel projects the impact of this entry on a window of the output feature map entries. The

window is the intersection of the output feature map and the kernel, and the corresponding

kernel value scales the impact. Figures 2.3C and 2.3D compare a 2D convolution layer with

a 3×3-kernel with a 2D deconvolution layer with the same size kernel. In contrast to a
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convolution layer which extracts features from a given input, the deconvolution layer tries to

regenerate the corresponding convolution layer’s input using the extracted features. The main

application of deconvolution layers is when convolution and deconvolution layers are coupled

together to build generative adversarial networks (GANs) [78] and auto-encoders [79]. These

are particularly powerful tools for denoising [80], anomaly detection [81], and segmentation

tasks [82].

The convolutional neural network, or convolutional neural network (CNN) for short, is a class

of ANNs that are primarily based on stacking convolutional and FC layers. The convolutional

layers mostly act as the feature extractor layers at the beginning of the network, while the

FC layers implement the final stage decision making tasks such as classification. This lowers

the computation and memory requirements compared to the MLPs, while it preserves the

necessary structures (flexible kernels) to extract the spatial and temporal dependencies, e.g.

multi-dimensional data (like works in computer vision [83]) and time series applications (like

radio frequency signals [84]) applications.

Apart from FC and convolution layers, state-of-the-art DNNs include other layers such as

Pooling layers [85]. Their purpose are 1) to add robustness against minor changes in the input

(such as input perturbation or transformations like shift, rotate, zoom, etc.) and 2) to reduce

the feature map size by discarding the least significant information. A pooling layer tiles the

input feature map (using a window called polling kernel) and generates an output entry per

each tile by combining (like using averaging) or pooling between (like selecting the maximum

value) the neighbourhood of input feature map entries in each tile. For instance, after a SConv

layer, the values in the same channel are the result of sliding the same kernel over different

sliding positions. Therefore, the adjacent entries in a channel measure the same feature for

two nearby positions. Consequently, replacing a neighbourhood of entries in a channel with

the average of them 1) enhances the feature measurement precision and 2) reduces the feature

map by discarding values that were very similar anyway.

Normalisation layers are also frequently used and aim to normalise the distribution of feature

maps. This particularly speeds up the training and also the final accuracy in DNNs [86]. Batch

normalisation (BN) [87] restricts the input value distributions for mini-batches of feature maps
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by removing the average bias and scaling down the values by the batch deviations. Weight

Normalisation [88] and Layer Normalisation [89] are two newer techniques that sacrifice the

training stability for improved computation speed by normalizing with a single vector instead

of a mini-batch.

Concatenation [90], shift [23], shuffle [24], and element-wise [91] layers are other DNN layers

that offer more connection patterns between the layers comparing to basic layer stacking. They

generally do not consume a significant fraction of the total computation cost and, according

to [92], convolution and FC layers together contribute more than 99% of the computations

and required memory.

2.1.3 DNNs: The Rise, Evolvement, and Trends

As Charles C. Tappert [93] reasons, the history of DNNs goes back to 1962 when Frank Rosen-

blatt suggested a basic foundation for deep learning systems [94]. However, it took years of

research until Yann LeCun et al. [95] finally proposed a practical training approach based

on backpropagation, which enabled training deep artificial neural networks. Applying this

method, they proposed the first deep CNN structure, LeNet [96], particularly designed to

recognise hand-written digits. The most well-known variant of this network, LeNet-5, is built

by stacking two 2D standard convolution layers with 5×5 kernel sizes, respectively, using

6 and 16 filters with no input feature map padding and three FC layers, respectively, with

120, 84, and 10 neurons [97]. Furthermore, to manage the feature map spatial expansion

due to the number of filters in the convolution layers, they coupled each Conv layer with an

average pooling layer with the 2D kernel window of 2× 2 and stride of 2, which condenses

the feature map resolution by 4×. Also, all neurons in this structure use the Sigmoid function

as their non-linearity (Figure 2.4A).

The lack of high-performance computing systems for such workloads caused a huge burden

for deeper models. Although LeNet-5 was a deep model at the time, compared to state-of-the-

art CNNs, it is relatively tiny, with in total of 60k parameters administered for 341k MACs

per given 28× 28-pixel input image [51]. Even this 5-layer network required three days of
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FIGURE 2.4. The schematic for (A) LeNet [96], (B) AlexNet [61], (C) VGG-
16 [90], (D) GoogLeNet inception modules [98] (with and without down
sampling respectively at left and right), and (E) vanilla residual path for
ResNet module [91] (without downsampling)

training on a sun workstation, which was an enormous enhancement compared to the previous

works.

The next substantial step for deep learning took place during the 2000s when faster computing

systems with vector processors and GPUs were developed. By 2012, the tremendous ad-

vancement in parallel computing and general-purpose computing on graphics processing units

(GPGPUs) triggered a turning point for deep learning when AlexNet [61] won the ImageNet

Large Scale Visual Recognition Competition (ILSVRC) challenge [99], targeting the large

ImageNet dataset, with 10,000 categories and 10 million images. This network achieved a

Top-5 classification error rate of 15.3%, while the following best result was a 26.2% error rate
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from a non-neural network model (all reported performance metrics are from [51]). As it is

shown in Figure 2.4B, This network includes five standard CONV layers and three FC layers

that conclude to a storage requirement of 62M parameters and used 724M MAC operations

per classification, which are roughly three orders of magnitude more than the corresponding

metrics for the LeNet-5.

Meanwhile, the ILSVRC competition has become a global motivation for further significant

progress on DNNs. This was the beginning of a new era for DNN, which was dominantly

dedicated to accuracy improvement by adding more parameters and computational complex-

ities. In the ILSVRC 2013 challenge, VGGNet was the runner-up with 7.4% Top-5 error

and enhanced classification accuracy rates further using deeper CNN models with smaller

convolution filters. VGGNet-16 was the variant used in the competition that required 138 M

parameters and 15 G MAC operations [90], which are respectively are respectively about 2×

and 20× more than AlexNet counterparts. The key idea was using modular architecture by

only performing 3× 3 convolution and 2× 2 pooling layers, which enables deeper networks

while maintaining the model size (Figure 2.4C).

In ILSVRC 2014, the GoogLeNet [98] took first place by achieving 6.7% Top-5 error by

stacking the inception module, which incorporates multiple neural layers in parallel. In

this module, multiple convolutional layers operate on the same input feature map, while the

concatenation of their output becomes the module’s output. This layer connectivity enables

GoogLeNet architecture to slightly surpass the VGGNet accuracy performance while only

using 7 M parameters and 1.43 GMACs over 22 layers. Although the reduction in parameters

and the computations are significant, the layer variations in computation and connectivities

pose challenges to the hardware accelerators that should switch between multiple computation

kernels in run-time. This work also offers auxiliary classifiers that temporarily connect to the

networks to boost the training process by compensating for gradient vanishing.

The next year, the ResNet [91] structure, based on adding residual path beside the neural

layers (like Figure 2.4E), won the competition with a 5.3% Top-5 error. These connections

allow the gradients to pass through the layers without vanishing, which concluded successful

training for very deep networks, e.g., ResNet-50 with 25.5 M parameters for 3.9 G MAC
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operations. Another variant of this architecture, ResNet152, was the first NN that exceeded

human accuracy (better than 5% Top-5 classification error rate for ImageNet data set) with

over 11.3B FLOPs.

Since then, numerous DNNs with higher accuracy rates have been developed, and an in-depth

analysis for substantial cases has been published by Simone Bianco et al. [100]. For instance,

most recently, EfficientNet-L2 [101] accomplished the state-of-the-art 98.8% top-5 and 90.2%

top-1 accuracy rates as a deep CNN for the ImageNet [99] dataset. However, this superior

performance comes at the cost of massive memory and computation requirements, which

are not always justifiable or sometimes not available, particularly for embedded system

applications with constrained resources.

Performance-aware DNN designing [102] was an early solution to restrain the resource

requirements, where the performance metrics (such as throughput, latency, classification rate,

memory footprint, energy per classification, etc.) besides the accuracy guide the manual

or automated NAS. Although this approach extracts the best-performing network for a

fixed architecture with known resource budgets and a performance goal, the efficacy of the

accelerator architecture itself remains questionable. The next step was relaxing the hardware

architecture, which began the new era of network and hardware co-designing, where feedback

from one to another enable more optimisation opportunities. This also enormously expands

the design space that demands more efficient NAS techniques [103].

2.1.4 Embedded DNNs

There has been considerable interest in memory and computationally efficient DNNs for

mobile and embedded applications where the common most crucial concerns are low latency

and low energy while complying with strict resource constraints. In order to manage the

massive computation and storage complexities of DNNs, efforts at reducing hardware resource

usage at all design levels have been undertaken, e.g. efficient computational kernels [23,

24, 22, 26, 37, 27], data pruning [33, 34], memory compression [35, 36] and quantisation

[17, 38, 104, 20, 19]. Although these techniques benefit any sort of DNN deployments, they
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particularly enable a series of optimisations to fit DNN models on embedded devices. This

section reviews some of the key works.

2.1.4.1 Efficient Kernels

The presented standard 2D convolutional layer in Equation 2.3 is, in fact, a single instance

from the convolutional layer generalisation, where numerous other instances can be defined

by varying the convolution window dimensions and dilations and sliding directions and

strides. Each configuration introduces different feature extraction capabilities at a particular

computation cost. For example, eliminating a dimension from the convolution filter window

stops the neurons’ spatial access to the input feature map in that dimension. Thus, the

convolution filters lose the chance to extract features incorporating input entries from the

cancelled connections. Meanwhile, the downsize in convolution windows directly translates

to less memory footprint and computation.

The early research on this multifarious feature extraction-cost tradeoff resulted in many

optimised convolution layers, such as the grouped convolution layer that was primarily

introduced in AlexNet [61] to tackle the computation complexities by limiting the neurons’

connections. In contrast to standard convolution, these layers splits the input feature map

into disjoint groups and each is convolved with separate and smaller kernels. This enables

computation distribution over multiple GPUs and consequently boosts performance, as also

reported in recent works such as ResNeXt [105] and SqueezeBERT [106]. The main drawback

of channel grouping is limiting the interaction between features from different groups with

each other. To partially solve this issue, Zhang et al. [24] proposed using a shuffle unit on top

of grouped convolution layers, where this unit shuffles the features map channels in a way

that each group maintains a similar representation into the next grouped convolution layer.

The point-wise convolution (PW) layer [107] is another influential case, where in comparison

to the standard 2D convolution layer, the filter windows shrink to 1× 1. This allows feature

extraction only from the input feature map entries from different channels, which can be seen

as trainable pooling for channels. Thus, this layer is particularly suitable for reducing or
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increasing dimensionality (As shown at the left side of Figure 2.4D for the inception module

with downsampling [98]).

Inspired by PW convolution layers, Jin et al. [25] proposed flattening the 3D convolutional

filters of the standard 2D Conv layer into three consecutive one-dimensional filters across

all directions in 3D. This technique considerably reduces the memory footprint and speeds

up the inference task up to 2× while maintaining the accuracy for simple datasets such as

CIFAR 10 and CIFAR 100.

Figure 2.5 illustrates another highly efficient substitute to the standard 2D convolution

layer from MobileNet [21, 108], depth-wise separable convolutions which first factorises

Equation 2.3 into M depth-wise convolutions (DWs)

Ĝk,l,m =
∑
i,j

K̂i,j,mFk+i−1,l+j−1,m (2.4)

where K̂ is the DK ×DK ×M depth-wise kernel and the mth filter of K̂ is applied to the

mth channel of F to produce the mth channel of Ĝ. Linear combinations of the M depth-wise

layer outputs are then used to form the N outputs using a PW layer with N layers. A speedup

of N+D2
K

ND2
K

is achieved where the typical values is about 8− 9× (for DK = 3), with a minor

reduction in accuracy for large datasets such as ImageNet [99]. A study on the speed/accuracy

trade-offs of convolutional object detectors compares the use of the Inception, MobileNet,

ResNet and VGG networks as the feature extractor backbone for object detection tasks,

where MobileNet architecture achieves an excellent accuracy if low execution time on a GPU

is desired [109]. With a similar idea, Wu et al. [23] also proposed a shift-based channel

movement as a zero parameter alternative to the DW convolution in depth-wise separable

convolutions, which reduces model parameters drastically and also the number of MAC

operations.

The convolution operations can also be accelerated by alternative computations. Zhang

et al. [27] proposed accelerating convolution operations by using the discrete fourier trans-

formation (DFT). However, their proposed technique cannot support CONV layers with
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Activations

DW conv PW conv

FIGURE 2.5. Depth-wise separable convolution layer

stride > 1 or PW and FC layers. Ding et al. [110] recommend a block-wise circular con-

straint approach to accelerate FC layers by converting the computation to the frequency

domain. This technique can be applied to other CONV layers as well. The two mentioned

approaches have drawbacks of involving complex number arithmetic. To address this issue,

Winograd et al. [111] proposed a 2D convolution implementation using real number multi-

plication, which is optimised for 3×3 convolution implementations [26, 112]. As analysed in

reference [92], these techniques can improve the overall deployment performance up to 2-3×.

This brief review on the DNN kernel innovations highlights the necessity for having flexible

hardware accelerators that can host different computation models with diverse characteristics.

This is particularly crucial for embedded accelerators where slightly sacrificing the accuracy

by simplifying the computation kernel is more considerable. Table 2.1 provides a summary of

the architectures employed in a number of the recent state-of-the-art embedded DNNs. The

last row underscores that standard, DW, PW, and FC layers account for almost all MACs

operations.

2.1.4.2 Data Representation and Quantisation

Choosing an efficient data representation is a major design decision for deploying any al-

gorithm, particularly in memory and compute-intensive cases, where boosting performance by

reducing implementation costs is often achievable by utilising less costly alternative data types.

Improving speed often requires sacrificing accuracy, and so enables a range of trade-offs

to explore. When it comes to DNNs, the computation model offers many opportunities for

optimisation. On the one hand, DNNs need an enormous memory footprint, complex data
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TABLE 2.1. Summary of the architectures employed in a number of state-of-
the-art embedded DNNs

Metrics
NASNet-A MobileNetv2 ShuffleNetv2 SqueezeNet

(4@1056)[113] 1×[108] 1×[114] [22]

Top-1/5 error 26% / 8.4% 28% / - 30.6% / - 42.5% / 19.7%

# of CONV Stages 22 20 20 14

# of SConv / Filter sizes 800 / 3 32 / 3 24 / 3 1376 / 3,7

SConv MACs / Parameter (% Total) 3.5% / 16.8% 3.4% / ∼0% 5.7% / ∼0% 72.1% / 45.5%

# of DW Conv.s 15290 7136 2426 0

DW Conv. kernels / input / channel / Strides
3,5,7 / 7-57 3 / 3-112 3 / 7,14,28 - / -

11-176 / 1,2 32-960/ 1,2 24-232 / 1,2 - / -

DW Conv. MACs / Parameter (% Total) 14.1% / 5.4% 6.5% / 1.9% 2.7% / 1.0% - / -

# of PW Filters / Channel Depths 18465 / 11-1056 9920 / 16-960 5572 / 24-1024 2600 / 16-512

PW Conv. MACs / Parameters (% Total) 79.6% / 63.3% 88.7% / 61.2% 89.1% / 53.7% 24.5% / 54.5%

Global Pool Size 3×3 7×7 7×7 13×13

FC MACs / Parameters ∼0.8M / ∼0.8M 1.3M / 1.3M 1M / 1M - / -

SConv+PW+DW+FC MACs (%) 97.63 99.03 98.28 96.68

Total MACs / Parameters 564M / 5.3M 300M / 3.5M 141M / 2.3M 833M / 1.25M

movements, and numerous computation resources when the costs for all these directly depend

on the employed data types. At the same time, DNNs are robust against using low-precision

data types and aggressive quantisation, especially during the inference task, primarily because

of using very large and over-parameterised DNN architectures [115]. These two sentiments

led to extensive research on optimised DNN deployments [116, 117, 112, 118], co-designing

new DNN architectures [119], and efficient training [120, 121, 122] by applying standard and

customised data types on all aspects of data flow.

First and foremost, each data representation comprises unique characteristics, such as quant-

isation accuracy, dynamic range, etc [115], that may fit some algorithms but not all. Floating-

point (FP) arithmetic encodes real numbers approximately, using three components: 1) a fixed-

point value, called Mantissa (M̂ ) with M bits, 2) an E-bit integer exponent (Ê) of a fixed base,

and 3) a sign bit (Ŝ), that all together form a bit vector (s, eE−1, ..., e1, e0,mM−1, ...,m1,m0)

(Figure 2.6A) that represents the real value of

(−1)Ŝ × (1.M̂)× 2Ê. (2.5)
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TABLE 2.2. Various floating point configurations.

Data representations Exponent Mantissa Dynamic range† Precision‡

FP32 [123] 8 23 1668 2−24

FP16 [123] 5 10 241 2−11

BF16 [14] 8 7 157 2−8

FP8 [124] 4 5 114 2−6

†20 log
max+

min+

10 , max+ = (2− 2−M)× 22E−1−1, min+ = 2−M × 2−(2E−1−2)

‡ relative round-off error, i.e. 2−M−1

This format provides precision and dynamic range, respectively, through mantissa and expo-

nent parts, and so, by sizing them, different data type instances with different characteristics

could be driven, such as configurations listed in Table 2.2. Although these standard floating-

point formats offer an accurate way to represent a wide range of numbers, the hardware cost

and memory overheads associated with standard floating-point formats are extensively high.

In fact, floating-point arithmetic requires extra circuitry to handle signs, pre-shift, post-shift,

rounding, and special numbers (eg. denormals, Infinity, NaN, zero).

Fixed point arithmetic is an alternative to floating point. This representation operates similarly

to integers, while a portion of the representation is assigned to the fractional part of real

numbers, called F fractional bits (Figure 2.6B). This is equivalent to scaling an integer by

the factor of 2−F . From another perspective, fixed point numbers are similar to floating point

numbers without the fixed based exponent section, which causes fixed point arithmetic to be

limited in dynamic range. Like integers, the numeric range is uniformly quantised, meaning

gaps between successive numbers are the same throughout the representation. While larger F

translates to smaller gaps, and so, higher precision, this reduces the numeric range. Putting

it all together, a bit vector (xB−1xB−2...xF .xF−1...x1x0)2 in fixed-point, represents the real

value given by:

(xB−1xB−2...xF .xF−1...x1x0)2 =
i=B−1∑
i=0

xi × 2i−F . (2.6)

The main advantage of using fixed point arithmetic is a simpler implementation than floating

point. Fixed point implementations are smaller, faster, and less energy-demanding. To
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FIGURE 2.6. The generalised schematic for (A) fixed-point, (B) floating-point,
(C) block floating-point representations.

elaborate, Table 2.3 compares the area and energy cost of different data type addition and

multiplication as the dominant operations in DNNs. The post-synthesis area utilisation

numbers are reported by William Dally [125] using Design Compiler under TSMC 45nm

tech node, and the energy values are the rough energy costs for the studied 8-core superscalar

processor by Horowitz [126]. The last column approximates the costs for the corresponding

MAC unit, assuming no circuit fusion. As it shows, the energy consumption for a full

precision floating point MAC unit is about 4.6pJ , that is 1.4× and 15.3× the corresponding

measurements for INT32 and INT8, while the same comparisons for the area utilisation are
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3.3× and 28.4×. A similar trend is almost true for other platforms, such as FPGAs, which

are the focus of this thesis. Reference [11] compared the implementation of MAC units with

different word lengths on Xilinx and Intel FPGAs. They reported using fixed point 8× 8-bit

operations instead of single precision floating point, logic resources are reduced by 10− 50×.

Since FPGA resources are limited, smaller computation units means more can be used for

parallelism for a given device.

The main advantage of using fixed point arithmetic is having simpler implementations than

floating point numbers. This means fixed point computations are smaller, faster, and less

energy-demanding. To elaborate on this, Table 2.3 compares the area and energy cost of

different data type addition and multiplication as the dominant operations in DNNs. The

post-synthesis area utilisation numbers are reported by William Dally [125] using Design

Compiler under TSMC 45nm tech node, and the energy values are the rough energy costs for

the studied 8-core superscalar processor by Horowitz [126]. the last column approximate the

costs for the corresponding MAC unit assuming no circuit fusion. As it shows, the energy

consumption for a full precision floating point MAC unit is about 4.6pJ , that is 1.4× and

15.3× the corresponding measurements for INT32 and INT8, while the same comparisons for

the area utilisation are 3.3× and 28.4×. A similar trend is almost true for other platforms, such

as FPGAs, which are the focus of this thesis. Reference [11] compared the implementation

of MAC units with different word lengths on Xilinx and Intel FPGAs. They reported using

fixed point 8 × 8-bit operations instead of single precision floating point, logic resources

are reduced by 10− 50×. Regarding the fact that FPGA resources are limited, the smaller

computation unit means more computation units using the same area.

Besides the computation unit, the overall performance and implementation costs also depend

on memory structure and the complementary data movements, where data representation

affects both. This is crucial as the majority of the energy consumption happens accessing

the data. Dally [125] has reported the energy cost for accessing data from different memory

types. As measured, reading a word (32 bits) from a small (a few KB) local SRAM block, an

On-chip SRAM (within a few MB), and an off-chip DRAM require 5pJ , 50pJ , and 640pJ

amount of energy, respectively, that shows the significance of data access in comparison to
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TABLE 2.3. The implementation cost comparison for some fixed point and
floating point data representations in 45nm technology size. The numbers are
picked from [126] and [125].

Data representations
Add Multiply MAC

Area (um2) Energy (pJ) Area (um2) Energy (pJ) Area (um2) Energy (pJ)

INT8 36 0.03 282 0.2 419† 0.3†

INT16 67 0.05 - - - -

INT32 137 0.10 3495 3.1 3632† 3.2†

FP16 1360 0.40 1640 1.1 3000‡ 1.5‡

FP32 4184 0.90 7700 3.7 11884q 4.6q

† accumulation in INT32

‡ accumulation in FP16

q accumulation in FP32

compute units. Thus, shrinking the data type size substantially reduces the overall energy

costs.

To have the best of these two worlds, block floating point arithmetic [127, 128] is suggested

that incorporates a shared exponent value for a block of (fixed point) data, where each entry

is encoded by a single bit sign and a M bit mantissa value (Figure 2.6C). In comparison to

fixed point numbers, the shared exponent allows a higher dynamic range for the whole block,

while the difference between entries is still limited to the fixed point structure of the entries.

However, the achieved dynamic range does not cost much, like floating point arithmetic,

where each number has its own exponent. The main challenge for using block floating point

is defining the block size, which depends on the application.

In the case of DNNs, both training and inference tasks rely on repeated calculations involving

very large and very small numbers. However, the training task is more sensitive to quantisation

error while requiring a much wider dynamic range to remain stable and keep converging

to the optimal state. Because of that, most early commercial platforms, such as Nvidia

GPUs, employ standard floating-point representations that offer a wide dynamic range and

are known to perform well in mathematically intensive applications [129]. In recent years,

the research focused on high-performance training platforms using TF32 [130], FP16 [121,

122], BF16 [14], and FP8 [128, 124, 131, 132] arithmetic. At the same time, the hardware

companies pushed to natively support such data types [133, 134, 135]. There are also many



32 2 LITERATURE REVIEW

signs of progress going further to use INT8 [136, 137], which these methods are often limited

to simple NN models for relatively easy learning tasks while requiring hyperparameter tuning.

Block floating point [138] and mini block floating point [15] are other two alternative data

representation that has shown promising training results.

In contrast, the DNN inference task is much more resilient against low-precision arithmetic.

This was a critical finding as inference mostly runs on embedded devices, where computation

and memory resources are not abundant. In the early days of DNNs, Qiu et al. [36] studied

the numerical distribution of DNN models and concluded the dynamic range for both weight

parameters and activations in each layer is generally limited while it varies from layer to layer.

Later on, Guo et al. [92] analysed different ImageNet [99] classifiers and showed applying

linear quantisation on trained networks using 8 bits or higher causes insignificant accuracy

drop while by choosing 6 bits or lower the accuracy degradation will become noticeable.

These promising results motivate researchers to explore novel techniques to improve the

benefits from quantisation while preventing the accuracy drop. The next step was adding

granularity to the quantisation process, as the distribution for the activations, weight para-

meters, and temporary results are also different. Qiu et al. [36] proposed an algorithm based

on linear quantisation defining fraction bit-width for each layer, separately for weights and

activations. Later, Guo et al. [139] suggest fine-tuning after post-training quantisation to

recover the full-precision accuracy. Next, Jacob et al. [140] proposed involving the quantised

inference during the training, called quantisation-aware training, that enhances the training

results significantly. Many studies point to quantisation as a DNN architecture flexibility

degree and tried to find better quantisation settings through NAS techniques [141, 142, 143,

144, 145].

Because of all the above, the efficient DNN deployment using fixed-point arithmetic became a

common practice [20, 146, 112, 118], which substantially reduced the deployment costs, par-

ticularly as a wide range of hardware accelerators at the time natively supported various fixed

point arithmetic, especially INT8, such as Nvidia Volta GPU [147], Google TPU [148], etc.

This trend particularly benefited the FPGA-based accelerators, where the designs accomodate

customised compute units with any arbitrary set of precisions [38, 149, 117]. Eventually,
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the linear quantisation idea has been taken to its conclusion by proposing ternary and binary

quantisation which achieve extremely high speed and low energy implementations [29, 150,

17, 151, 152, 153, 154].

The main reason for pursuing linear quantisation was and is the compatibility with general-

purpose hardware accelerators. However, uniform quantisation does not offer the best match

for value distributions in DNNs. Nonlinear quantisation is another approach to map real values

to a smaller set of values, while in contrast to linear quantisation, there is no mandate over the

quantisation levels. This enables customised quantisation schemes to fit any arbitrary data

distributions. Such mathematical advantage comes at the cost of more complex arithmetic,

where sometimes the only way of implementation is value mapping through look-up tables.

For instance, Chen et al. [155] proposed a trainable look-up table for each layer, in which

the weight parameters are stored and accessed using a hash function. This limits the memory

footprint for the weight parameters by only storing the hash code, rather than the actual

high-precision values. On top of that, Han et al. [33] recommended applying weight value

clustering that enhanced the compression up to 4-bit code for weight values without accuracy

drop. Afterwards, Samragh et al. [35] observed how limited the nonlinear quantisation levels

are and so proposed an alternative to MAC units, called factorised coefficient-based dot

product memories, which include the MAC operation result for each possible weight and

quantised activation input calculated at compile-time.

Due to the fact that nonlinear quantisation methods require customised data paths, customis-

able platforms such as FPGAs became a beneficiary of these innovations since state-of-the-art

FPGA architectures integrate massive numbers of distributed look-up tables. Similar to

uniform quantisation, there are some works on very low-precision nonlinear quantisation,

such as trainable ternery-quantised networks proposed by Zhu et al. [19] where the positive

and negative scales are flexible to be trained separately. This simple modification enables near

floating point precision for the ImageNet [99] data set (by recovering the accuracy drop from

just ternerising [156]) while achieving 16x model size reduction and 2% accuracy degrada-

tion on ImageNet. There are also some works on hardware-oriented nonlinear quantisation

schemes where the available computation resources inspire particular quantisation patterns
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which are well matched to the hardware and the DNN value distribution also matches the

data. One example is AddNet [18], based on reconfigurable constant coefficient multipliers

inspired by FPGA high-performance logic element architectures.

2.1.4.3 Data Movement and Memory Management

Despite all progress toward efficient DNNs, the state-of-the-art network models still require

extremely large numbers of parameters [157]. Modern DNN accelerators such as the Nvidia

Turing GPU series [158] and Google TPUs [159] can not accommodate all parameters on-

chip in many cases. One solution is folding the computation, introducing significant data

movement between on-chip and off-chip memories to supply the compute units and store

the results continuously. Such an approach requires high memory bandwidth and, more

notably, contributes significantly to the overall energy consumption as the energy cost for

data movement using the existing technologies exceeds the energy consumption for the actual

computation [160, 28].

To elaborate on this, consider a fixed point MAC unit that multiplies in 8 bits and accumulates

in 32 bits. This operation reads three operands (in total six bytes) and eventually writes back

the result word. As Horowitz [126] reported for the 45nm technology size, the energy required

for only reading the inputs from external DRAM will be in the range of 1.5− 3nJ . That is

three orders of magnitudes higher than the actual operation energy cost as approximated in

Table 2.3.

Although this generally happens for both server and end-point deployments, it becomes more

crucial for embedded devices with much lower memory and compute budgets. Therefore,

DNN accelerators must carefully orchestrate the data across compute units, on-chip memories,

network-on-chip, and eventually external network links or memory blocks to minimise the

overall energy costs, i.e., the DNN data flow should maximise data reuse for all involved

parameters through an efficient memory hierarchy that prioritises local accesses [32].

There are two major classes of data flow in hardware accelerator architectures, 1) temporal and

2) spatial [161]. Both architectures utilise many processing units to handle the computations.
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Orchestrating transfers between the memory hierarchies and processing units is the main

differentiating characteristic that affects both control logic and data movement circuits.

In the temporal architecture, the processing elements are simply an arithmetic logic unit

(ALU) without any local memory block, as a centralised control unit manages the flow

between the memory hierarchy and PEs. Thus, PEs do not communicate with each other

directly. In this method, flexibility for supporting various computations is on the shoulder of

memory-PE connections with broadcasting, multi-casting, or reducing [32]. CPUs and GPUs

are good examples of temporal architectures, where in both architectures, SIMD operations

are centrally managed by control units.

In spatial architectures, some aspects of the control logic are distributed in each PE. Therefore,

each PE has its own control unit and a memory to store required data. Also, PEs are

interconnected in a spatial arrangement and can communicate directly and pass data locally to

each other. Such an interconnection structure enables low energy-cost local data access from

PE to PE, as opposed to temporal architectures, where all data access goes through centralised

memory blocks. Another advantage of spatial structures is they can significantly reduce the

required memory bandwidth by better reusing data.

Although both ASIC and FPGA platforms just provide compute, memory, and logic resources

to implement any arbitrary circuits, most ASIC-and FPGA-based DNN accelerators use spatial

architectures [162]. This is because DNN algorithms offer enormous data reuse opportunities.

On the contrary, the main challenge to designing a spatial data flow is to find a cost-effective

interconnection pattern that is flexible enough to efficiently support various computations.

Referring again to Table 2.1, the state-of-the-art efficient DNN models exploit significantly

different data flows, reuse opportunities, and memory and compute resource requirements.

Data reuse depends on the computation characteristics. DNN algorithms are primarily based

on nested loop models having an inner MAC operation that enables four ways to harness reuse:

1) reusing a filter value for different input feature map entries, 2) reusing an input feature

map element for different kernels, 3) reusing the partial MAC output values, and 4) reusing

input entries by sliding, that is dedicated only to convolutional layers [32]. An accelerator can
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employ a set of these reuse techniques to keep the data in local memories and avoid going

back to the DRAM memory. Based on these reuse opportunities, the state-of-the-art spatial

DNN accelerators can be categorised into the following categories:

• Weight-stationary such as the TPU [148] and [163], in which the dataflow stores the

filter weight values inside PEs using small register files, while inputs and the partial

sum are streamed between PEs.

• Input-stationary like SCNN [164], where the input feature map entries stay on PE

arrays, weights and partial sums are delivered to the PE, respectively from memory

and PE-PE interconnections.

• Output-stationary like Origami [165] and [166] that keep and accumulate partial

sums in each PE until the accumulation is finished. Meanwhile, the input feature

map and weight values are passed by PE-PE interconnections for more data reused.

• No local reuse such as Nvidia Tensor Core architecture [135], where neither input

feature map, weight, or partial sums remain on each PEs, but they flow from each

PE in different directions to other PEs in order to be reused.

• Row-stationary that is proposed by Eyeriss [28] and Eyeriss-v2 [162], where the

dataflow utilises weight reuse, input feature map sliding, and partial sums. By

involving reuse in multiple data dimensions, this approach offers the highest energy

efficiency.

2.2 FPGA Architectures for Efficient DNN Deployment

This section first demonstrates why FPGA technology has remarkable advantages over other

hardware accelerator platforms for embedded DNNs. Background on FPGA architectures

and their chronological architecture evolution are then described.



2.2 FPGA ARCHITECTURES FOR EFFICIENT DNN DEPLOYMENT 37

2.2.1 The FPGA Advantages for Embedded DNN

Choosing the right hardware to deploy a given algorithm is always challenging. This is

because each application demands a set of considerations when sometimes one characteristic

is only achievable at the cost of sacrificing other features. For instance, integrating domain-

specific circuits enhances the performance of a particular set of applications, whereas it adds

overheads to other workloads that do not benefit from it. Similarly, providing programmability

and reconfigurability broadens the supporting algorithms and data paths (i.e. generality) while

the added flexibility limits the performance and efficiency.

Table 2.4 present a comparison between the state-of-the-art accelerator platforms, where

each technology offers a unique specification portfolio, while there is no solid supremacy

among them. As shown, the differences are not limited to performance metrics and include

production challenges and application-specific considerations. Ultimately, the most restrictive

constraints dictate which hardware to use.

CPUs are the most generalised systems where users can execute any given algorithm through

a pre-defined software instruction set. Although such generalisation is advantageous when

dealing with various workloads, it comes at the cost of limited performance and substantial

energy consumption. This is an issue for many compute-intensive applications, including

DNNs, that offer abundant parallelism and data reuse, while CPU architectures can not

benefit from it. To address this shortcoming, the state-of-the-art CPU systems have 10s of

cores/threads, each incorporating vectorised units (such as AVX-512 units in Intel CPUs [172]

that allow 32 pairwise INT8 multiplications and accumulate adjacent groups of 4 into 8 INT32

results.). However, the offered peak performance is still limited to 10s of TOPs. On the other

hand, the main advantage of employing CPU systems is the ease of use, where the hardware is

available off the shelf, they are easy to program, and are accompanied by a series of excellent

development tools.

In contrast to CPUs, GPUs were initially designed as specialised ASIC chips to accelerate

graphical rendering workloads [173]. Over time, due to the demand for parallel computing

tensor-based computations (such as linear algebra subroutines [70]) for batched data, the GPU
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TABLE 2.4. A comparison between the state-of-the-art accelerator platforms

Specification CPUs ([167]) GPUs ([158, 168]) ASIC ([159, 169]) FPGA ([170])

ar
ch

ite
ct

ur
e

C
om

pu
tin

g

Generality Turing-complete Specific domain Any custom HW

Data path parallelism
few cores/threads

Vectorisation,
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SIMD,
Design specific & fixed Spatial Architecture

HW specialisation Fixed general datapath & memory subsystem
fabrication

specialisation up to
Full flexibility for

Reconfigurable

Pe
rf
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m
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ce
† Peak throughput‡

1-10s TOPs
Low,

100-1000s TOPS
High,

100-1000s TFLOPS
High,

10-100s TOPS
High,

Latency High Low
Power consumption High power Most efficient Moderate
Energy efficiency Very Low Low Most efficient Moderate
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n

NRE Cost Off-the-shelf Costly lithography Off-the-shelf
Unit price Moderate High Low High

Ease of programming Software (compilers & libraries)
software stack

Customised
RTL / HLS

Time to market Low Moderate High Moderate
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D
N

N
s
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e
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ns
of

Arithmetic precision
up to BF16 [134] and INT4 [158]

High-precision FPs and fixed-points
Design specific & fixed Any arbitrary quantisation

Data movement Multi-level memory hierarchy Design specific & fixed Customisable

Interface integration
fixed memory hierarchy

Limited IOs, access through DMA,
Design specific & fixed Customisable

Inference
Great for debugging
Poor performance,

input batch sizes
better in large

not energy-efficient,
High-throughput,

the data path)
(if the algorithm matches

energy-efficient
High performance,

Great for low batch sizes
customisable data path

low latency,
High throughput,

Training Poor performance
(like Nvidia GPUs [158] and TPU [159])

Great production-ready platforms
Not-efficient yet [171]

† For sufficiently parallel applications
‡ The reported ranges are for INT8 MAC accumulated in INT32

architectures became more general-purpose parallel processors (also known as GPGPUs)

by offering programmability through a wide range of SIMD instructions that execute over

thousands of optimised and specialised computing cores in parallel, while still delivering

efficient rendering. Integrating these specialised but flexible circuits for parallel processing

coupled with an energy-hungry multi-level hierarchical cache system limits the energy ef-

ficiency, particularly when the target algorithm does not perfectly match the data path or

offers higher parallelism and data reuse patterns that GPU architecture can not benefit [174].

Despite this issue, GPUs are currently the best choice for DNN inference acceleration and

training tasks due to their accessibility, ease of use, and high performance. Recent high-end

Nvidia H100 series GPUs incorporate a specialised tensor core architecture [175] that enables

an impressive maximum throughput of 989 TFLOPS and 1979 TOPS, respectively, for MAC

operation in BF16 and INT8, at a power consumption of 700W [168].
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Employing a customised ASIC chip is another acceleration option, where the designer can

harden a specific data path targeting pre-defined targeted applications. The main advantage

of this technology is the level of HW specification that leads to maximum performance and

efficiency. However, designing an ASIC is extremely costly in time (usually years) due to

the costly lithography fabrication process that is only economical for the highest volume

production. Also, as post-fabrication alteration is not possible, designers end up continually

fabricating new versions to maintain or enhance performance for the latest workloads. This is

an important issue for algorithms that change frequently, e.g. DNNs.

Recently generalised domain-specific ASIC chips such as Google TPUs [159], GroqChip Pro-

cessor [169], and Graphcore IPU [176] have been able to offer acceleration over a large class

of DNNs while delivering high-performance and energy-efficiency. The primary disadvantage

of this approach is the high level of specialisation that may not match the desired algorithm,

i.e. the ASIC designer has to sacrifice generality to gain performance. Although some ASIC

manufacturers provide open source APIs such as PyTorch [177], TensorFlow [178], etc., the

developer still should deal with customised software stacks, especially for implementing

customised kernels or enabling special hardware features. Eyeriss [28], FlexFlow [179], and

Bit-Fusion [180] are some ASIC DNN accelerator examples from academia.

In a sense, GPU architectures and ASICs present two extreme sides of the wide spectrum

of accelerator platforms. Respectively, they approach the problem with a philosophy of

generalisation and specialisation, respectively. Correspondingly, these goals cause GPU

architectures to sacrifice energy efficiency for generality, and in ASICs, to require constant

upgrades to keep up with evolving DNN algorithms. To alleviate this issue, commercial

platforms have pursued solutions such as application-optimised GPU architectures and more

generalised ASIC datapaths [175, 176]. Despite the differences, both of these observations

are because both technologies aim for a fixed data path without post-fabrication alteration.

This raises the necessity for a new platform that offers ASIC-like data path specialisation with

high performance and energy efficiency and GPU-like generalisation, where any arbitrary

calculation could be effectively mapped to the hardware.
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Reconfigurable architectures, such as FPGAs, address this gap by offering a unique combin-

ation of generalisation and specialisation. Their underlying approach is to utilise flexible

substrates that implement myriad circuits efficiently. Like hardware specialisation in ASICs,

FPGA platforms come with EDA tools to map any given datapath into the available functional-

reconfigurable resources. In contrast, the user can reconfigure the FPGA fabric many times

to upgrade the datapath or to fix bugs in a fraction of the ASIC design flow at virtually no

cost. However, due to the flexibility overheads, the final circuit is not as performant and

efficient as the ASIC equivalent. In comparison to GPUs, the reconfigurability makes FPGA

advantageous. Instead of hardening a generalised data path, resources can be re-routed to

form the desired data path aiming for more efficiency and higher performance.

Although all the abovementioned accelerator platforms have merits in DNN acceleration,

currently, GPU and ASIC-powered platforms are the most common, production-ready, and

high-performance training and inference engines. However, within the lens of embedded

DNNs, FPGAs offer a unique set of features. As elaborated in Section 2.1.4, embedded DNN

algorithms are well known for using special kernels with irregular parallelism and data reuse

patterns, customised quantisation, etc., which change from time to time. However, due to the

hardened datapath in CPUs, GPUs, and ASICs, the hardware design process is always guided

by DNN model benchmarks and not the actual end-user algorithm. To maximise the gains, the

hardware should support data path specialisation for any optimisation, including arithmetic

precision, parallelism, data reuse schemes, circuit pipelining, and memory structures, etc.

This should be combined with a reasonable design flow that enables new DNN models to

be utilised, e.g. translators from DNN descriptions [181, 29] and parameterised domain

specific processor overlays [30, 151]. Finally, the hardware flexibility in FPGAs offers the

opportunity to co-design the algorithm and datapath enabling optimisations in computing

architecture and algorithm dimensions to achieve higher performance and more efficient

resource allocation [31].

Reconfigurable IOs is another advantage of FPGA architectures. Devices with any customised

interface can directly connect to the FPGA IOs, which can reduce latency of the data transfer

between the FPGA and external devices. This enables near-real-time processing, critical for
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some applications, including sensing and controlling systems in autonomous vehicles and

robots. In contrast, GPU and CPU memory structures require accessing external devices

through the DMA mechanism, which adds significantly to the overall latency.

As a final note, practical systems often require the execution of multiple tasks, each with

different characteristics. The authors speculate that future systems will become more het-

erogeneous because they will be required to integrate general-purpose, domain-specific, and

reconfigurable circuits, providing an improved global solution than could be provided by any

single technology.

2.2.2 FPGA Architectures and Opportunities

Reconfigurable architecture technology emerged from the commercialisation of program-

mable logic devices (PLDs) [182] that incorporate memory cells to set the functionality of

initially undefined-function logic units. The gradual advancement in the logic unit struc-

tures and their functional flexibility resulted in various PLD classes, starting from simple

PLDs (SPLDs) that comprise programmable array logic (PAL) 1 and programmable logic

array (PLA) 2 circuits [182], both providing flexible structures to implement sum-of-products.

Later, complex PLDs (CPLDs) scale the integration of PLAs into arrays by providing a

programmable interconnection scheme and distributed clocked registers [183].

FPGAs are the most functionality-rich architectures among reconfigurable architectures [184].

After decades of FPGA architecture research, commercial FPGA architectures have evolved

to comprise both fine and coarse-grained reconfigurable blocks arranged in a columnar

fashion. The most basic units are LEs which are built from LUTs and additional logic, such

as adders and flip-flops. For higher area efficiency and speed, commonly-used circuits such

as memories, DSP blocks and microprocessors are implemented as coarse-grained EBs. A

flexible interconnection network is used to connect LEs and EBs to IO blocks which include

general IO, memory interfaces, and transceiver blocks. Together these form a programmable

system on a chip that can implement arbitrary circuits [185]. In addition to the described

1A programmable AND gate array linked to a programmable OR gate array
2A programmable AND gate array linked to a fixed OR gate
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common theme, each FPGA company suggest diverses a series of FPGA architectures, where

FPGA resources and interconnections are generalised or specialised according to particular

benchmark sets.

In this thesis, we study the architectures of common FPGA compute resources, as known as

logic element and DSP blocks, which are respectively categorised as fine and coarse-grained

FPGA blocks. A brief background for these two blocks in different commercial architectures

is presented below. A more detailed treatment is available in reference [184].

2.2.2.1 Logic Blocks:

Reconfigurable architectures are fundamentally designed to provide generalised components

that can implement a wide range of functions. After the success of CPLDs in scaling PLA

units with a flexible interconnection fabric, Xilinx introduced a more area-efficient LUT-

based logic unit that later became the primary component of modern FPGA architectures. A

M -LUT can act as any M -input Boolean function by storing its truth table in reconfigurable

SRAM cells if the M input signals connect to memory multiplexer select lines to output the

corresponding value from the truth table. After connecting a bypassable flip-flop register

to the LUT output for optional output registering, we form an FPGA basic LE [186]. To

mitigate the interconnection costs in scale, LEs are implemented in clusters of N , called

logic blocks (LBs), where within each group local interconnections are highly flexible with

low latency [187], while LB-LB interconnections are simplified to mitigate the transmission

delays.

Ahmed et al. [188] studied tradeoffs associated with this generic structure. Increasing M

enhances the functional expression of LEs, at the cost of linear and quadratic growth for

circuit latency and area costs, respectively. Also, the parameter N relies on another tradeoff

between the richer localised connectivity vs a less expensive routing scheme. As shown

empirically, 4-6 input LUTs clustered in groups of 3-10 LEs deliver the best-performing

configurations, measuring the area-delay product. This outcome does match the architectural

trends in commercial FPGAs. For instance, Xilinx FPGAs initially started with 2-member
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clusters of 3-LUTs (XC2000 series) and gradually upgraded to 6-LUT in the group of 4 Xilinx

Virtex-5 architecture.

Fixing the size of LUTs over the entire architecture leads to inefficiencies, including underu-

tilisation of large LUTs or gaining lower performance when M is small. Ahmed et al [188]

observed in an experiment that using 6-LUTs instead of 4-LUTs delivers 14% higher perform-

ance in exchange for 17% more chip area. Another study [189] reports for a 6-LUT-based

architecture that only about one-third of LEs were configured in 6-input mode. As a practical

solution, fracturable LUT structures were proposed by Altera and initially commercialised in

Stratix II architecture [190]). These enable decomposing large LUTs into multiple smaller

ones where each can implement a function. Due to the interconnection limits, the decomposed

LUTs may have shared inputs. To potentially register all outputs of decomposed LUTs, the

number of flip-flops per LE also increased. In the case of not decomposing a LUT, the extra

registers could be allocated for pipelining purposes, such as in deeply pipelined implementa-

tions. As an example, in Xilinx Virtex-7 architecture [191], a 6-LUT can decompose into two

5-LUTs while the inputs are shared, or two independent LUTs with the input size of 3 and 2

or less.

Another major evolution in LEs structures was integrating hardened adders and carry chain

circuits for efficient native support for adders, compressor trees, and other multi-input circuits

due to their substantial presence in almost all applications. Mapping a portion of logic to

the relatively smaller hardened circuits and capturing potential LUT-LUT interconnections

using the fast dedicated LE-LE interconnections will lessen the demand for LEs and routing

resources and significantly enhance the overall performance.

CLB [192] and logic array block (LAB) are, respectively, state-of-the-art LB architectures

from two major FPGA vendors, Xilinx and Intel. A CLB is composed of two slices, which

are the basic unit of the FPGA’s soft-fabric. Each slice is composed of four 6-input LEs,

including a fracturable 6-input LUT and additional circuitry such as registers and multiplexers,

which give the slice its expressiveness. Figure 2.7A shows a quarter of the slice architecture

(a 6-input LE and the corresponding circuits) found in the modern Xilinx UltraScale+ FPGAs.

Another notable feature of the slice is the presence of a fast carry-chain between the LEs,
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which is often used to implement arithmetic circuits such as ripple carry adders or compressor

circuits.
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FIGURE 2.7. Basic LE for Xilinx and Intel FPGA architectures.

In contrast, the basic LE in Intel’s architectures is called an adaptive logic module (ALM) [42].

Figure 2.7B shows the ALM architecture of a modern Stratix-10 device. Each ALM is

composed of a fracturable 6-input LUT, while primitives such as full-adders and multiplexers

help to support higher-order boolean functions. Ten ALMs on Intel FPGAs are grouped to
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form a LAB, which augments the ALMs with more primitives such as HyperFlex registers,

local interconnect, and configurable carry-chains [42].

In regard to embedded DNNs, the architecture of the LE plays a significant role, as low-

precision and customised quantisation arithmetic units generally will be mapped into them.

Therefore, some recent studies proposed various ways to upgrade commercial LE structures for

MAC, XnorPopcount, and dot-product operations, which indicate the predominant operations

in embedded DNNs. Boutros et al. [193] proposed a novel dual carry chain for ALMs that

effectively reduces the overall chip area in embedded low-precision DNNs. Kim et al. [194]

tackle the issue by integrating an extra sum chain, beside ALM carry chain, to efficiently

implement pop-counting circuits for binarised DNNs achieving 2× area reduction while

adding 2% overhead on the operating frequency.

The three abovementioned operations are also members of a more generalised arithmetic

class, called parallel digital arithmetic, that have been studied since the 1960s [46, 47,

48]. This was well before LUT-based compressor and parallel counter circuits became

popularised in the past two decades primarily from work by Parandeh-Afshar et al. [195, 50]

and Kumm et al. [196, 197]. In [50], the authors proposed architectural changes to the Intel

ALM carry-chains such that large compressors like (6:2) and (7:2) can be efficiently mapped to

single ALMs. Although their proposed compressor is very efficient, for modern applications

such as XnorPopcount in binarised neural networks (BNNs) [198], these compressors would

be significantly underutilised. In Chapter 4, a series of modifications to the LEs of both Intel

and Xilinx architectures have been proposed that substantially optimise the implementation

of multi-input circuits.

Recent work on LE structures by Rasoulinezhad et al. [2] enhanced the support for low-

precision multi-operand operations such as dot-product operations that is described in detail

in Section 4. Similar work by Boutros et al. [193] also suggests LE-level modifications that

offer better support for low-precision adders and multipliers. More comprehensive details of

this research work is presented in [199].
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2.2.2.2 DSP Blocks

Adding specialised circuits to FPGA architecture is always challenging as it is contradictory

to the philosophy in FPGAs of keeping the architecture as general as possible. Moreover,

they result in wasted area if unused. However, ubiquitous operations such as additions,

multiplications, and fused together as MACs provoke designers to harden such circuitries in

configurable EBs.

In the early days, FPGA platforms were dominantly employed in communication systems,

signal processing devices, and data acquisition tasks that heavily relied on high-precision

arithmetic. This led to DSPs that offer a set of costly high-precision logic and arithmetic with

high performance while it captures all required LUT, registers, and routing resources for the

equivalent implementation by LEs, in a relatively smaller area.

The first DSP generations were commercialised by Xilinx in Virtex-II [200] architecture

that simply incorporates an 18× 18 multiplier with registered input and output ports. This

precision was particularly chosen to match the optimised FIR filter implementations [201]

and the distributed memory block (called Select RAM) structures [200]. In contrast to

Xilinx dedicated multipliers, the first DSP block from Altera was a decomposable multiplier

architecture followed by a flexible multi-input accumulation unit. This architecture is based

on four 18×18 multipliers, where each can be decomposed into two 9×9 separate multipliers.

All four together with an extra carry chain adder can be used to form a 36 × 36 multiplier.

Thus, this block can handle one 36× 36, four 18× 18, or eight 9× 9 multiplications or MACs.

Another feature in this architecture was providing dedicated streaming connections for input

registers that offer efficient data movement for the implementation of 1D filters, including

FIR filters [201].

Later, Xilinx generalised the idea of including the accumulation units after the multiplier

circuit by offering a flexible ALU circuit that implements multi-input logic functions as well

as addition/subtraction/accumulation operations [202]. They also added dedicated and low

latency cascade interconnections between two consecutive DSPs for expansion to higher

precision and complex arithmetic and efficient implementation of 1D and 2D digital filters.
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FIGURE 2.8. Xilinx DSP48E2 schematic.

Until recently, the focus of FPGA vendors was to support applications where optimised DSP

blocks for high-precision arithmetic with multiple pipeline stages were desired. For instance,

Xilinx proposed DSP48E1 blocks with a new 25× 18 multiplier that operates in a high-speed

multi-stage pipeline mode coupled with a pre-adder, comparator and wide XNOR gates. The

multiplier size again increased to 27× 18 in the most recent versions, the DSP48E2 [203]

illustrated in Figure 2.8. It also included a 27-bit pre-adder, 48-bit accumulator, 48-bit ALU,

and a 48-bit pattern detection unit. In SIMD mode, dual 24-bit or quad 12-bit addition

and subtraction operations are supported. Intel sacrificed previous flexibilities to optimise

the Intel Stratix V DSP block [204] with only two multiplier configurations: one 27 × 27

or two separate 18 × 18 multiplications (or MACs). Note 27 × 27 multiplication is also

required for FP32 operations that later in Intel Stratix 10 DSP architectures become natively

supported [41].

Rapid progress in machine learning algorithms, with models changing frequently, established

an interest in leveraging the FPGA technology for both prototyping and efficient inference

deployment. Besides reconfigurability, customised interfaces, and high-energy efficiency, the

presence of high-performance DSP blocks was an opportunity. However, early models were

relatively simple in terms of the computation datapath and memory structure that mapped

straightforwardly to high-performance GPU systems that comprise a large number of hardened

high-precision arithmetic units and efficient memory structure. Over time, the optimisation
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techniques previously discussed in Section 2.1, changed the circumstances for FPGA, but the

DSP architectures were still inefficient due to the previous focus on high-precision arithmetic.

Some works suggested innovative ways to reuse available architectures for a pack of low-

precision operations. For instance, Xilinx has proposed a method to use 8 DSP blocks to

perform 7× 2 8-bit multiply-add operations, achieving a 1.75× performance improvement

over a naive implementation [44]. Similarly, Colangelo et al. [205] proposed to use an 18×18

multiplier as four different 2×2 multipliers in the Intel architecture. A more generalised

study on packing arbitrary precision MAC operations on high-precision DSPs was recently

presented by Sommer et al. [206]. This work also advises overpacking that leverages approx-

imate computing to map more multipliers with reasonable overlaps, which enables six 4-bit

multiplications using a single Xilinx DSP48E2 multiplier rather than just four.

In order to address this shortcoming through architecture, there are three main tiers of solutions

that include dense compute support for low-precision arithmetic while meeting the IOs and

area budget limits, described in the following subsections:

1) Enhancing Existing DSP Blocks:

Some studies have been conducted to support larger numbers of low-precision operations

using existing DSP blocks. It is interesting that predecessor DSP architectures, such as Intel

Stratix-IV architecture that supports up to eight 9×9 multiplications [207], were more flexible

and better matched to the new computation demands. Fracturable multi-precision FPGA

hard blocks have been first proposed by Parandeh-Afshar and Ienne [208]. This DSP variant,

based on a radix-4 Booth architecture, supports 9/12/18/24/36 multiplier word lengths and

multi-input addition. Boutros et al. [209] proposed a modification of the Arria-10 DSP that

can support 4× 9-bit or 8× 4-bit MACs. For the AlexNet, VGG-16, and ResNet-50 DNNs,

this architecture improved speed by up to 1.6× while reducing the utilised area by up to 30%.

Later in Chapter 3, a new DSP architecture called PIR-DSP is proposed that demonstrates

novel flexibilities in precision, interconnection, and data reuse to enhance the current DSP

architectures.
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Low precision is also supported on the latest commercial FPGAs as Intel Agilex, which offers

native support for INT9 and FP16 using DSP blocks [210]. A recent Xilinx DSP architecture,

the DSP58, offers a broader range of precisions compared to its predecessor (the DSP48E2),

while providing complete backward compatibility [211]. A single instance of DSP58 is

capable of MAC operations up to 27× 24 bits, wider pre-adder and logic circuits, as well as

support for a run-time configurable 3-element dot-product of 9 × 8-bit signed values. The

main issue with this approach is it increases the critical path for extremely low-precision

applications since flexibility requires more multiplexers in the implementation.

2) Integrating Domain-specific Engines:

Adding hardened domain-specific processing units is a new commercial trend. The Xilinx

Versal architecture uses a coarse-grained gate array (CGRA) of AI-engines, on the same die

as the FPGA [212], interconnected via a network-on-chip. An AI-engine is a simple RISC

processor enriched by fixed and floating-point SIMD units accessing dedicated register files,

data and program memory, and streaming interconnections. This introduces an additional

heterogeneous compute platform and network on the chip to manage, and the RISC processor

is large in area compared with a DSP block.

Intel Agilex FPGAs utilise chiplet technology for connecting custom circuits from separate

dies as a system in package [210]. This enables integration of an embedded ASIC (eASIC)

Intel tensor tile architecture with promising results for deep learning benchmarks [213]. This

technology also opens the door for emerging embedded FPGA (eFPGA) designs, such as

EFLX tiles from Flex-Logix [214], which natively supports low-precision convolution and

matrix operations.

A fundamental issue with domain-specific approaches reviewed is they advocate heterogen-

eous FPGA and CGRA resources as a solution for ML. This does not directly address the

shortcomings of current FPGA architectures, instead it extends the fabric with CGRA re-

sources off to the side. The other issue is resource duplication, where the separation of CGRAs

from the FPGA resources necessitates duplicating memory, buffer and routing resources on

the CGRA side.
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3) Designing New Embedded Block:

This group of solutions advise rethinking new EB architectures rather than upgrading DSP

blocks, so no backward compatibility is guaranteed. Intel Stratix 10 NX series replace DSPs

with the same size AI-Tensor blocks [215] that are optimised for INT8 and INT4 operations,

respectively, up to 30 and 60 MACs in the form of one-input-shared 10-element dot-products.

To maintain a similar IO budget, this structure employs double buffering and input sharing

among the multipliers [216]. Likewise, Achronix MLP72 block [217] is capable of computing

dot-products of 32, 16, 4 and 2 pairs of inputs, respectively, in INT3/4, 8INT, INT16, and

BF16 precisions. This block also natively supports block floating point arithmetic through

dedicated circuitry for exponent addition and subtraction. As the name of these two extremely

specialised architectures also highlights, they are no longer considered typical DSP blocks,

rather they form a new class of AI/ML-optimised EBs.

Recently, Arora et al. [218] proposed an output stationary 2D systolic array block to augment

an FPGA architecture. The blocks can be composed through a 2D mesh arrangement to create

larger systolic arrays. This architecture focuses on only one computation, namely matrix

multiplication. Unfortunately, many applications do not map well to matrix multiplication

units, e.g. 1D data processing and Microsoft Brainwave-like accelerators that use matrix-

vector unit (MVU) as the primitive. As a follow-up, Arora et al. [219] proposed Tensor Slice.

This EB is a flexible array of processing elements supporting multiple hand-picked tensor

operations with various precisions.

2.3 Compressor Trees

This Section provides background on parallel counters, GPCs, compressors, and compressor

trees.
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2.3.1 Parallel Counters

Parallel counters are digital circuits that simply count the number of asserted bits in the

input, returning this value as a binary output. They can be specified in (p:q) notation, where

p is the number of input bits, and q is the number of output bits used to express the result

in binary notation. Half-adders (HAs) and full-adders (FAs) are commonly used parallel

counters, denoted as (2:2) and (3:2), respectively. Parallel counters can also be expressed in

dot notation [220] as shown for the full-adder in Figure 2.9A. We use this notation frequently

in this paper to visualize various designs, and use the terms bits and dots interchangeably.

Figure 2.9B shows how FAs can be used in parallel to implement a single stage of carry-save

addition for a 3-bit (3b) 3-operand addition. Note that each FA takes inputs from a single

column, and hence, all input bits to a parallel counter have the same rank, i.e. they all have

the same weight.

Full-Adder

SumCarry
(A) FA takes in three bits (dots) and pro-
duces two outputs: sum and carry

St
ag

e 
0

St
ag

e 
1

Rank 0Rank 1Rank 2

(B) One stage of 3b carry-save addition of
three operands using three FAs in parallel

FIGURE 2.9. (3:2) parallel counter, also known as a full-adder.

2.3.2 Generalised Parallel Counters

Generalised Parallel Counters, or GPCs, were first proposed by Meo [221] and subsequently

shown by Parandeh-Afshar et al. [195] to map efficiently to FPGAs. Unlike parallel counters,

GPCs allow input bits to have different weights, which, in the dot notation, make the GPCs
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(A) C6:111 (B) C25:121 (C) C1325:11111

FIGURE 2.10. Three popular GPCs found in the literature

appear as multi-column counters. Figure 2.10 shows the dot notation of some previously

published GPCs [222]. Mathematically, GPCs are written as a tuple:

(pn−1, ..., p1, p0:qm−1, ..., q1, q0) (2.7)

, where pi is the number of input bits in the ith column, and qj is the number of output bits

in the jth column. FPGA implementations can be classified as lookup table-based GPCs

[223], or carry-chain-based GPCs [224]. As their names suggest, the shape of a GPC can

have a profound impact on its hardware implementation on FPGAs, and subsequently its

performance and efficiency in a compressor tree. Popular metrics to quantify the efficiency of

a GPC include [225, 222]:

GPC efficiency, E =
p− q

k
(2.8)

Strength, S =
p

q
(2.9)

Area-Performance Degree (APD) =
(p− q)2

k ∗ d
(2.10)

Arithmetic slack, A = 1− 1 +
∑m−1

i=0 2ipi

1 +
∑n−1

i=0 2iqi
(2.11)

where p and q are the number of input and output bits to/from the GPC respectively, k is the

area utilisation (in LEs) of the GPC, and d is the critical path delay (in nanoseconds) of the
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GPC implementation. We tabulate the efficiency of each GPC studied in this work using these

metrics later in this paper (Table 4.1 and Table 4.3).

2.3.3 Compressors

C4:2

4 inputs (rank 0)

Cin
(rank 0)

Cout
(rank 1)

Out0
(rank 0)

Out1
(rank 1)

(A) Block diagram

0

(B) One stage of a four-operand 4b-addition using
four (4:2) compressors

FIGURE 2.11. Simple (4:2) compressor example.

Compressors can be considered parallel counters, with one main difference: they have explicit

carry-in (Cin) and carry-out (Cout) bits that can be connected to adjacent compressors in the

same stage, as shown in Figure 2.11B. In contrast to carry-propagate adders, the carry-chains

between compressors are not cascaded and hence reduce the critical path. Instead, they are

connected in a carry-save manner. So the overall delay of the circuit scales much better (Fig-

ure 2.12). To the best of our knowledge, the (4:2) compressor (see Figure 2.11A) is the only

FPGA-friendly [196]) design that targets Xilinx FPGAs, while no efficient compressors exist

for Intel devices. Parandeh-Afshar et al. [50] addressed this issue by proposing configurable

carry-chains as modifications to the Intel ALM, supporting 6:2 and/or 7:2 compressors.

For brevity, we describe adders/compressors/GPCs uniformly with a tuple like Equation 2.7

which is simplified by omitting commas. For example, we describe the GPC (6:1,1,1) as

C6:111, the (4:2) compressor as C5:21, or the full adder as C3:11.
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2.3.4 Adder and Compressor Trees

For multi-operand addition, we can build adder trees by chaining multiple ripple-carry adders

(RCAs). Figure 2.12A shows the addition of 3×3b operands. The carry-out from each FA/HA

propagates to the next FA, which results in a long critical path along the carry-chain (shown

in red). While the RCA has a small area footprint, this long delay is undesirable and can limit

performance, especially for operands with large bitwidth.

The carry-save adder (CSA) [226] addresses this issue by treating the full-adder as a C3:11

compressor and breaking the carry-chain as shown in Figure 2.12B. By avoiding the carry

chain, the delay is largely determined by the depth of the tree. However, the final stage must

be reduced to the final answer using an RCA. Nevertheless, the CSA adder reduces the overall

delay of the addition. For the example in Figure 2.12, the critical path delay has one less

full-adder delay.

HAFAFA

HAFAFAHA

(A) Ripple-carry adder.

FAFAFA

HAFAHA

(B) Carry-save adder.

FIGURE 2.12. Examples of two types of adders.

This idea of breaking the carry-chain dependency up till the final RCA stage is the basis

behind compressor trees. A compressor tree is simply a circuit that takes in a set of binary

values (or dots) that represent multiple operands, and outputs the result as a sum and carry.

Stage 0 in Figure 2.9B is a compressor tree that produces sum and carry bits as inputs into

Stage 1, which are then evaluated by an RCA to produce the final result (see HA→FA→HA

row in Figure 2.12B, which is the RCA stage). Compressor trees can be built using GPCs,

compressors, or both, and efficient compressor tree design is an active area of research with

large bodies of existing literature [196, 225, 227, 224, 228, 50, 222, 197].
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The reader is encouraged to read [50] for a more detailed background on parallel counters,

GPCs, compressors, and different methods of compressor tree implementations.



CHAPTER 3

PIR-DSP: An FPGA DSP block Architecture for Multi-Precision Deep

Neural Networks

This chapter describes a novel DSP block architecture called PIR-DSP, which incorporates

precision, interconnect and reuse optimisations to enhance FPGA DSP blocks for adopting

embedded DNN applications, where standard, PW, and DW convolutions form the majority

of the computations. It was shown that the PIR-DSP block could significantly reduce the

energy consumption for low-precision deployments at a reasonable cost of area overhead.

The presentation here expands on work previously published in Reference [1].

3.1 Introduction

Utilising massively parallel architectures, DNNs are much more memory and computation-

ally expensive than previous approaches, and efficient implementations continue to pose a

challenge. As described in Chapter 2, modern CNNs shifted from using standard convolution

operations to customised kernels [21, 25, 107] aiming for more compute-efficient feature

extraction. Even though all these kernels are alike concerning inner MAC operations, their

parallelism and data reuse patterns are distinct. Besides the model optimisations, DNN infer-

ence accelerators employ low precision arithmetic operations to decrease memory footprint

and computation requirements [116, 117, 112, 118].

FPGA technology well suits such levels of customisation by providing configurable resources

and interconnections for implementing arbitrary precision arithmetic and specialised data path

configurations. Reference [11] compared the implementation of MAC units with different
56
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word lengths using LEs on Xilinx and Intel FPGAs. They reported that using fixed point

8× 8-bit operations instead of single precision floating point, logic resource utilisations are

reduced by 10 − 50×. This idea has been taken to its conclusion with ternary and binary

operations which achieve extremely high speed and low energy implementations on FPGA

platforms [29, 150]. Although LEs are flexible-enough to implement any given circuit, their

poor compute density is a barrier to efficient and high-performance deployments.

Current FPGAs also include DSP blocks to allow efficient implementation of MAC operations.

Unfortunately, as for CPU, GPU and ASIC architectures, they are optimised for higher

precision (8-18 bits) and do not efficiently support low precision MAC operations, leading

to inefficiencies in resource usage and energy consumption. Using high precision DSPs

for low precision calculations is a waste of area and requires additional LUT resources to

implement the remaining operations if the DSPs are all utilised. In addition, researchers have

proposed strategies involving the run-time selection of word lengths, which can not efficiently

be implemented in current FPGA architectures [229].

In addition, research on computer architectures for DNN accelerators has extensively utilised

2D systolic architectures [28, 162]. However, current FPGA DSP block layouts are based

on 1D-DSP columns. This mismatch to 2D systolic architectures leads to inefficiencies and

requires that general purpose rather than dedicated routing resources be used. It’s worth to

note each data path pattern mandates a complementary buffering setting that adds to costs by

utilising the LEs as pipeline registers and FIFOs.

Through three modifications to Xilinx DSP48E2 DSP blocks, while guaranteeing complete

backward compatibility, we address the raised issue for important computations in embedded

DNN accelerators, namely the standard, depth-wise, and point-wise convolutional layers. First,

a flexible precision, run-time decomposable multiplier architecture for CNN implementations

is proposed. Second, a significant upgrade to DSP-DSP interconnect is suggested that

provides a semi-2D low precision chaining capability to support the low-precision multiplier

architecture. Finally, data reuse is improved via a register file which can also be configured as

FIFO. Compared with the 27× 18-bit mode in the Xilinx DSP48E2, the proposed Precision,
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Interconnect, and Reuse-optimised DSP (PIR-DSP) offers a 6× improvement in multiply-

accumulate operations per DSP in the 9× 9-bit case, 12× for 4× 4 bits, and 24× for 2× 2

bits. As estimated, PIR-DSP decreases the energy consumption to 31/19/13% of the original

value in a 9/4/2-bit MobileNet-v2 DNN implementation.

3.1.1 Previous Work in Multi-precision DSPs

Some previous research has been conducted in supporting larger numbers of low-precision

operations using existing DSP blocks. Section 2.2.2.2 presented examples using both Intel

and Xilinx DSP blocks. However, to address this shortcoming with DSP architecture, some

other studies tried to enhance current DSPs with minor modifications by adding native support

for low-precision MAC operations while keeping the promise of backward compatibility.

Multi-precision FPGA hard blocks have been proposed by Parandeh-Afshar and Ienne [208].

This DSP variant, based on a radix-4 Booth architecture, supports 9/12/18/24/36 multiplier

wordlengths and multi-input addition. later, Boutros et al. [209] proposed a modification

of the Arria-10 DSP that can support 4× 9-bit or 8× 4-bit MACs, respectively in the form

of 2 and 4-element dot products. For the AlexNet, VGG-16, and ResNet-50 DNNs, this

architecture improved speed by up to 1.6× while reducing utilised area by up to 30%.

The proposed PIR-DSP differs from previous designs in that it is a parameterised DSP block

architecture with improved flexibility, considers buffering within the DSPs, and also considers

inter-DSP interconnect. This serves to improve the speed and energy consumption of the

standard, DW and PW convolutions of Table 2.1, with FC layer computations unaffected

by our changes. Recently, Dai et al. [230] incorporates approximate multipliers into PIR-

DSP architecture to reduce the overheads and gain higher performance for machine learning

applications.

In addition to upgrading DSP blocks, integrating domain-specific engines and designing new

EBs are two other approaches to enhance FPGA architectures in general for AI workloads,

where both methods commonly suggest moving on by integrating new specialized blocks

without addressing the DSP architecture in-efficiencies for the new demand. Although these
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techniques are out of the scope of this chapter, the reader is highly encouraged to read

Chapter 2 for a more in-depth background.

3.1.2 Contributions:

A novel precision, interconnect and reuse optimised DSP block (PIR-DSP), which is optimised

for implementing area and energy-efficient DNNs, is proposed. In particular, this chapter

presents the following contributions:

• Precision: A parameterised MAC (MAC-IP) with run-time precision control, utilising

a novel combination of chopping and recursive decomposition.

• Interconnect: A DSP interconnection scheme that provides support for semi-2D

connections and low-precision streaming.

• Reuse: Inclusion of register files within the DSP to improve data reuse and reduce

energy.

• Performance evaluation of the PIR-DSP, which incorporates the MAC-IP, inter-

connect and reuse optimisations, for implementing machine learning primitives

including standard, DW and PW convolution layers in recent embedded DNNs.

PIR-DSP is implemented as an open-source parameterised module generator that can target

FPGAs or ASICs. All source code and data, along with a spreadsheet to reproduce all the

results in this chapter, are available from www.github.com/raminrasoulinezhad/

PIR-DSP.

3.2 PIR-DSP: Architectural Modifications to the Xilinx

DSP48E2 DSP Block

This section presents PIR-DSP architecture (Figure 3.1) through three modifications to

the Xilinx DSP48E2 block (that was previously introduced in Chapter 2 and illustrated in

Figure 2.8).

www.github.com/raminrasoulinezhad/PIR-DSP
www.github.com/raminrasoulinezhad/PIR-DSP


60 3 PIR-DSP: AN FPGA DSP BLOCK ARCHITECTURE FOR MULTI-PRECISION DEEP NEURAL NETWORKS

  

D 27bit

ALU0 [12:0]

ALU1 [16:13]

ALU2 [22:17]

ALU3 [26:23]

ALU4 [30:27]

ALU5 [34:31]

ALU6 [40:35]

ALU7 [48:41]

A 30bit

B 18bit

C 48bit

P 48bit

A0

B0 B1
B0

B0

B1

B1

A_COUT 30bitB_COUT 27bit P_COUT 48bit

B
_

C
IN

A
_

C
IN

P
_

C
IN

P
ip

e
lin

e

54

54

B0 B1

FIFO/RF

Shift-Reg

L

H

M M

H

L

A1

A2
A3

A4
A5

A6
A7

48bit

Wide XOR 

Pattern Detector

Pre-adder P

I

R

P

D 27bit

PA 30bit

B 18bit

C 48bit

P 48bit

A0

A_COUT 30bitB_COUT 27bit P_COUT 48bit

B
_

C
IN

A
_

C
IN

P
_

C
IN

P
FIFO/RF

A1

A2
A3

A4
A5

A6
A7

48bit

Wide XOR 

Pattern Detector

Pre-adder 

I

R

FIGURE 3.1. The overall PIR-DSP schematic (P, I, R blocks encapsulate
precision, interconnect, and reuse circuits).

3.2.1 Precision: Decomposable Multiplier

Our multiplier decomposition strategy is based on two approaches: chopping and recursive

decomposition.

3.2.1.1 Chopping

A signed 2’s complement number can be represented as the sum of one signed (the most

significant part) and an unsigned term

As = [an−1an−2...ak+1]
s
2 × 2k + [akak−1...a0]

un
2

= As
H + Aun

L

(3.1)

where the kth bit is the dividing point and the As
H and Aun

L are the signed and unsigned

portions.

When applied to signed multiplication, this enables the separation of lower-precision product

terms

AsBs = As
HBs

H22k +As
HBun

L 2k +Aun
L Bs

H2k +Aun
L Bun

L (3.2)
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with each input being chopped at the kth bit. This can be generalised for any N×M-bit

multiplier with chopping size C, if N and M are dividable by C, as follows:

AsBs =

i=N
C
−1,j=M

C
−1∑

i=j=0

A{s or us}
i B{s or us}

j 2(i+j)C (3.3)

where Ai and Bj are the i-th and j-th C-bit chopped sections of variable A and B, which are

respectively signed only when i = N
C
− 1 and j = M

C
− 1.

Consider Equation 3.3 applied to a 27×18-bit multiplier with chopping size 9. As shown

in Figure 3.2A, standard multiplication is done by summing the six partial results with

appropriate shifts. Figure 3.2B shows that by controlling the shift steps for the first, fourth

and fifth partial results, the summation can be arranged into two separate columns, where

each column calculates a 3-C×C-bit-MAC operation with separated carry-in signals

OutLSB = P0 + P1 + P2 + Cin0

OutMSB = P3 + P4 + P5 + Cin1.
(3.4)
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3.2.1.2 Recursive Decomposition

We employ the twin-precision technique [231] in a signed/unsigned N ×N multiplier. Inputs

are 1-bit extended according to the individual sign control signals and their most significant

bits (MSBs). The extended inputs are then multiplied using a (N + 1) × (N + 1) signed

multiplier based on the Baugh-Wooley structure [232]. Figure 3.3A shows the baseline

multiplier where A and B are 9-bit numbers and each colored circle represents a logical

function. By modifying the logic circuits of the PPs and preventing carry propagation using

mode control signals, the multiplier can also operate as two half-precision multipliers. The

required modifications are depicted in Figure 3.3B. Figure 3.3C shows a recursive application

of the technique to compute four quarter-precision values in parallel, only small changes to

the PP logic and carry propagation paths being required.
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Our multiplier is parameterised by chopping factors (separately for each of the two inputs)

and the depth. For an M×N multiplier, we use the notation M×NCijDk where i and j

are chopping factors (the numbers of times we chop M and N), and k is the recursive

decomposition depth factor.

We applied our idea to the Xilinx DSP48E2 27 × 18 multiplier which produces two par-

tial results (the following ALU is responsible for adding these two outputs). To create a

27×18C32D2 configuration, we chop A and B into i = 3 and j = 2 9-bit parts. As each
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smaller multiplication is a signed/unsigned 9-bit multiplication, we then used recursive de-

composition with depth k = 2 to change the 9× 9 signed/unsigned multiplier to additionally

support two 4 × 4 or four 2 × 2 multiplications (Figure 3.3C). Extra bits are included so

that this is done without precision loss. Figures 3.2C and D show how the bit-level carry

propagation from each column to the next is arranged. Combining the six 9× 9 multipliers,

we can compute the following multi-precision MAC operations without precision loss:

• One signed/unsigned 27× 18

• Two sets of signed/unsigned (9× 9 + 9× 9 + 9× 9)

• Four sets of signed/unsigned (4× 4 + 4× 4 + 4× 4)

• Eight sets of signed/unsigned (2× 2 + 2× 2 + 2× 2)

We have developed an IP generator which uses these techniques to convert any size multiplier

to a MAC-IP. Each operand can be signed or unsigned, controllable using a selector signal at

run-time.

3.2.2 Interconnect: Low-precision, Semi-2D DSP-DSP Communication

Low energy and high performance DNN accelerators have been demonstrated using systolic

array architectures [28, 162]. In this section, we focus on data movement among processing

elements (PEs), which are DSP blocks in this content. In particular, 3× 3 convolutions are of

most interest as these dominate the embedded DNNs reviewed in Chapter 2.

Whereas in ASIC designs the PEs can be arranged in a 2D pattern, FPGA DSP blocks are

arranged in columns. In each column, DSP inputs and outputs can be passed via dedicated

chain connections. This single-direction chaining is highly efficient for their intended signal

processing applications. Although general routing resources make it possible to configure a

2D mesh network of PEs, this approach introduces significant amounts of additional circuitry

and latency compared with direct connections.

In 2D systolic architectures, PE interconnections must forward input and result data to two

different destination PEs, usually in different dimensions. Figure 3.4A shows a 2D PE
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FIGURE 3.4. (A) Conventional 2D processing element architecture in [28] (B)
3×3 convolution layer implementation on 2D architecture (C) Our Semi-2D
DSP arrangement (D) conventional FPGA column-based arrangement.

architecture, proposed in [28], which is a N×M mesh network of PEs with unidirectional

communications occurring in horizontal, vertical and diagonal directions. In Figure 3.4B a

3×3 convolutional layer is assigned to three rows of the PEs. By rearranging this three-row

architecture as shown in Figure 3.4C, we organise them as a column. When implementing

2D systolic arrays solutions on conventional FPGA column-based chains, it is impossible

to use both the input and output dedicated chain connections as they have same source and

destination. Figure 3.4D shows a column-based connection which is capable of forwarding

the data/result to the next DSP block. This addresses the difficulty of implementing a 2D

interconnection on a 1D array, by supporting data forwarding to two DSPs instead of a single

one. This is particularly effective for the case where one dimension is small (e.g. 3 elements

for 3× 3 convolutional layers).

Current DSP columns are capable of streaming high-precision data over the chains. To stream

low precision inputs, we make some minor modifications to the input B register and chaining

connections to support both high and low precision data streaming. Also, we modified both

DSP input chains (A and B) to support run-time configurable input data forwarding up to next



3.2 PIR-DSP: ARCHITECTURAL MODIFICATIONS TO THE XILINX DSP48E2 DSP BLOCK 65

two DSPs. This is done by bypassing the next DSP to enhance the implementation capabilities

for improving data reuse via a small modification to current FPGAs. With our changes, the

18-bit input B can feed both B 27-bit shift registers and their 9-bit LSB portions via both A

and B chains. Furthermore, the design supports run-time configuration (Figure 3.5) of stream

precision. When used to implement convolutional layers, these modifications support one

high-precision or two low-precision streams for the Stride = 1 and 2 cases.

3.2.3 Reuse: Flexible FIFO and Register File

In DNN implementations each input/parameter takes part in many MAC operations, so it is

important to cache fetched data. Since data movement contributes more to energy consumption

than computation, this leads improved speed and energy [28, 162]. Unfortunately, Xilinx

DSP blocks do not support caching of data (this is done using fine-grained resources or hard

memory blocks). Intel DSPs do include a small embedded memory for each 18-bit multiplier,

but they cannot be configured at run-time and hence can only be used efficiently for fixed

coefficients, making them unsuitable for buffering of data for practical sized DNNs.

We propose a small and flexible FIFO/register file (RF) to enhance data reuse. This is a wide

shift register can be loaded sequentially and can be read by two standard read ports. The two

read port address signals can be provided from outside the DSP block. The first is used inside

the DSP and brings the requested and the next data for multiplier and multiplexer units (two

27-bit read ports are needed to feed our multiplier). As RFs are mostly used to buffer a chunk

of data inside the DSP, writes always occur as a burst. The other read port is used to select

the data for DSP-DSP chaining connections. Using this approach, we arrange the RF as a

flexible FIFO. By adjusting the FIFO length, systolic array implementations with different

buffering patterns can be implemented. The schematic of our implemented FIFO/RF is given

in Figure 3.5, and operates on input A.
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FIGURE 3.5. The detailed PIR-DSP schematic using a 27×18C32D2 MAC-IP
(all registers are bypassable).

3.3 Experimental Study

3.3.1 Baseline DSP48

As a baseline, we modelled the Xilinx DSP48E2 DSP block using Verilog and synthesized

it using SMIC 65-nm technology standard cell with Synopsis Design Compiler 2013.12.

Post-synthesis reports show that DSP48E2 timing is consistent with reported speeds for

DSP48E1 in Virtex 5 speed grade -1, especially the critical path, which is 3.85 and 3.94

ns, respectively for our DSP48E2 and Virtex-5 DSP48E1. A comparison with DSP48E1

rather than DSP48E2 was made as the former generally has the same DSP architecture and

65 nm process technology [233]. DSP48E2 is the most recent version, including three major

architectural upgrades; wider multiplier unit (27×18 instead of 25×18), pre-adder module,

and wide XOR circuit. We were not able to compare area since no information is available

for the DSP48E1/2 [234].

The baseline DSP48E2 multiplier produces two temporary results, and these are added using

the ALU to produce the final MAC output. As a longer critical path is created by the PIR-

DSP partial product summation circuits, we applied parallel computing and carry-lookahead

techniques for both multiplier and ALU. It was also necessary to add a new pipeline-register
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TABLE 3.1. MAC-IP post synthesis results (area ratio 1 = 9224 um2).

MAC Model
Area Fmax # of MAC / Energy per MAC (pJ)

(ratio) (MHz) 27×18 9-bit 4-bit 2-bit

27×18-MAC 1 763 1/28.4 1/28.4 1/28.4 1/28.4

27×18C32D0 1.46 730 1/37.6 6/6.3 6/6.3 6/6.3

27×18C32D1 1.86 671 1/43.9 6/7.3 12/3.7 12/3.7

27×18C32D2 1.70 538 1/47.9 6/8.0 12/4 24/2.0
27×27C33D0 2.12 714 1/54.1 9/6.0 9/6.0 9/6.0

27×27C33D1 2.21 581 1/59.5 9/6.6 18/3.3 18/3.3

27×27C33D2 2.36 380 1/90.8 9/10.1 18/5.0 36/2.5

layer to the multiplier unit to reduce the critical path our more complex circuit. Modifications

to the ALU also required replacing the DSP48E2 12/24/48-bit SIMD add/sub operations with

a 4/8/18/48-bit SIMD which leads to smaller and width-variant ALUs since they must be

aligned with the carry propagation blocking points, as shown in Figure 3.5. We note that the

multiplier in the DSP48 is not on the critical path so adding a similar pipeline register does

not affect its critical path.

3.3.2 Precision (MAC-IP)

Figure 3.6 and Table 3.1 show post-synthesis Area, Maximum frequency, and energy per

MAC operation results for different configurations of the MAC-IP using the performance

optimisation synthesis strategy and statistical signal toggle rates. Note, some configurations

may not natively support all computation precisions. In those cases, the energy consumption

values are estimated using the closest precision mode.

Table 3.2 Configuration #0 shows our synthesised DSP48E2 area and maximum frequency.

Configurations #1 to #3 results are obtained by simply replacing the multiplier and ALU

units in the DSP48E2 with the MAC-IP. These configurations are different in their 9 × 9

multiplier structures, respectively generated by recursive decomposition factors of 0, 1, and 2,

and depicted in Figure 3.3A, B, and C. Upgrading the multiplier to a 27×18C32D2 MAC-IP,
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TABLE 3.2. PIR-DSP synthesis results for different MAC-IP configurations.
The PIR-DSP case includes all our optimisations.

# DSP Version
Area FMax

Post Synth. ratio (MHz)

0 DSP48E2 25419 1.00 463

1 + M27×18C32D0 MAC-IP 28638 1.13 520

2 + M27×18C32D1 MAC-IP 28838 1.13 463

3 + M27×18C32D2 MAC-IP 29097 1.14 358

4
+ M27×18C32D2 MAC-IP

29972 1.18 362
+ interconnect

5
PIR-DSP=MAC-IP+

32505 1.28 357
+ interconnect + reuse

leads to improvements in MAC capabilities of ×6, ×12, ×24 times for 9, 4, 2-bit MAC

operations respectively, at the cost of a 14% increase in area.

3.3.3 Interconnect and Reuse (PIR-DSP)

Table 3.2 Configuration #4 is produced by adding the interconnect optimisation to Config-

uration #3. Configuration #5 is the final implementation of PIR-DSP which adds the reuse

optimisation. As in the DSP48 data sheet, the reported Fmax to the P output omits the wide

XOR and pattern detector circuits of Figure 3.5.

To evaluate the effectiveness of our proposed data movement modifications for low-precision

computations, we focused on the total run-time energy required by implementing low-

precision versions of some well-cited embedded CNNs.

We extracted the read and write energy using Xilinx Power Estimator (XPE) for BRAM and

LUT blocks on the Virtex-5 FPGA. EBRAM, Read and EBRAM, Write per byte were estimated for

an 18-bit wide memory configuration (the most efficient way to use BRAMs). To estimate

the energy associated with moving data from an off-DSP RF and shift-register (SR), we

configured the LUTs respectively as RAM with Fanout = 4 (for broadcasting), and shift

register with Fanout = 1 (streaming) (Table 3.3). Using results for small register files in [235,
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FIGURE 3.6. PIR-DSP synthesis results for different MAC-IP configurations.
The PIR-DSP case includes all our optimisations.

236, 126], we estimated our embedded 4×2 30-bit RF read & write energy to be 1.1 pJ/byte.

RF width and size are selected respectively, to fully feed the multiplier/pre-adder in high/low-

precision and to be similar to Intel DSP block read-only RFs which are configured in two

8×18-bit memories per DSP. To estimate input B energy which operates as a SR and a normal

register we used results for high-performance [237] and low energy flip-flops (FFs) [238]

to obtain estimates of 180 fJ and 90 fJ respectively. Energy required to transfer data from

DSP-DSP was obtained from [239], and scaled to 65nm technology (Using scaling factors

in [240]), to obtain 2 pJ per byte. Using the energy ratios from Table 3.1, energy consumption

for 9/4/2-bit MAC operations are 89/44/22× that of a 9-bit register. Table 3.4 summarises the

estimated energy ratios for data movement. We further assume that all elements (except the

MAC) scale linearly with wordlength.

3.3.4 Implementation of Convolutions

We now describe implementations of standard and DW convolutional layers, using a 3×3

DW convolution layer as a case study. According to Equation 2.4, output channels can be

computed in parallel. We assumed input and weight parameters are located in BRAMs and



70 3 PIR-DSP: AN FPGA DSP BLOCK ARCHITECTURE FOR MULTI-PRECISION DEEP NEURAL NETWORKS

TABLE 3.3. Estimation of BRAM, Off-DSP RF and RS Read/Write access
energy 9-bit word on a Xilinx XC5VLX155T extracted from XPE tool (pJ)

BRAM Metrics Method
BRAM Output width

18 9 4 1

ERead 100% Read usage 8.45 15.8 32.3 116

EWrite 100% Write usage 9.98 17.9 35.6 128

EBRAM (EB) ERead+EWrite 18.43 33.7 67.9 244

LUT Metrics Method
LUT FanOut

4 3 2 1

ERF (Off-DSP) LUT as RAM 3.60 3.28 2.96 2.64

ESR (Off-DSP) LUT as SR 4.92 4.59 4.27 3.95

TABLE 3.4. Data movement energy ratios in 65 nm Technology (1× = 90fJ).

Energy FF SRe RFe Chain RF SR BRAM(B) MAC

Ratio 1 2 12.5 23 40 44 205 89-22

results will be written back to BRAMs. In an implementation on conventional DSPs [241],

weight stationary data flow was used, with each input feature map element fetched once

from BRAMs and then streamed over off-DSP SRs. Meanwhile, weight parameters should

be accessed by multiple DSPs, where each DSP reuses a parameter for processing a row of

input feature map. Thus, a weight parameter is fetched from BRAMs Fh times to be stored

in DSP registers and locally accessed for Fh × Fw times from the DSP registers in total.

Mathematically, each filter and input element are respectively used Fh × Fw and Kh ×Kw

times. The average energy for the described data flow where EMAC is the energy consumption

of the MAC computation is

Econv. = EInput + EWeight + EMAC

= (
EB

KwKh
+ ESR + EFF ) + (

EB

Fw
+ EFF ) + EMAC

(3.5)
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FIGURE 3.7. Proposed implementation for standard and DW convolution
layers (the computation assigned to each three PIR-DSPs is shown at right).

3.3.4.1 Depth-wise Convolution

For a PIR-DSP implementation, inspired by the Eyeriss architecture [28], we mapped com-

putation of multiple rows of output channels to a three-cascaded PIR-DSP. Each PIR-DSP

can compute 2/4/8 sets of three-MAC operations for 9/4/2-bit precision. Each three-MAC

operation can be used for a row of a 3×3 DW kernel. Cascading three PIR-DSPs, we can

sum the partial outputs to produce the final output feature map elements. As illustrated in

Figure 3.7 for 9-bit precision, each PIR-DSP receives two streams of 9-bit data (as each

PIR-DSP can compute two parallel three-MAC operations). The three-cascaded PIR-DSPs

can forward two of their streams to the next three-cascaded PIR-DSP over the DSP-DSP

chains, and we can implement K rows of 2/4/8 channels of the output matrix for 9/4/2-bit
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precision using a column of 3K PIR-DSPs. For this case, EInput becomes

EStream,Input =
EB + (NoF )EChain

KhKw

+ ESRe
(3.6)

where NoF is the number of forwarding over chains for each input stream (2 in our case as

each row of the input stream is involved in three rows of output feature map). To implement

other kernel sizes, we use a kernel tiling approach with tile sizes of 3×3, 2×3, and 1×3

which are respectively the computation capabilities of a three-cascaded, two-cascaded, and

a PIR-DSP. Thus a 5×5 kernel can be implemented using 2× three-cascaded DSPs and 2×

two-cascaded DSP groups where NoF is 6.

3.3.4.2 Standard Convolution

For the case of standard convolution, our RF reuse reduces EInput by a factor of RFsize (last line

of Table 3.5) when an input value is reused for multiplication with various weight parameters.

The calculated access energy ratio in the last column indicates that PIR-DSP uses 31% of the

data access energy for a middle bottleneck layer of MobileNetv2 [108] which applies 192

depth-wise 3×3 filters on an input feature map of shape 562 × 192.

3.3.4.3 Point-wise Convolution

For a PW convolution, each input channel can be streamed into a DSP to be multiplied by

corresponding weight parameter, producing a partial result which is cascaded and summed

to produce an entry of the output feature map. In a PIR-DSP implementation, we assign

three channels of input and three corresponding channels of 2/4/8 PW kernels to a PIR-DSP,

depending on precision. PIR-DSP using 2, 4, or 8 three-MAC operations computes partial

results of each filter on the same input stream in parallel (the stream includes an element

of three channels of input feature map in each cycle). By cascading we can compute 2, 4,

or 8 six-MAC operations (computing six elements of the PW kernels). Also, as illustrated

in Figure 3.8 for 9-bit precision, each two-cascaded PIR-DSP can forward their streams to

the next two-cascaded DSP, which leads to energy reduction as summarised in Table 3.5.

Thus, PIR-DSP uses saved weights and performs a MAC with the 2/4/8 3-channel weight
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TABLE 3.5. Read Access Energy for Standard/DW/PW Conv Layer per MAC
(baseline implementation uses off-DSP resources to stream input over saved
weights in DSP registers).

Method EInput EWeight Ratio (%)

St
an

da
rd

/D
W

Baseline
EB

KhKw

+ ESR + EFF
EB

FhFw

+ EFF 100

Stream
EB + (NoF )EChain

KhKw

+ ESRe

EB

FhFw

+ EFF 45

Stream&RF
EB + (NoF )EChain

KhKwRFs=4×2

+ ESRe

EB

FhFw

+ PRFe 31

PW

Baseline
EB

N
+ ESR + EFF

EB

FhFw

+ EFF 100

Stream
EB

N
+ EChain + ESRe

EB

FhFw

+ EFF 58

Stream&RF

EB

N
+ EChain

RFs=4×2

+ ESRe

EB

FhFw

+ ERFe 44

parameters which are saved in two 27-bit registers. Furthermore, the RF improves input

data reuse. By applying the equations to a middle bottleneck layer of MobileNet-v2 (which

includes 192 PW 1×1×32 filters on 562×32 input feature map), our proposed optimisations

can reduce the read access energy to 44% of the original value.

A similar analysis was applied to all layers of some common embedded DNN models, the

results in Table 3.6 are obtained. For example, when applying all our optimisations to

MobileNet-v2 [108], energy is reduced to 31/19/13% of the original value for 9/4/2-bit

precision.

3.3.5 Comparison with Previous Work

BitFusion [180] is an ASIC DNN accelerator, supporting multi-precision MACs. The reported

area is for a computation unit in 45-nm technology, comprising 16 BitBricks, each of which

is a 2-bit plus sign multiplier. This is similar to our 27×18C32D2 MAC-IP (Table 3.1),
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FIGURE 3.8. Proposed implementation for PW convolution layers (the com-
putation assigned to each two PIR-DSPs is shown at right).

TABLE 3.6. Energy ratio of PIR-DSP optimisations for 9/4/2-bit precision
(percent)(baseline = 100/100/100).

Modification NASNetA4 Mobile Shuffle Squeeze
P I R @1056 [113] Net-v2 [108] Net-v2 [114] Net [22]

7 7 7 baseline baseline baseline baseline

3 7 7 39/26/20 38/26/20 38/26/20 40/28/22

3 3 7 33/20/14 33/21/15 33/21/15 31/20/14

3 3 3 31/19/13 31/19/13 31/19/13 29/17/12

although BitFusion is more flexible as it supports more variations including 2×4, 2×8 and

4×8. Table 3.7 compares performance per area (PPA). We used the maximum frequency

reported for a same implementation, DSP48E1, in three FPGAs, Virtex5/6/7, normalized

to feature size [240] (area is scaled by 1/0.66/0.3 and maximum frequency by 1/1.1/1.35

respectively for 65/45/28 nm). BitFusion only applies the chopping technique, leading to

high area overhead. The introduction of recursive decomposition better supports low and

high-precision MAC operations.
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TABLE 3.7. Comparison with previous work. Main entries are in (# of MAC
per cycle / MACs per second per DSP (GOps/Sec)) format.

Module
BitFusion MAC

PP
A

(r
at

io
)

Boutros PIR

PP
A

(r
at

io
)[180] IP [209] DSP

freq./Tech (MHz/nm) 500 / 45 537 / 65 600 / 28 357 / 65

Area um2 2148 15759 9389 32505

Area × Delay ratio 0.17 1 0.17 1

Area × Delay ratio (norm) 0.24 1 0.77 1

2×2/Bin./Ter. (16/8) (24/12.9) 0.4 - (24/8.5) -

4×4 (4/2) (12/6.4) 0.7 (8/4.8) (12/4.2) 1.2
8×8 (1/0.5) (6/3.2) 1.4 (4/2.4) (6/2.1) 1.2
16×16 - (1/0.5) - (2/1.2) (1/0.36) 0.4

18×18 - (1/0.5) - (2/1.2) (1/0.36) 0.4

27×18 - (1/0.5) - (1/0.6) (1/0.36) 0.8

27×27 - - - 1/0.6 - -

Boutros et al. proposed improvements to the Intel DSP block [209], and is capable of 27× 27

and reduced precision MACs down to 4-bit. In comparison, PIR-DSP can support precisions

down to 2 bits, has better performance at 8× 8 bits and lower, is generated using a flexible

module generator, but is worse at 16×16 and higher PPA. It is not possible to compare energy

but we would expect Boutros to be similar to the Baseline case in Table 3.5 with PIR-DSP

having significant advantages due to the interconnect and reuse optimisations.

3.4 Summary

This chapter demonstrated the disadvantage of contemporary FPGA DSP blocks for applic-

ations, such as embedded DNNs. As a solution, a novel DSP block architecture, called

PIR-DSP, was described, which incorporates precision, interconnect and reuse optimisations.

When applied to the implementation of embedded DNNs, for which the bottleneck is the

standard, PW and DW convolutions, it was shown that PIR-DSP block architecture signific-

antly reduces the energy consumption of low-precision implementations, albeit requiring an

extra cycle of latency and a 28% area overhead.



CHAPTER 4

LUXOR: An FPGA Logic Cell Architecture for Efficient Compressor

Tree Implementations

This chapter proposes two tiers of modifications to FPGA logic cell architecture to deliver

a variety of performance and utilisation benefits with only minor area overheads. In the

first tier, the existing commercial logic cell datapaths are augmented with a 6-input XOR

gate in order to improve the expressiveness of each element, while maintaining backward

compatibility. This new architecture is vendor-agnostic, and it is referred to as LUXOR. Then,

a secondary tier of vendor-specific modifications to both Xilinx and Intel FPGAs, which are

respectively called X-LUXOR+ and I-LUXOR+, are presented. As demonstrated, compressor

tree synthesis using GPCs is further improved with the proposed modifications.

The presentation of this chapter is based on the background given on FPGA architectures and

compressor tree implementations in Chapter 2, and expands on work previously published in

[2].

4.1 Introduction

The design of parallel computer arithmetic circuits is a well established field of research dating

back to the works of Wallace [46], Dadda [47], Swartzlander [48], Verma [49], and others. In

the context of FPGAs, there has always been interest in specialised arithmetic primitives which

improve performance over a wide range of application domains. One such primitive, GPCs,

enables fast accumulation of compressor trees. Work from Parandeh-Afshar et al. [227] motiv-

ated the use of GPCs on FPGAs, while Kumm et al. [197] demonstrated software techniques

that automate the design of optimal compressor tree implementations for FPGAs. However,
76
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modern FPGA LUT based architectures are not particularly efficient for the implementation

of compressor trees [50].

This coincides with the substantial application shift from high-precision digital signal pro-

cessing algorithms to low-precision compute-intensive algorithms, including embedded DNNs.

In the former cases, the computations normally map to FPGA DSP blocks. However, as

presented before in Section 2 for DNNs, efficient deployments engage quantisation and

customised parallel computing pattern techniques, which current DSP architectures do not

efficiently support. Therefore, utilising LEs for low-precision fused arithmetic is a new

demand trend that appears in a variety of applications. Parallel reduction circuits [29, 17]

and pipelined dot-product architectures [30, 31] are great and frequently used compressor

tree examples that also dominate the computations in the state-of-the-art embedded DNNs,

which appear with various array dimensions and arithmetic precisions. This necessitates

rethinking the LE architectures for more efficient support for generalised parallel counters

and compressor trees.

4.1.1 Related Work

Parallel digital arithmetic circuits have been explored since the 1960s [46, 47, 48], but FPGA-

based compressor trees were only popularised in the past two decades, primarily from work

by Parandeh-Afshar et al. [195, 50] and Kumm et al. [196, 197]. In [50], the authors proposed

architectural changes to the Intel ALM carry-chains such that large compressors like (6:2) and

(7:2) can be efficiently mapped to single ALMs. Although their proposed compressor is very

efficient, for modern applications such as BNN popcounting [198], these compressors would

be significantly underutilised. Similarly, Kim et al. [194] and Boutros et al. [193] propose

changes to the FPGA architecture, by adding sum-chain and extra carry chains, respectively,

specifically for modern deep neural network applications, which do not necessarily benefit

general-purpose compressor trees. The proposed changes are motivated by insight into modern

GPC-based compressor tree designs, and benefit a larger suite of old and new benchmarks.
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4.1.2 Contributions

This chapter shows that support for compressor trees in FPGAs could be significantly improved

through minor modifications to the LE. This is beneficial for implementing low-precision

and multi-operand operations. One example of interest is that compressor trees and GPCs

can be used to accelerate the XnorPopcount operations within BNNs [242], which forms the

critical path of the model’s execution. BNNs enable neural networks to be utilised in resource

constrained applications and can be deployed efficiently on FPGAs [152, 198]; the proposed

optimisations would improve their performance further.

LUXOR is a portmanteau of the acronyms LUT and XOR. Its design is motivated by the

observation that the Boolean XOR operation is very commonly found in optimised compressor

trees. This is corroborated by Verma et al. in [228], where they exploited the correlations

between the operands of the XOR function to improve delay for ASIC implementations. The

goal is to utilise this insight in a similar vein, but optimised for FPGAs.

The proposed changes provide a means to efficiently implement compressor trees using new

area-optimised GPCs, which can all be applied to a large variety and/or important classes of

applications. The contributions can be summarised as follows:

• A new logic element, LUXOR, that integrates a 6-input XOR gate with commercial

FPGA logic elements. This architecture independent modification improves the

implementation of XnorPopcount operation and the most commonly used GPC.

• LUXOR+, an amalgamation of LUXOR with further Intel (I-LUXOR+) and Xil-

inx (X-LUXOR+) architecture-specific optimisations to achieve further resource

reduction. This leads to the most efficient reported logic element based GPC, called

C06060606, which can be mapped to just a single Xilinx slice.

• A novel integer linear programming (ILP) formulation based on the flexible Ternary

Adder approach proposed in [222] to optimally map compressor tree problems to

LUXOR cells.

• Quantitative investigation of the benefits of LUXOR and LUXOR+ architectures

using a set of more than 50 micro-benchmarks. The results also show the positive
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benefits of the proposed LUXOR and LUXOR+ enhancements in SMIC 65nm

standard cell technology.

• The ILP-based compressor tree synthesiser, benchmarks and design files required to

generate the results in this paper are open source to support reproducible research, and

available at www.github.com/raminrasoulinezhad/LUXOR_FPGA20.

4.2 FPGA Logic Cell Enhancements

In this section, we describe in detail the proposed hardware architecture modifications that

further improve the performance of GPCs on FPGAs. We focus our efforts on improving the

design of the logic cell of FPGAs from the two major FPGA vendors, Intel and Xilinx. Our

modifications are organized into two tiers: (1) A vendor-agnostic change to both Intel and

Xilinx FPGA logic cells, and (2), a vendor-specific modification on top that further optimizes

performance. We refer to these logic cell design tiers as LUXOR, and LUXOR+ respectively.

Both LUXOR and LUXOR+ are backward-compatible and retain pin-interchangeability, i.e.

any existing design maps equally well to these new architectures.

4.2.1 LUXOR

Our first proposed modification is to add a 6-input XOR gate (XOR6) to both Intel and Xilinx

FPGA cells. The XOR6 is parallel to the LUT and re-uses its inputs and output path as

shown in Figure 4.1. This modification is motivated by the observation that the C6:111 GPC

is dominant in modern FPGA-based compressor tree designs. To quantify that claim, we

analyzed optimal solutions of compressor trees from a set of 50+ micro-benchmarks that

are commonly found in various domains (e.g. popcounting, multi-operand addition, FIR

filters, etc) using efficient GPCs and compressors for Xilinx architecture from reference [222].

Figure 4.2 shows a histogram of the percentage count and cost (in LEs) for all GPCs across all

solutions. Due to its compression efficiency, C6:111 is used more than a third of the time, and

as a result, most of the hardware is dedicated towards its implementation. In modern FPGAs,

the C6:111 maps to 3 LUTs, but by providing an explicit XOR6 datapath inside each logic

www.github.com/raminrasoulinezhad/LUXOR_FPGA20
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FIGURE 4.1. Basic LE for Xilinx and Intel FPGA architectures. LUXOR
modifications are highlighted in red, while vendor-specific LUXOR+ modific-
ations are coloured blue. Some signals are omitted for simplicity.

cell, we can bring that cost down to 2 LEs. This is done by mapping the first output bit to
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FIGURE 4.2. Total percentage count and cost of each GPC/compressor found
in optimal solutions of compressor trees across 50+ Micro-Benchmarks from
a variety of fields. The GPC/compressor list is according to [222]

the XOR6 rather than using a separate LE. Hence, LUXOR can deliver a resource utilization

reduction for the most commonly-used GPC of up to 33%.

Another very useful feature of the LUXOR design is its applicability to BNNs. In BNNs, the

core computational workload is generated by the convolution layers, which are reduced via

a XnorPopcount [17] operation for the binary case. Consider the XnorPopcount operation

between three binary activations (x0, x1, and x2) and their corresponding binary weights (w0,

w1, and w2). The required computation is:

Sum = (w0⊕x0)⊕ (w1⊕x1)⊕ (w2⊕x2)

Carry, C = (w0⊕x0) · (w1⊕x1) + (w2⊕x2)[(w0⊕x0)⊕ (w1⊕x1)]

where ⊕ and ⊕ represent the XNOR and XOR operations respectively.

This XnorPopcount operation gets mapped to 2 LEs on modern FPGAs, as shown in Fig-

ure 4.3A – one LE to compute the sum bit, and the other to compute the carry bit. With

LUXOR, however, this computation can be mapped to just a single logic element via a
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Boolean transformation, where the Sum bit (S) can now be expressed as:

Sum = (w0 ⊕ x0)⊕ (w1 ⊕ x1)⊕ (w2 ⊕ x2)

which is essentially a XOR6 function where the complement of the weights are used. The

LUT-6 implements the carry logic in this case, and both outputs from a single Xilinx slice

can now be used to compute the partial products of the binarized convolution layer (see

Figure 4.3B). Finally, to compute the output activations of the convolution layer, all the

partial sums have to be summed, which can be visualized as a tall two-column many-operand

instruction of carry and sum bits, as shown in Figure 4.3C. This can be efficiently reduced

using a compressor tree, which is also improved by our proposed LUXOR modifications.
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FIGURE 4.3. BNN implementation on Xilinx FPGAs: primary multiply and
compressors of (A) XnorPopcount with 2 LEs, (B) XnorPopcount with 1
LUXOR LE. (C) Final two-column popcount to accumulate the partial sums
(S), and carries (C)

4.2.2 LUXOR+

4.2.2.1 LUXOR+ for Xilinx FPGAs (X-LUXOR+)

Reference [222] proposes the atoms (–06–, –14–, –22–), as primitives to construct slice-based

GPCs. Atoms are 2-column-input GPCs which mapped well to half of a slice (2 LEs) and

can be connected via fast in-slice carry-chains to form wider GPCs, called couple. Note,

the first atom in a couple can also accept one extra input in the first rank, except –06– for

structural reasons. For instance –06– and –22– atoms builds two couples as C0623:11111 and

C2206:11111. All combinations of these three atoms as well as C1325:11111 (which is also
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FIGURE 4.4. Example compressor tree for a 6-operand 7-bit addition using
Xilinx baseline, X-LUXOR, and X-LUXOR+

a slice-based GPC but not decomposable) are listed in the baseline section of Table 4.1. To

embrace the atom based structure, in cases where an –06– atom is placed in the higher rank

(like C0615:11111), the preceding zero is not removed from the GPC names.

The blue datapath in Figure 4.1A highlights the proposed modification to the Xilinx FPGA

slice. It involves modification of the carry chain datapath, introducing additional logic to allow

the output from the XOR6 gate to be propagated into the carry-chain. This allows us to im-

prove the implementation of slice-based GPCs. This enables us to map atom –06– to a quarter

slice and consequently offers new set of slice-based GPCs such as C06060606:111111111,

which can be mapped to just a single slice. This particular GPC has a very high compres-

sion efficiency of 3.75, which is more than any other existing GPCs in the literature. The

X-LUXOR+ portion of Table 4.1 summarizes the characteristics of the new GPCs for Xilinx

FPGAs.

We provide a simple illustration of the impact of our X-LUXOR and X-LUXOR+ optim-

izations in Figure 4.4. The penultimate (red) column can be implemented with a C6:111

compressor, requiring 2 LEs (instead of 3 in the unmodified case) in X-LUXOR. X-LUXOR+

is able to use the C06060606:111111111 GPC, which further reduces resource usage. In

general, X-LUXOR has the greatest impact on tall-skinny compressor trees, which require

significant use of C6:111, and hence has greater gains for wide compressor trees.
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TABLE 4.1. Slice-based GPCs for Xilinx FPGAs. N.B. X-LUXOR+ area
overhead is not considered in computing efficiency (E), strength (S), and
arithmetic slack (A) described in Equations 2.8, 2.9, 2.11.

GPCs p q LUTs E S A

B
as

el
in

e
[2

22
,1

96
]

C0606:11111 12 5 4 1.75 2.40 0.031
C1415:11111 11 5 4 1.50 2.20 0.000
C2215:11111 10 5 4 1.25 2.00 0.000
C0615:11111 12 5 4 1.75 2.40 0.000
C1423:11111 10 5 4 1.25 2.00 0.000
C2223:11111 9 5 4 1.00 1.80 0.000
C0623:11111 11 5 4 1.50 2.20 0.000
C1406:11111 11 5 4 1.50 2.20 0.031
C2206:11111 10 5 4 1.25 2.00 0.031
C1325:11111 11 5 4 1.50 2.20 0.063

X
-L

U
X

O
R
+

C06060606:111111111 24 9 4 3.75 2.67 0.002
C140606:1111111 17 7 4 2.50 2.43 0.008
C220606:1111111 16 7 4 2.25 2.29 0.008
C060606:1111111 18 7 4 2.75 2.57 0.008
C060615:1111111 18 7 4 2.75 2.57 0.000
C060623:1111111 17 7 4 2.50 2.43 0.000
C061406:1111111 17 7 4 2.50 2.43 0.008
C062206:1111111 16 7 4 2.25 2.29 0.008

4.2.2.2 LUXOR+ for Intel FPGAs (I-LUXOR+)

Note that in Figure 4.2, the C25:121 GPC, originally suggested in [222], is also a very efficient.

Figure 4.5 shows that it can be implemented using two sets of two 5-shared-input functions,

occupying 2 ALMs. I-LUXOR+ introduces a majority circuit and full-adder to the ALM

datapath, called MajFA (blue in Figure 4.1B), to explicitly implement S1 and C1 while S0 and

C0 can be implemented in parallel with two 5-input LUT which shares the inputs in a ALM.

This modification captures C25:121 in a single ALM instead of two. In summary, I-LUXOR+

reduces the cost of two highly used GPCs, C6:111 and C25:121, by one LUT (33% and 50%

respectively).
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FIGURE 4.6. Flowchart of ILP-based compressor tree synthesis

Many commonly used arithmetic operations such as multiplications, multiply-add, or digital

filters can be expressed compactly as compressor tree hardware implementations. However,
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TABLE 4.2. Variables used in the ILP model

Var Description

St Number of stages in model
C Maximum number of columns in model
Xc Number of bits in column c of benchmark
T Total number of compressors used
It Total number of columns consumed by compressor t
Vt Cost (in LUTs) of compressor t
Mt,c Number of bits consumed by compressor t in column c
Ot Total number of columns output by compressor t
Kt,c Number of bits output by compressor t in column c
Ns,c Number of bits in stage s of column c
Cs,c Number of carry-bits in stage s of column c
Rs,t,c Number of compressor t used in column c of stage s

realizing efficient compressor trees is a non-trivial task that typically requires software

automation. Methods to do efficient compressor tree synthesis include heuristics-guided

search [222, 243, 244], ILPs [228, 197], or hybrid approaches [223]. We opt for the ILP

method in this work, and use ideas from [197] and [222] as inspiration. Our goal is to

quantify the effect of our proposed LUXOR/LUXOR+ modifications on efficient compressor

tree synthesis for commonly-used arithmetic operations in modern applications. Figure 4.6

encapsulates the workflow of our ILP formulation, and we detail each building block shown

in the figure. Table 4.2 serves as a reference for all the variables used in this section. Note

that, for clarity, all variable names in Table 4.2 are local to this section, and should not be

confused with nomenclature in other sections.

4.3.1 Objective

There are two key metrics that quantify the effectiveness of a compressor tree implementation

on FPGAs: area utilization in LUTs and the critical path delay, which is strongly correlated

to the number of stages in the compressor tree. Hence, the objective function to an ILP

program should be described in a way that minimizes these two metrics for each input
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micro-benchmark. To minimize the area cost, the objective function can be written as follows:

min
St−1∑
s=0

C−1∑
c=0

T−1∑
t=0

VtRs,t,c (4.1)

which sums the LUT-costs of all compressor instances (from all T types) placed in different

columns at all logic circuit levels, called stages.

To model the number of stages in the objective function, the authors in [197] add the number

of stages (St) as a heuristic to the cost function. However, we found this optimization strategy

to be slow for difficult problems, and in some cases, the solver returns a solution that takes

more stages than required. To tackle this issue, we design a runtime manager that improves

the speed of the optimization process.

4.3.2 Runtime Manager and Solver

Instead of modeling St as a heuristic in the objective function, we rely on an iterative approach

where we query the solver to find an optimal solution within a fixed maximum stage limit,

Stmax. This limit is relaxed incrementally until a feasible solution is found. In practice, we

found that the solver was able to determine infeasibility within a few seconds, whilst being

able to find a feasible integer solution within a few minutes. This iterative approach was also

recently used by Kumm et al. [223] by combining the ILP optimality search with heuristics to

guide the solver. We use the IBM CPLEX v12.9 [245] ILP solver (under academic license),

and design a Python3-based interface for the runtime manager using the PuLP package [246].

4.3.3 Constraints

Since the input stage captures the input shape of the benchmark, we set constraints on the

input stage as follows:

N0,c = Xc for c = 0,1,2,...,C − 1 (4.2)



88 4 LUXOR: AN FPGA LOGIC CELL ARCHITECTURE FOR EFFICIENT COMPRESSOR TREE IMPLEMENTATIONS

For subsequent stages, there are two constraints required to guide the solver towards a feasible

compressor tree architecture, such that input/output requirements of each stage are met:

T−1∑
t=0

Ot−1∑
c′=0

Mt,c′ ∗Rs−1,t,c−c′ ≥ Ns−1,c (4.3)

T−1∑
t=0

It−1∑
c′=0

Kt,c′ ∗Rs−1,t,c−c′ = Ns,c (4.4)

for c = 0, 1, 2, ..., C − 1 and s = 1, 2, 3, ..., St− 1.

The first constraint ensures that all bits in each column of every stage are used as inputs by

compressors in the next stage. The second constraint ensures that the number of bits produced

by the compressors in the previous stage matches the number of input bits in the following

stage. Both these constraints can also be found in [197].

In each stage, the number of carry-bits in each column are computed in (4.5), where the

division by two is due to the increase in the column’s radix.

Cs,c =

⌊
Cs,c−1 +Ns,c−1

2

⌋
(4.5)

This can be formulated as an ILP constraint as follows:

Cs,c + 0.999 ≥ 1

2
(Cs,c−1 +Ns,c−1) (4.6)

Cs,c ≤
1

2
(Cs,c−1 +Ns,c−1) (4.7)

Cs,0 = 0 (4.8)

for c = 0, 1, 2, ..., C − 1 and s = 1, 2, 3, ..., St− 1. Note that the number of input carry-bits

into the first column is always set to 0.
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When solving the model iteratively, as described above, the constraints on the final stage guide

the solver to converge to the solution. In [222], the author proposes a novel ragged carry-

propagate architecture for the final accumulation stage for Xilinx FPGAs. This architecture

reduces the overall number of stages required, and hence, we opt for this strategy on Xilinx

FPGAs. Unlike [222], where the author uses a heuristic solver, we model the ragged carry-

propagate adder into our model for the final stage as three constraints:

Ns,c + Cs,c ≤ 5 (4.9)

Cs,c ≤ 2 (4.10)

Ns,c ≤ 4 (4.11)

when c = 0, 1, 2, ..., C − 1 and s = St− 1.

Finally, since Intel FPGAs cannot benefit from the ragged carry-propagate adder, we model

the ILP constraints for Intel FPGAs as shown in [197] :

Ns,c ≤ 3 (4.12)

when c = 0, 1, 2, ..., C − 1 and s = St− 1.

4.3.4 GPC/Compressor Library

4.3.4.1 Xilinx Compressor Set

When targeting Xilinx architectures for our baseline, we use the GPC/compressor set defined

by Preußer [222], who pruned a set from Kumm and Zipf [196]. For our LUXOR experiments,

we reduce the cost of C6:111 GPCs from 3 to 2 logic elements, as described in Section 4.2.2.1.

For LUXOR+, in addition to the smaller version of C6:111, we add all the new slice-based

GPCs described in Table 4.1 to our model. We denote these results as X-LUXOR and

X-LUXOR+ respectively.
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TABLE 4.3. Comparison of different GPCs proposed in [222] and new GPCs
supported by I-LUXOR and I-LUXOR+ (Strength (S), and arithmetic slack
(A) are described in Equations 2.9 and 2.11).

GPCs S A Delay LUTs APD

[225]
C6:111 2 0.13 0.38 3 7.9
C15:111 2 0 0.38 3 7.9
C23:111 1.67 0 0.38 2 5.3

[222] C25:121 1.75 0 0.38 2 11.8

Ours C6:111 2 0.13 0.39* 2 10.95*
C25:121 1.75 0 0.39* 1 21.9*

*Area/delay overheads for I-LUXOR+ are included (Section 4.4).

4.3.4.2 Intel Compressor Set

When targeting Intel architectures, our baseline compressor set is based on a GPC set proposed

by Parandeh-Afshar et al. [225], augmented with the C25:121 compressor from [222]. Since

this GPC set is large, to minimise run-time of our ILP, we pruned this set using the GPC

selection approach and metric described by Preußer [222].

Parandeh-Afshar et al. [225] have gathered a group of LUT-based and arithmetic-based

GPCs for Intel architectures. In the first three line of Table 4.3, we show the efficiency and

compression metrics of our selected GPCs according to the Area-Performance Degree (APD)

(Equation 2.10) metric, which measures the efficiency of a GPC taking into account delay and

resource usage. We also considered the delay itself, since some of the proposed GPCs, such

as C7:111, offer slightly better S (compression rates), but their reported delay is 3.5× greater.

In addition, we included C3:11 and C25:121 in the baseline GPC set for Intel architecture.

Similar to our X-LUXOR experiments with Xilinx architectures, we reduce the cost of C6:111

GPCs from 3 to 2 logic elements for I-LUXOR. For I-LUXOR+, as well as using the up-

graded version of C6:111, we reduce the cost of C25:121 from 2 to 1 LE as described in

Section 4.2.2.2. We also comment that the effect of the I-LUXOR and I-LUXOR+ enhance-

ments are highlighted by the metrics, as demonstrated by the last two rows of Table4.3. Due

to the lower logic element cost, the APD of both GPCs show significant improvement.
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4.3.5 Micro-Benchmarks

To evaluate the improvements of our proposed architectures, we use different basic operations

that are commonly found in various domains in three categories: 1) Low-rank inputs including

pop-count and two-column count (based on [222], but with additional input sizes) 2) High-

rank inputs including multi-addition [197], 3-MAC operation (described below), and a FIR-3

filter from [225], and 3) BNN XnorPopcount operation for various input sizes, where the filter

sizes are taken from the networks in [242, 247]. These three categories highlight the benefits

and limitations of LUXOR and LUXOR+ architectures, as the chosen operations appear in

various applications, especially digital signal processing and neural networks, which are the

most important concerns of new FPGA architectures [193, 1].

4.3.5.1 3-MAC Operation

The 3–MAC operation is modeled according to the following equation:

3-MAC(N×N−bit) =
2∑

i=0

Ai(N−bits) ×Bi(N−bits) (4.13)

Note that since there are 3 pairs of inputs, instead of computing partial products then and

summing their results, we can select partial products of the same rank and perform a primary

compression. The cost of this step is included in our result. The resulting tree forms the input

to the compressor. We repeat this for different input widths (N ).

4.4 Results

In this section, we present results from experiments undertaken to evaluate the performance

of the LUXOR and LUXOR+ architectural enhancements.
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4.4.1 ASIC Modeling: Delay and Area Overheads

We model state-of-the-art Intel Stratix-10 ALM unit [42], and Xilinx UltraScale+ slice [192,

248] according to their respective data sheet descriptions. For the ASIC metric analysis,

we synthesise our Verilog models using SMIC 65-nm technology standard cell by Synopsis

Design Compiler 2013.12. Modeling with standard cell-based designs have certain limitations

when compared to full-custom commercial ASICs. While standard cells excel in offering

efficient logic gates, they are not as effective for multiplexing circuits. However, leveraging

standard cells enables practical design exploration. Also, the LUT SRAM cells are modeled

by registers. Higher efficiency would be expected in a full-custom design. Post-synthesis

results are reported and the synthesis strategy was set to “Timing Optimisation” since it usually

leads to a better Area×Delay product. We note that while our approach to estimating area

and delay overheads using standard cells may differ slightly from a commercial full custom

layout, in either case, the overhead is minimal.

Table 4.4 gives the post-synthesis area and timing results for the Intel baseline, I-LUXOR,

Intel+MajFA and I-LUXOR+ modifications to the ALM. From the table, it can be seen that

the delay increase of I-LUXOR is about 1% while the area increase is less than 0.5%. This

demonstrates that there is little overhead associated with adding a 6-input XOR gate to the

ALM unit. In contrast, adding MajFA circuits will increase the area and delay by 2% and

5% respectively (see description in Section 4.2.2.2). The full I-LUXOR+ implementation

has 3% and 5% delay and area overhead, respectively. We believe that the unexpectedly

large increase in area compared to the individual effect of each modification arises from the

performance-driven synthesis optimisation. For measuring the critical path, we removed the

multiplexers connecting the ALM’s outputs to its input, and thus it is measured from: an

input, through a LUT and two-coupled FAs to an output multiplexer.

In a Xilinx slice, the critical path is from an input, passing through the first LUT (A) and four

carry-chain circuits and ending with the last output multiplexer. This path is also the critical

path after applying LUXOR(+) for both architectures.
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TABLE 4.4. ASIC results for the Intel Stratix-10 ALM architecture

Intel I-LUXOR Intel+MajFA I-LUXOR+

Area um2 1680 1687 1715 1767
ratio 1 1.00 1.02 1.05

Delay ns 1.42 1.44 1.49 1.46
ratio 1 1.01 1.05 1.03

TABLE 4.5. ASIC results for the Xilinx UltraScale+ slice architecture

Xilinx X-LUXOR X-LUXOR+

Area um2 6045 6002 6361
ratio 1.00 0.99 1.06

Delay ns 0.84 0.89 0.92
ratio 1.00 1.06 1.09

The synthesised Xilinx baseline slice model has an area of 6045 um2. We compare the

reported critical path with that from the Virtex-5 datasheet, which was a device that was also

manufactured with a similar 65 nm process. Reference [233] reports the critical path from

an input, through four carry circuits to the output (TITO) as 0.67, 0.77, or 0.90-ns for three

different speed grades. Comparing these values with our value of 0.84 ns from Table 4.5,

consistency with our synthesis results was verified. The same table shows that X-LUXOR has

similar area utilisation and a 6% increase in delay, while X-LUXOR+ has 6% area and 9%

delay overheads.

Since the routing delay strongly contributes to the total delay, the LUXOR(+) delay advantages

are diluted in practice. Although the X-LUXOR+ overheads are notable, because of the

significant resource and performance benefits, new trade-offs are offered. For example,

partially upgrading the LEs to LUXOR(+) architectures is another option. Also, with more

effort in layout and buffer sizing, area and delay overheads can be recovered/balanced.

At a higher level of abstraction, LUXOR(+) does not require any I/O scheme modifications.

However, they increase the logic implementation density leading to higher connectivity per

LE/ALM. Thus, routing limitations may slow down LUXOR(+) enhancements. LUXOR(+)

adds to the input load, which also slows down the LE. This was not measured directly but

taken into account in the LE measurements.
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TABLE 4.6. A comparison of solutions from our ILP-based synthesis com-
pared with those reported in [222]

Test 1H1/H2/H3[222] Our ILP Solver

cases Baseline X-LUXOR X-LUXOR+
LE 2Stage LE Stage LE Stage LE Stage

S128 101/102/101 4/3/4 100 3 79 3 78 3
S256 209/209/209 4/4/4 195 4 159 4 154 4
S512 418/422/418 5/5/5 380 5 319 5 312 4
D128 178/205/178 5/4/5 168 4 156 4 150 4
D256 360/417/360 6/5/6 328 5 315 5 298 4
D512 721/839/721 7/6/7 709 5 631 5 586 5
1Heuristics used in [222]: Efficiency/Strength/Product, reported in that order.
2Stage = # of compressor tree stages

4.4.2 Benchmark Performance

The effect of our ILP approach on resource utilisation in logic elements is affected by the

choice of primitives in the primary stage (if applicable), compression tree stages, and the

last stage (final ternary adder in Intel or the equivalent relaxed ternary adder for Xilinx

architectures as proposed in [222]). Table 4.6 compares our technique with that of [222] for

X-LUXOR and X-LUXOR+ where test cases are popcount and double column popcount

operations indicated respectively by S and D, concatenated with input size. As can be seen

in the baseline column, our ILP approach uses fewer LEs and stages for all benchmark

problems compared with the heuristic approach, since an optimal solution is found. While the

X-LUXOR enhancement significantly reduces the number of LEs compared with the baseline,

X-LUXOR+ achieves a further reduction in the number of stages.

Figure 4.7 shows the savings in LEs for Xilinx architectures over a larger micro-benchmark

set, with the red star also indicating a reduction in the number of stages by one. For low-rank

inputs (i.e. popcount and two-column popcount), the C6:111 and C25:121 compressors are

heavily used. X-LUXOR improves the resource efficiency of C6:111 implementations and

achieves the best savings for the 1024-input popcount problem at a 22% reduction. Less

improvement is seen for two-column popcount, as in the first stage, C25:121 has better

arithmetic slack (A) while offering the same efficiency. This observation was also made

in [242]. X-LUXOR+ offers a new set of the state of the art compression rate and compression
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FIGURE 4.7. Resource reduction on Xilinx UltraScale+, X-LUXOR, and
X-LUXOR+ architectures for various micro-benchmarks. The * indicates that
the proposed solution required one less logic stage in the compression tree.

efficiency. On average, X-LUXOR+ can reduce area utilisation on the low-rank input popcount

and two-column popcount benchmarks by 22% and 15%, respectively.

For the high-rank benchmarks (multi-operand addition, FIR-3 and 3-MAC), the inputs are

wide enough to benefit from the slice based GPCs. The C6:111 compressor is not significantly

utilised. However, X-LUXOR+ offers higher compression rates and hence achieves 39% and

18% improvement in multi-addition and 3-MAC benchmarks, respectively, and in some cases,

the required number of stages is also reduced by one.
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LUXOR+ architecture for our selected micro-benchmarks.



96 4 LUXOR: AN FPGA LOGIC CELL ARCHITECTURE FOR EFFICIENT COMPRESSOR TREE IMPLEMENTATIONS

Figure 4.8 shows the same result for Intel I-LUXOR and I-LUXOR+ architectures. More

dramatic resource savings are apparent over Xilinx, particularly for low-rank problems using

I-LUXOR+. Since I-LUXOR and I-LUXOR+ do not present new compressors, no reduction

in the number of stages is achieved. However, because the baseline offers no wide GPC, the

resource reduction of I-LUXOR is more significant (averaging 24% and 17% for popcount

and double popcount). I-LUXOR+ offers an enhanced C25:121 GPC which is the most

efficient GPC for the Intel architecture. This leads to 35% and 39% resource savings for

popcounting and two-column counting. As results suggest, Intel’s LE architecture benefits

more from both LUXOR and I-LUXOR+ modifications. This is mainly due to the limited

number of efficient parallel counters in its baseline LE. Our suggested alterations significantly

enhance the efficient GPC set for this architecture.

4.4.3 Performance on BNNs

Binarised neural networks offer a new challenge for FPGA architectures as 1-bit multiply-

accumulate operations require XNOR and popcount operations to be efficient. As explained

in Section 4.2.1 the first computation stage (Multiplication) should be merged with the early

compression circuits, leading to an efficient implementation (as illustrated in Figure 4.3(a)).

If the number of input pairs is N , N/3 fused units are required in the primary stage. LUXOR

can implement this fused computation using a single LE rather than two LEs in the baseline

architectures leading to N/3 fewer LE utilisation. In addition, after the implementation of the

primary stage, a two-column counting problem with the height of N/3 is encountered.

As shown in Figure 4.9, these two optimisations lead to almost the same 34% resource

reduction for LUXOR modification on both Xilinx and Intel architectures. Moreover, as

described before, X-LUXOR+ cannot reduce the number of LEs significantly for low-rank

inputs, and hence, the best area savings for BNNs plateaus at 37%. In the case when the input

size is 3×3×256, the number of stages is reduced by one, which would give us a significant

improvement in delay. In comparison, I-LUXOR+ reduces the number of LEs significantly at

an average of 47%, but without reducing the number of stages.



4.5 SUMMARY 97

*

Xilinx Intel

3x
3x

64

3x
3x

12
8

3x
3x

25
6

3x
3x

51
2

3x
3x

10
24

3x
3x

64

3x
3x

12
8

3x
3x

25
6

3x
3x

51
2

3x
3x

10
24

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Input size

R
es

ou
rc

e 
U

til
iz

at
io

n 
R

at
io

Xilinx X−LUXOR X−LUXOR+ Intel I−LUXOR I−LUXOR+

FIGURE 4.9. XnorPopcount micro-benchmarks found in BNN Convolution
Layers in [29, 247]

4.5 Summary

This chapter has discussed several low-cost FPGA logic cell modifications that can lead

to significantly improved performance GPCs and the XnorPopcount operation. By adding

these primitives to a set of state-of-the-art compressor tree primitives (adders, GPCs, and

compressors) described in the literature, an ILP model for finding optimal solutions for

FPGA-based compressor tree implementations for both Xilinx and Intel FPGAs is built.

Using this ILP, it is shown that proposed modifications lead to substantial performance gains.

LUXOR is a vendor-agnostic modification, which augments each logic cell datapath with a

dedicated 6-input XOR circuit, reduces the cost of the commonly used (C6:111) GPC from 3

LEs to just 2 and enables efficient XnorPopcount implementations. Over a benchmark set,

this reduces the logic utilisation cost of compressor trees by up to 36% (average 12–19%)

on both Intel and Xilinx FPGAs, with a silicon area overhead of <0.5%. The architectural

re-design is taken a step further with LUXOR+, which proposes carefully crafted vendor-

specific modifications. LUXOR+ requires an additional 3–6% silicon area, can improve our

micro-benchmark results to up to 48% (average 26–34%). BNN benchmarks benefit the most
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with an average reduction of 37–47% in logic utilisation, which is due to the highly-efficient

mapping of the XnorPopcount operation on our proposed LUXOR+ logic cells.



CHAPTER 5

MLBlocks: Rethinking Embedded Blocks for Machine Learning

Applications

This chapter presents a systematic methodology for deriving efficient coarse-grained compute

block architectures from a benchmark set of algorithms with the formulation of a MAC

operation within a number of nested loops, together with a generic EB architecture resulting in

a family of new embedded blocks, called MLBlocks. This enables automation in design space

exploration for EB architectures in contrast to previous expert handcraft design suggestions.

The presentation of this chapter is based on the background given on deep neural networks,

and FPGA architectures in Chapter 2 and expands on work previously published in [3].

5.1 Introduction

The ultimate goal in FPGA architecture design is to provide a reconfigurable and flexible

platform that can implement a wide variety of circuits. Existing commercial FPGA architec-

tures are mature and have evolved from decades of optimisation for traditional networking,

image processing and signal processing applications. Typically, these circuits use relatively

high-precision arithmetic and have been addressed by DSP units that support high-precision

MAC operations.

Recent research has shown the efficacy of low-precision fixed point and block floating

point [249] arithmetic for the implementation of DNNs in both inference [250] and training

tasks [127]. This created a new set of demands characterised by: 1) higher computational dens-

ity and 2) low precision arithmetic requirements. However, these MAC operation-dominated
99
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circuits do not map efficiently to the contemporary FPGA resources [43]. In particular, DSPs

are heavily underutilised for low-precision DNNs. While the Xilinx DSP48E2 is capable of

executing a 27× 18 multiply and 48-bit accumulate operation, for the low precision case, it

only delivers two 8× 8 multiplies (with shared multiplicand) with 24-bit accumulation. This

is roughly a third of its potential since a 27× 18-bit multiplier occupies the area of roughly

six 9 × 9-bit ones [44]. As a result, even in a state-of-the-art accelerator, DSPs impose a

performance limit [45]. The Intel DSP blocks also have similar limitations.

This inefficiency causes a barrier to higher performance low-precision implementations

compared to GPUs, e.g., for INT8 operations, the embedded Jetson Xavier NX GPU [251]

offers 21-TOPs which would require a high-end Virtex UltraScale+ FPGA with 6,840 DSPs

for comparable performance [252]. Nonetheless, the importance of these solutions for

compute-bound DNN applications is likely to grow in the future, which encourages new

architectural studies aiming to improve FPGA performance with coarse-grained blocks that

provide better support for low precision since any dedicated course-grained blocks are likely

to outcompete any LUT-based solution.

Designing the EBs requires making tradeoffs between 1) flexibility to support a wide range

of domains and 2) specialization to efficiently support selected applications. This is conven-

tionally done by suggesting hand-crafted designs and then evaluating their utility over a set

of benchmark problems. However, to date, the benchmarks for FPGA evaluation have yet

to include low-precision, quantized DNN applications except for rare academic examples

like [253, 254]. Furthermore, finding the optimum structure for a compute-dense unit that can

effectively handle multiple configurations while maintaining certain design constraints, such

as limited IO budget, circuit area, operating frequency, etc., is a complex task that becomes

tedious by repetitive manual try-and-evaluate steps (e.g. the presented design in Chapter 3).

The missing solution is a benchmark-driven architecture search automation. However, de-

veloping such blocks in a systematic fashion requires: 1) a generalized problem formulation

that covers the relevant range of computations, and 2) an efficient mapping to configurable

architectures. With the goal of exploring this new design space in a methodical manner,

this Chapter presents a problem formulation involving computing nested loops over MAC
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operations, which covers many basic linear algebra primitives and standard DNN kernels.

A quantitative methodology for deriving efficient coarse-grained compute block architec-

tures from benchmarks is then proposed together with a family of new embedded blocks,

called MLBlocks. Simply, the challenging design question that the MLBlock designing

method addresses is, "What computations should a distributed course-grained FPGA block

for low-precision support?"

An MLBlock instance includes several multiply-accumulate units connected via a flexible

routing, where each configuration performs a few parallel dot-products in a systolic array

fashion. This architecture is parameterized with support for different data movements,

reuse and precisions, utilizing a columnar arrangement that is compatible with existing

FPGA architectures. On synthetic benchmarks, it is demonstrated that for 8-bit arithmetic,

MLBlocks offer 6× improved performance over the commercial Xilinx DSP48E2 architecture

with smaller area and delay; and for time-multiplexed 16-bit arithmetic, achieves 2× higher

performance per area with the same area and frequency.

5.1.1 Previous Works

Compared to ASICs and GPUs, FPGAs suffer from lower maximum clock frequency and

larger area, which subsequently impacts performance. A solution to these issues is to increase

the compute capacity. Routing restrictions and efficiency make it impractical to add a sea of

additional multipliers or MAC units to FPGA architectures, as programmable routing is both

expensive and power-hungry. However, it is possible to include dense compute blocks while

meeting the IOs and area budget limits.

As described in Chapter 2, solutions to this issue are categorised into three main tiers, where

the MLBlocks method belongs to the group "designing a new embedded block". However, the

MLBlocks approach differs from all introduced works as this technique systematically derives

a near-optimal EB by considering the mapping of an arbitrary set of benchmarks of a certain

design pattern onto a flexible MLBlock fabric. Considering nested loops as a generalisation

for DNN implementation was first proposed by Yang et al. [31], and the presented approach
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of optimising designs by considering different tiling patterns over a set of benchmarks for

DNNs is a generalisation of that described by Zhang et al. [255].

5.1.2 Contributions

This chapter presents the development of a tool to create a generalised EB architecture

called an MLBLock, constructed from low-precision MAC units and programmable routing.

The difficulty in its design lies in ensuring maximum utilisation of the MAC units over a

benchmark set with minimal routing overhead. To achieve this, we introduce a methodology

that allows all potential loop unrollings to be enumerated and analysed over a range of DNN

computations. These computations include standard, depth-wise, dilated and point-wise

convolutions, fully-connected layers, and recurrent neural networks (RNNs), including vanilla

RNN, long-short-term memory (LSTM), and gated recurrent unit (GRU) layers [59]. Using

this analysis, the tool generates an MLBlock instance that supports a subset of loop unrollings

that best satisfy the area/performance trade-offs. This serves as the target architecture to

which algorithms can be efficiently mapped.

Specifically, the contributions are as follows:

• A methodology in which different algorithms in the form of a benchmark set are

mapped to MLBlocks. Algorithm descriptions are of the form of MAC operations

within a number of nested loops that is a generalisation of convolution computation.

Using a set of loop transformations that covers a solution space, projections with dif-

ferent hardware tradeoffs are generated, and a specific configuration of an MLBlock

which supports all the benchmarks identified.

• A case study demonstrating the application of this methodology, with some restric-

tions, to automatically find a DSP-like replacement block that demonstrates higher

performance and efficiency across a benchmark suite in comparison to existing

expert-designed architectures.

• Confirmation that MLBlocks are suitable for implementation in the familiar columnar

manner and compatible with existing FPGA architectures.
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• Greedy and heuristic approaches to select an implementable projection set from

the set of possible projections, which achieve a balance between flexibility and

performance.

• A parameterised FPGA module generator for MLBlocks which compiles a projection

set to Verilog, creating an instance that uses a specified number of MAC units (called

MLBlock-M ). The suggested EB architecture offers a bijection from a projection to

an MLBlock configuration.

• A quantitative architectural study of the performance benefits of augmenting the

Xilinx FPGA architecture with MLBlocks.

Open-source Python tools to implement the techniques described in this chapter, together

with results, are available at www.github.com/raminrasoulinezhad/MLBlocks.

The remainder of the chapter is organised as follows. In Section 5.2, we describe the proposed

design methodology having an algorithm template that covers a superset of DNN computations

and many basic linear algebra subprograms (BLAS) functions, and techniques to analyse the

potential computation of an EB, their costs and methods to find the right trade-off for different

implementation candidates. Section 5.3 describes a generalised EB target architecture to

which a set of projections can be mapped. Results are presented in Section 5.4 and conclusions

in Section 5.5.

5.2 MLBlocks Design Methodology

5.2.1 Overview

An EB must support all algorithms in a user-specified benchmark suite and we assume all

algorithms can be written as a set of nested constant loops. The innermost computation

could be any arithmetic operation; however, in this paper, we only consider low-precision

MAC operations with three inputs (I, W, and O) and one output (O). A template for our

algorithm descriptions is given in Algorithm 1 (explained in detail in Section 5.2.2). While

www.github.com/raminrasoulinezhad/MLBlocks
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Algorithm 1 Pseudo code for the generalized nested loop model (loop format for each v ∈ V
is v ← V init:V stride:V limit)
for g0 ← 0 : Gstride

0 : Glimit
0 −1

for g1 ← 0 : Gstride
1 : Glimit

1 −1
...

for gn ← 0 : Gstride
n : Glimit

n −1

for b0 ← 0 : Bstride
0 : Blimit

0 −1
for b1 ← 0 : Bstride

1 : Blimit
1 −1

...
for bm ← 0 : Bstride

m : Blimit
m −1

for e0 ← 0 : Estride
0 : Elimit

0 −1
for e1 ← 0 : Estride

1 : Elimit
1 −1

...
for ep ← 0 : Estride

p : Elimit
p −1

for r0 ← 0 : Rstride
0 : Rlimit

0 −1
for r1 ← 0 : Rstride

1 : Rlimit
1 −1

...
for rq ← 0 : Rstride

q : Rlimit
q −1

O[g0, g1, .., b0, b1, .., e0, e1, ..]+= I[g0, g1, .., b0±r0, b1±r1, ..]×W[g0, g1, .., e0, e1, .., r0, r1, ..]

straightforward, this is sufficient to describe a broad range of DNN related computations as

demonstrated by our chosen benchmark suite in Section 5.4.

An overview of our approach to determine the optimal EB is given in Figure 5.1. Assuming

a fixed unrolling factor (M ), we generate a list of unrollings for each algorithm in the

benchmark suite. We describe each unrolling instance through a compact representation

that we call a projection. Each projection has a one-to-one mapping with a hardware EB

configuration. We then perform selection by analyzing the list of all projections to identify a

subset that will cover all algorithms in the given benchmark suite, maximise MAC utilisation,

and minimise the implementation cost. We call the resulting subset the selected projections.

In the generation stage, a tool merges all configurations to produce a Verilog description,

namely an MLBlock-M .

5.2.2 Benchmark Algorithm Template

Algorithm 1 is our generalized algorithm template that takes advantage of the fact that in DNN

layers and BLAS functions, many loop variables have similar data access patterns; these result
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in similar hardware realizations. To characterise these access patterns, we define that loop

variables (ri, ei, bi, gi) ∀i, accesses an input/output if it reads the input/output. Considering

MAC operation input and outputs, the loop variables can then be classified into one of four

variable group sets ({R,E,B,G}), the first character being used to identify the variable

names according to:

(1) Reduction (R): The loop variables index elements of I and W to produce a single

output in O, e.g. a dot-product.

(2) Expansion (E): The loop variables index elements of W and O to produce multiple

values of O reusing I, e.g. processing different kernels for the same input.
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FIGURE 5.3. Data access scheme for reduction, expansion, batching, and grouping

Algorithm 2 Pseudo code for a batched standard 2D convolution layer
for x← 0 : Xstride : X limit−1 {This loop variable is of type Batching (b0)}

for y ← 0 : Y stride : Y limit−1 {This loop variable is of type Batching (b1)}
for b← 0 : Bstride : Blimit−1 {This loop variable is of type Batching (b2)}

for k ← 0 : Kstride : K limit−1 {This loop variable is of type Expansion (e0)}
for fx ← 0 : F stride

X : F limit
X −1 {This loop variable is of type Reduction (r0)}

for fy ← 0 : F stride
y : F limit

Y −1 {This loop variable is of type Reduction (r1)}
for c← 0 : Cstride : C limit−1 {This loop variable is of type Reduction (r2)}
O[b, x, y, k]+= I[b, x+ fx, y + fy, c]×W[k, fx, fy, c]

(3) Batching (B): The loop variables index elements of I and O to generate multiple

values of O, reusing W, e.g. inference over different inputs.

(4) Grouping (G): The loop replicates computations performed in other loops, e.g.

depth-wise and grouped convolutions.

The data accesses for each group are also depicted in Figure 5.3.

Mapping different algorithms to this format may require arbitrary numbers of variables in

each group, where this is parameterized by n,m,p, and q respectively for grouping, batching,

expansion, and reduction variable groups in Algorithm 1. Let V = R ∪ E ∪ B ∪G denote

the set of all loop variables, where each v ∈ V iterates according to an initial, stride, and limit

value of V init, V stride, and V limit. Without loss of generality, we assume the initial values are

all zero.
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A visualization of algorithms covered by this generalization of convolutional layer in a DNN

is presented in Figure 5.2. Inputs I and W are convolved to produce output O. Briefly, the

number of input groups and their sizes are described by variables from grouping and batching

variable groups. Also, the number of convolution kernels for each input group and their sizes

are expressed by variables from expansion and reduction variable groups respectively. This

model can represent all the common DNN layers such as standard, depth-wise and point-wise

convolutions, as well as many BLAS functions that can be used to implement fully connected

layers. For instance, the computation of a batched standard 2D convolutional layer, shown in

Algorithm 2, can be mapped to this model using seven nested loops where variables b0, b1,

b2, e0, r0, r1, r2, are input height (X), width (Y ) and batch size (B), number of filters (K)

and their height (FX), width (FY ), and depth (C) respectively. In this example, b0, b1 and b2

are the batching variables; e0 is an expansion variable; r0, r1 and r2 are reduction variables;

and there is no grouping variable. Loop variables of the same group define dimensions of the

corresponding access pattern.

5.2.3 Unroll

For each algorithm in the benchmark set, we study the application of the following tech-

niques: 1) tiling via loop splitting, 2) fully/partially unrolling loops, 3) reordering loops,

and 4) partitioning the scheduling and compute boundary. This is similar to the approach of

Yang et al. [31]. However, we introduce an extra partitioning level which defines the compu-

tation to be performed on EBs, accelerator and data scheduler. Our technique restructures

the loops so that the EBs can receive input data in parallel from an on-FPGA scheduler using

on-chip memory. The on-chip memory receives data from off-chip through a software data

scheduler. In this design space, we seek the instances where the EB computation is fully

unrolled with unrolling factor M . This parameter defines the parallelism in EBs and is equal

to the number of MAC operations in each EB. In our accelerator, all EBs perform the same

computation. As detailed later, explicit formulas for utilisation and I/O requirements can be

determined, allowing design tradeoffs to be optimized prior to hardware translation.
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Algorithm 3 Pseudo code of an unrolling instance for a batched standard 2D convolution layer
(M = 6, F̂ unroll

X = 3, B̂unroll = 2). The blue, red, and yellow area defines the computation
partitions assigned to data scheduler, accelerator, and EBs, respectively. The computation on
EBs can be performed in parallel (see Figure 5.4A).

for x← 0 : Xstride : X limit−1
for y ← 0 : Y stride : Y limit−1
for k ← 0 : Kstride : K limit−1

for fy ← 0 : F stride
Y : F limit

Y −1
for c← 0 : Cstride : C limit−1
for b← 0 : Bstride ×Bunroll : Blimit−1
for fx ← 0 : F stride

X × F unroll
X : F limit

X −1

O[b, x, y, k]+= I[b, x+fx, y+fy, c]×W[k, fx, fy, c]
O[b, x, y, k]+= I[b, x+fx+1, y+fy, c]×W[k, fx+1, fy, c]
O[b, x, y, k]+= I[b, x+fx+2, y+fy, c]×W[k, fx+2, fy, c]
O[b+1, x, y, k]+= I[b+1, x+fx, y+fy, c]×W[k, fx, fy, c]
O[b+1, x, y, k]+= I[b+1, x+fx+1, y+fy, c]×W[k, fx+1, fy, c]
O[b+1, x, y, k]+= I[b+1, x+fx+2, y+fy, c]×W[k, fx+2, fy, c]

Algorithm 3 shows one potential unrolling instance of Algorithm 2, where the the variables fx

and b are unrolled. We describe the unrolling by the variables F̂ unroll
X = 3 and B̂unroll = 2. To

support this unrolling, the computation is partitioned into three shaded areas, assigned to the

off-chip data scheduler, scheduler on the FPGA accelerator, and each EB in blue, yellow, and

red respectively. The EB computations in red describe a unique, spatially parallel data path

that can be translated to a hardware accelerator. The corresponding computation is depicted in

Figure 5.4A. Note, due to the unrolling, the loop stride size also increases by the same factor.

However, for M = 6, there are many other potential unrolling instances. Figure 5.4 shows

five of these for Algorithm 2. Figure 5.4B unrolls c and b, Figure 5.4C unrolls k and c,

Figure 5.4D unrolls x and b, and Figure 5.4E unrolls b and fx. Note that Figure 5.4A and

Figure 5.4B share the same MAC arrangement and interconnection scheme; indeed there are

other unrolling instances that could also share the same datapath. It follows that the same

circuit can be used to support multiple unrolling instances, discussed further in Section 5.2.4.

Alternatively, there is only a minor routing overhead to support Figure 5.4C and Figure 5.4E,

this can be considered when selecting an optimal subset of desirable projections, discussed

further in Section 5.2.5.
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O +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +2 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +2 +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

O +2 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +2 +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

I +1 +1[𝑏 ,𝑥, 𝑓𝑦,𝑐] ]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]

I +2[𝑏 ,𝑥, 𝑓𝑦,𝑐] ]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]

I +2 +1[𝑏 ,𝑥, 𝑓𝑦,𝑐] ]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐] MAC MAC

W +1[𝑘+1 , , ] 𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] W +1, , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] ]

MAC MAC

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , , ][𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐]

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]+1]

W , ,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐]+1]

O +1[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1]

O +1[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1]

MAC MAC

W +2[𝑘+1 , , ] 𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] W +2,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐], +1] 𝑓, 𝑓,]𝑦,𝑐]

O +2[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O +2[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

Fx=3, k=2B=3, x=2

K
=

3, c=
2

MAC MAC MAC

W +1[𝑘+1 , , ] 𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] W +1, , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦 ],𝑐] W +1, , +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦 ],𝑐]

MAC MAC MAC

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W ,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]

I +1[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑓, 𝑓,]𝑦 ],𝑐]

I +2[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , , +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦 ],𝑐]

O +1[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

F
y=

3, k =
2

MAC MAC MAC

MAC MAC MAC

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W ,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]

I +1[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]

I +2[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] , ] 𝑓, 𝑓,]𝑦,𝑐]

O +1[𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1]

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

Fx=3, B=2

I +1[𝑏 ,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐] I +1 +1[𝑏 ,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐] I +1 +2[𝑏 ,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

(A) F̂unroll
X = 3, B̂unroll = 2

  
MAC MAC MAC

MAC MAC MAC

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W ,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]

I +1[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑓, 𝑓,]𝑦 ],𝑐]

I +2[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , , +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦 ],𝑐]

O[𝑏,𝑥, 𝑓𝑦,𝑐]+1 ],𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O[𝑏,𝑥, 𝑓𝑦,𝑐]+1 ],𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

Fy=3, X=2

I +1[𝑏,𝑥, 𝑓𝑦,𝑐] +𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐] I +1 +1[𝑏,𝑥, 𝑓𝑦,𝑐] +𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐] I +1 +2[𝑏,𝑥, 𝑓𝑦,𝑐] +𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

MAC MAC MAC

MAC MAC MAC

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W ,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]

I +1[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐] ]

W , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑓, 𝑓,]𝑦,𝑐] ]

I +2[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐] ]

W , , +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] ]

O +1[𝑏 ,𝑥, 𝑓𝑦,𝑐] ],𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1[𝑏 ,𝑥, 𝑓𝑦,𝑐] ],𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

C=3, B=2

I +1[𝑏 ,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐] I +1 +1[𝑏 ,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐] ] I +1 +2[𝑏 ,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐] ]

(B) Ĉunroll = 3, B̂unroll = 2

  

MAC MAC MAC

W +1[𝑘+1 , , ] 𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] W +1, +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] , ] 𝑓, 𝑓,]𝑦,𝑐] W +1, +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] , ] 𝑓, 𝑓,]𝑦,𝑐]

MAC MAC MAC

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W ,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]

I +1[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]

I +2[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] , ] 𝑓, 𝑓,]𝑦,𝑐]

O +1[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

MAC

MAC

MAC

MAC

MAC

MAC

I ,[𝑏 ]𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐] W , , ][𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐]

I ,[𝑏 +1 ]𝑥, 𝑓𝑦,𝑐] +𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]

I +1,[𝑏 ]𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]

O +1 +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1 ][𝑏,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

O +1 +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1 ][𝑏,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

O +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +2 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +2 +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

O +2 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +2 +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

I +1 +1[𝑏 ,𝑥, 𝑓𝑦,𝑐] ]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]

I +2[𝑏 ,𝑥, 𝑓𝑦,𝑐] ]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]

I +2 +1[𝑏 ,𝑥, 𝑓𝑦,𝑐] ]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]
MAC MAC

W +1[𝑘+1 , , ] 𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] W +1, , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] ]

MAC MAC

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , , ][𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐]

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]+1]

W , ,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐]+1]

O +1[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1]

O +1[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1]

MAC MAC

W +2[𝑘+1 , , ] 𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] W +2,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐], +1] 𝑓, 𝑓,]𝑦,𝑐]

O +2[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O +2[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]
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MAC MAC MAC

W +1[𝑘+1 , , ] 𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] W +1, , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦 ],𝑐] W +1, , +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦 ],𝑐]

MAC MAC MAC

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W ,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]

I +1[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑓, 𝑓,]𝑦 ],𝑐]

I +2[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , , +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦 ],𝑐]

O +1[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

F
y=

3, k =
2

MAC MAC MAC

MAC MAC MAC

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W ,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]
I +1[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]
I +2[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] , ] 𝑓, 𝑓,]𝑦,𝑐]

O +1[𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1]

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

F
x=

3,
 B

=
2

I +1[𝑏 ,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐] I +1 +1[𝑏 ,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐] I +1 +2[𝑏 ,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]
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(C) K̂unroll = 3, Ĉunroll = 2

  

MAC MAC MAC

W +1[𝑘+1 , , ] 𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] W +1, +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] , ] 𝑓, 𝑓,]𝑦,𝑐] W +1, +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] , ] 𝑓, 𝑓,]𝑦,𝑐]

MAC MAC MAC

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W ,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]

I +1[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]

I +2[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] , ] 𝑓, 𝑓,]𝑦,𝑐]

O +1[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

MAC

MAC

MAC

MAC

MAC

MAC

I ,[𝑏 ]𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐] W , , ][𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐]

I ,[𝑏 +1 ]𝑥, 𝑓𝑦,𝑐] +𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]

I +1,[𝑏 ]𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]

O +1 +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1 ][𝑏,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

O +1 +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1 ][𝑏,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

O +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +2 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +2 +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

O +2 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +2 +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐] ,𝑦,𝑘+1

I +1 +1[𝑏 ,𝑥, 𝑓𝑦,𝑐] ]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]

I +2[𝑏 ,𝑥, 𝑓𝑦,𝑐] ]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]

I +2 +1[𝑏 ,𝑥, 𝑓𝑦,𝑐] ]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]
MAC MAC

W +1[𝑘+1 , , ] 𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] W +1, , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] ]

MAC MAC

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , , ][𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐]

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦,𝑐]+1]

W , ,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐]+1]

O +1[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1]

O +1[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1]

MAC MAC

W +2[𝑘+1 , , ] 𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] W +2,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐], +1] 𝑓, 𝑓,]𝑦,𝑐]

O +2[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O +2[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]
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MAC MAC MAC

W +1[𝑘+1 , , ] 𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦,𝑐] W +1, , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦 ],𝑐] W +1, , +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦 ],𝑐]

MAC MAC MAC

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W ,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]

I +1[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑓, 𝑓,]𝑦 ],𝑐]

I +2[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , , +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐]  𝑓, 𝑓,]𝑦 ],𝑐]

O +1[𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1 ]

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

F
y=

3, k =
2

MAC MAC MAC

MAC MAC MAC

I[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W ,[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]

I +1[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +1[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ],𝑓, 𝑓,]𝑦,𝑐]

I +2[𝑏,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

W , +2[𝑘+1  𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] , ] 𝑓, 𝑓,]𝑦,𝑐]

O +1[𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1]

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O +1 ][𝑏 ,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

O ][𝑏,𝑥, 𝑓𝑦,𝑐],𝑦,𝑘+1

F
x=

3,
 B

=
2

I +1[𝑏 ,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐],𝑦+𝑓, 𝑓,]𝑦 ],𝑐] I +1 +1[𝑏 ,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐] I +1 +2[𝑏 ,𝑥, 𝑓𝑦,𝑐]+𝑓, 𝑓,]𝑥, 𝑓𝑦,𝑐] ,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]

(D) X̂unroll = 2, B̂unroll = 3

  
MAC MAC MAC

MAC MAC MAC

I[, ,+𝑓, 𝑓,] +𝑓, 𝑓,],]

W[, 𝑓, 𝑓,] ,],𝑓, 𝑓,]

I[, , +1+𝑓, 𝑓,] +𝑓, 𝑓,] ,]

W[, +1 𝑓, 𝑓,],𝑓, 𝑓,] ,]

I[, , +2+𝑓, 𝑓,] +𝑓, 𝑓,] ,]

W[, , +2 𝑓, 𝑓,]  𝑓, 𝑓,] ,]

O[,+1,,]

O[,,,]

O[,+1,,]

O[,,,]

F
y=

3,
 X

=
2

I[,+1 ,+𝑓, 𝑓,] +𝑓, 𝑓,],] I[,+1 , +1+𝑓, 𝑓,] +𝑓, 𝑓,] ,] I[,+1 , +2+𝑓, 𝑓,] +𝑓, 𝑓,] ,]

MAC MAC MAC

MAC MAC MAC

I[, ,+𝑓, 𝑓,] +𝑓, 𝑓,],]

W[, 𝑓, 𝑓,] ,],𝑓, 𝑓,]

I[, , ,+1+𝑓, 𝑓,] +𝑓, 𝑓,] ]

W[, ,+1 𝑓, 𝑓,],𝑓, 𝑓,] ]

I[, , ,+2+𝑓, 𝑓,] +𝑓, 𝑓,] ]

W[, , ,+2 𝑓, 𝑓,]  𝑓, 𝑓,] ]

O[+1,,,]

O[,,,]

O[+1,,,]

O[,,,]

C
=

3, B
=

2

I[+1, ,+𝑓, 𝑓,] +𝑓, 𝑓,],] I[+1, , ,+1+𝑓, 𝑓,] +𝑓, 𝑓,] ] I[+1, , ,+2+𝑓, 𝑓,] +𝑓, 𝑓,] ]

W[, 𝑓, 𝑓,] ,],𝑓, 𝑓,]
I[, , ,+1+𝑓, 𝑓,] +𝑓, 𝑓,] ]

W[, ,+1 𝑓, 𝑓,],𝑓, 𝑓,] ]
I[, , ,+2+𝑓, 𝑓,] +𝑓, 𝑓,] ]

W[, , ,+2 𝑓, 𝑓,]  𝑓, 𝑓,] ]
O[,,,]

I[+1, ,+𝑓, 𝑓,] +𝑓, 𝑓,],]

I[+1, , ,+1+𝑓, 𝑓,] +𝑓, 𝑓,] ]

I[+1, , ,+2+𝑓, 𝑓,] +𝑓, 𝑓,] ]

× ∑

×

×

I[, ,+𝑓, 𝑓,] +𝑓, 𝑓,],]

× ∑

×

×

O[,,,]

O[+1,,,]

O[+1,,,]

MAC MAC

MAC MAC

I[𝑏,𝑥+2+𝑓, 𝑓,]𝑥+2,𝑦+𝑓, 𝑓,]𝑦 ],𝑐]
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FIGURE 5.4. EB computations for four unrolling instances of Algorithm 2
assuming M = 6.

Figure 5.5 and Figure 5.6 illustrate how the utilisation rate of these unrolling instances will

differ depending on the target algorithm from the benchmark set for depth-wise and point-wise

convolution kernels, respectively.

First let us compare how depth-wise convolution with 3× 3 kernels can be scheduled based

on unrollings of Figure 5.4A, Figure 5.4D and Figure 5.4E; their utilisation is described by

Figure 5.5A, Figure 5.5B and Figure 5.5C respectively. A depth-wise convolution multiplies

inputs by weights and accumulates over the size of the kernel. Since Figure 5.4A provides

parallel access over the variable fx (also with access size suitable to 3 × 3 kernels), 100%
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in Figure 5.4A
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(B) Scheduling using the un-
rolling in Figure 5.4C
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(C) Scheduling using the unrolling
in Figure 5.4E
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B̂unroll

1×1×kernel size

3×3kernel
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FIGURE 5.5. Scheduling depth-wise convolution kernels on different un-
rolling instances

utilisation is achieved; the parallelism over b and shared fx enables two batches to be computed

simultaneously. The other rows of the kernel can be computed with separate EBs again with

100% efficiency. However, the unrolling of Figure 5.4C does not provide parallel access to

fx, meaning accumulation must be done using separate EBs. Furthermore, there is no need

to access k in parallel resulting in very low utilisation. A better unrolling with funroll
x = 2,

Bunroll
y = 3, as shown in Figure 5.4E achieves 75% utilisation as there are still unused

multipliers due to the 3× 3 kernel size. Note, for low-batch inputs, unrolling variable b may

decrease utilisation.

Now let us compare how point-wise convolution tiles with these same unrollings. Point-wise

convolution accumulates over channels (c). This maps well to the unrolling of Figure 5.4C,

which will achieve 100% utilisation with an even number of channels; with odd numbers of

channels, the final EB will not be fully utilised, as seen in the Figure 5.6B. The unrolling of

Figure 5.4A achieves poor utilisation as accumulation over channels must be between EBs.

Figure 5.4B performs better as channels can be accumulated over EBs, but this may result in

lower efficiency in the final EB, as shown in Figure 5.6C.

Given these examples, if our benchmark suite were to only consist of depth-wise convolutions,

the EBs to support the unrolling of Figure 5.4A would be a good solution. Alternatively, if our

benchmark suite were to only consist of point-wise convolutions, we would only be interested
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(A) Scheduling using the unrolling
in Figure 5.4A
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(B) Scheduling using the unrolling
in Figure 5.4C
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(C) Scheduling using the unrolling
in Figure 5.4B
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FIGURE 5.6. Scheduling point-wise convolution kernels on different unrolling
instances

in developing EBs to support the unrolling of Figure 5.4C. If the benchmark suite were to

consist of both point-wise and depth-wise convolutions, we may wish to develop EBs that

can support the unrollings of both Figure 5.4A and Figure 5.4C. However, this comes at a

hardware cost of additional routing logic. An alternative would be to support unrollings of

Figure 5.4A and Figure 5.4B. While this would have slightly worse utilisation, supporting

either pair would introduce no additional hardware cost, relying on scheduling to ensure

correct data patterns.

The rest of this section describes how we navigate these trade-offs. In the unrolling stage,

we simply explore all potential unrollings and evaluate their utilisation. In the projection

stage, we identify unique computation and data access patterns among the unrollings, called

projections (e.g. Figure 5.4A and Figure 5.4B can be described by the same projection). In the

selection stage, we describe how we identify the best projection set to achieve high utilisation

with minimal hardware cost.

5.2.4 Projections

In order to uniquely identify the computation of unrolling instances and analyse their per-

formance, we first develop a compact representation that we describe as a projection. The
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foundation for this format is the fact that loop variables belonging to the same variable groups

access the IOs similarly for the same computation while in different dimensions. Thus, the

computation and IO bandwidth requirements of the EB remain the same.

Specifically, we define unrolling degree for each variable group as the product of all un-

rollings for the relevant variable group. We then employ a list to distinguish between unique

computation projections as follows:

< UR, UE, UB, UG > (5.1)

For instance, recall from Algorithm 2 that the loop variables x, y and b are Batching variables,

k is an Expansion variable, fx, fy and c are Reduction variables. Since fx is unrolled by

a factor of 3 and b is unrolled by a factor of 2, the relevant projection for Figure 5.4A and

Figure 5.4B is <3,1,2,1>.

5.2.4.1 Computation Model

The projection encodes the necessary information to realize a unique computation data path.

Given a projection, the number of MACs, M is given by (5.2).

M = UR × UE × UB × UG (5.2)

5.2.4.2 I/O Constraints

Furthermore, the projection defines the required IO bandwidth for each inputs and outputs

from the matrices I, W and O. We consider the bandwidth for each input separately as follows:

BandwidthI = UG × UB × UR × PI (5.3)

BandwidthW = UG × UR × UE × PW (5.4)

BandwidthO = UG × UB × UE × PO (5.5)

, where the P parameters represent the data precision for the corresponding IO. This assumes

all data must be streamed into the EB in parallel each cycle, without serialization or double



5.2 MLBLOCKS DESIGN METHODOLOGY 113

buffering. Delivering the data to this dense compute unit relies on the flexible data movements

of the FPGA fabric [31]. The total bandwidth is then described by (5.6). Note, the bandwidth

for O is counted twice since it appears in the both inputs and output.

Bandwidth = BandwidthI +BandwidthW + 2×BandwidthO (5.6)

5.2.4.3 Windowing

In practice, the required bandwidths limit the unrolling degrees when an EB with a constrained

IO budget is desired. However, in the case of neural networks, spatial locality is often

exploited to reduce I/O requirements by using windowing to reuse of input data. In our

algorithm template, it is feasible only for batching variables where they access an index in

combination with a reduction variable, i.e., X and Y access two different dimensions of input

I in combination with FX and FY respectively.

In this work, windowing in only one dimension is considered. For higher dimensions, line

buffers are required, and we assume that these are implemented outside of the EBs and

streamed. We support multiple types of windowing that are common in modern CNNs, as

shown in Figure 5.7. Figure 5.7A illustrates the simplest form, where the streamed data

is delayed by one cycle via a shift register. In the case of Figure 5.7B, the computation

is performed over a larger window, but not all values stored in this window are utilised.

Comparing Figure 5.7A and Figure 5.7B, the same input bandwidth is required, but the

hardware cost to support the latter is higher. Figure 5.7C shows windowing with a larger

stride. In comparison to Figure 5.7A, the hardware requirements are approximately the same,

but the routing is slightly different. Figure 5.7D shows a combination of a larger window with

strided input, where not all values are utilised. Once again, the hardware cost is similar to

Figure 5.7B, but the routing is different.

When enumerating all types of unrolling, it is important also to keep track of the relevant

windowing. This will ensure that the final EB architecture can support all the desired forms of

windowing. Referring to Figure 5.7, a window can be described by 1) window length, Wlength

2) number of samples utilised per window, Wsamples 3) window stride, Wstride. We define
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FIGURE 5.7. Few sample of Generalized windowing regarding Algorithm 2
(In all cases Wsample = 3 and only the dark red buffer entries are involved in
MAC operations).

Wbuffer as the number of storage elements required to delay the data between two cascaded

MAC operations. This will be used for the implementation of the windowing circuit.

To include the windowing parameters in the projection, we update the initial projection

notation in Equation 5.1 to Equation 5.7, where UR = UW
R × UN

R , where superscript W and N

distinguish the unrolling in windowing and non-windowing part. This includes all potential

forms of windowing.

< (UW
R ,Wbuffer,Wstride), U

N
R , UE, UB, UG > (5.7)

For example, in the case of Algorithm 3, if windowing is applied, the relevant projection

is <(3,1,1),1,1,2,1>; if windowing is not applied, the relevant projection is <(1,-,-),3,1,2,1>.
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Note, Equations 5.2, 5.4, and 5.5 are still valid. However, due to the optimization for input I,

the BandwidthI is calculated as follows:

BandwidthI =

UG × UB × UN
R ×Wstride × PI if (Wstride ≤ Wlength)

UG × UB × UN
R ×Wlength × PI other wise

(5.8)

Our generalized windowing approach enlarges the design search space but supports new types

of computations such as dilated convolutions [256, 257], recently proposed for temporal

convolutional networks [258].

5.2.5 Selection

Each projection eventually maps to a hardware configuration regardless of the EB architec-

ture (Figure 5.1). Due to the design constraints, performance, and implementation costs,

supporting all possible projections in an EB is not necessarily desirable or even feasible.

Selection is the process of picking a reasonable subset of possible projections, called selected

projections. This should exclude projections that do not meet design constraints and find the

best tradeoff between projection subset, performance, and implementation costs according to

the optimization objective.

Design constraints: This includes hard limits on EB interface and implementation cost. The

required Bandwidth for I, W, and O is given by the maximum bandwidth of the corresponding

inputs and outputs among the selected projections. Note, that the limit for I, W and O are

not necessary identical, and will be determined by the available on-chip memory interfaces.

Implementation costs, such as area and clock frequency limit can be used to further limit the

projection set.

Objective: To take into account both performance and implementation costs while comparing

two different projection subsets, we define compute density as the selection objective as

follows:

compute density = M
setutilization

setarea

(5.9)
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where setarea is the area cost over the projection subset (computed by synthesis) and setutilization

is the average utilization rate over the benchmark. The utilization rate for each algorithm is

the maximum utilization rate of that algorithm over each of the projections in the projection

subset, i.e. that corresponding to the best projection for that algorithm. This measures the

highest achievable percentage of time EB MACs are performing useful computation. To find

the utilization rate of a projection for implementing an algorithm, we iterate all unrolling

instances which map to that projection to find the best tiling using that projection for the given

algorithm.

Using these metrics, we can analyse the search space, which involves millions of possible

projection subsets. We comment that it is not possible to simply enumerate and synthesize

all potential designs. Due to the number of possible subsets, we implemented two different

selection strategies 1) a fast greedy and 2) a heuristic, called N -Config.

Greedy: This approach incrementally builds a subset of projections by iterating over bench-

mark cases one by one. In each iteration, it initially finds the best performing projections for

a benchmark case, only considering utilization rate, available MACs and IO requirements.

It then checks whether any of the best performing projections is already a member of the

selected projection. If not, it adds one of them to the selected subset randomly. This approach

optimizes the average utilization rate without considering implementation cost. Figure 5.8A

illustrates the process.

N -Config: This technique, shown in Figure 5.8B, considers both performance and implement-

ation area. N -Config exhaustively searches for the best solution in the space of T projections

considering subsets of N projections at a time. To do so, it generates the Verilog model for the

MLBlock instance defined by the selected N configurations, runs synthesis and uses the post

synthesis area to optimize for the best compute density (5.9). This requires
(
T
N

)
calls to the

synthesis process and as N is increased, the search quickly becomes intractable. Thus only

a relatively small N is used. Increasing T also increases the number of possible solutions,

which in turn depends on 1) the unrolling factor M , 2) and the computation diversity among

the benchmark cases, e.g. various strides and dilations.
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FIGURE 5.8. Projection selection techniques

5.2.6 Generation

The generation step in Figure 5.1 takes the selected projections, i.e. a set of projections in

the form of Equation 5.7 as inputs, and outputs an EB, where each projection is mapped to a

hardware configuration offering the corresponding computation. This requires a parameterized

EB architecture based on the projection format. We will suggest an example for such

architecture in Section 5.3.

5.3 Architecture

Generation involves providing the flexible routing (via direct connections and multiplexers)

required to connect input streams to the MAC unit and implement the selected projections.
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The MLBlock architecture is based on a desire to balance two key features: 1) flexibility

and 2) modularity. Our approach has a precision agnostic routing scheme and allows the

integration of multi-precision operations using serial multiplication.

Choosing the dataflow for our systolic implementation is an important high-level design

decision. We selected a W -stationary approach because: 1) FPGA memory architectures can

efficiently implement streaming and windowing (using BRAMs as line-buffers) for I signals,

and 2) O-stationary requires both I and W data movements. The chosen approach relaxes

the IO requirements of delivering W values every cycle by feeding them in a serial manner

and reusing them.

5.3.1 Parameterized MLBlock-M

An MLBlock-M is defined by the number of MAC units (M ), and a set of configurations. By

changing M , we explore different MLBlocks. A computation projection is a specific routing

instance of MAC units. Figure 5.9 shows a parameterized datapath for a given computation

projection of the form of Equation 5.7. Parameters UW
R and UN

R describe the reduction

circuit (dot-product), in which UN
R groups of UW

R I-O-cascaded MAC units are O-cascaded.

This computation is shown in the purple and red areas. The required windowing values are

described by Wbuffer and Wstride which is the same for all MAC units.

The other three parameters, UE, UB, and UG, define the number of copies of the dot-product

circuits along three different dimensions. The inputs and outputs to/from each copy are

different except for UE and UB directions where I and W signals are shared by broadcasting

along those directions. In our architecture, MAC units have dedicated W memories. Thus

they do not share the W values in the UB direction (orange areas).

Our MAC unit is illustrated in Figure 5.10A. It computes Ocascade = I ×W + O. I and

O signals come from separate multiplexing circuits which are designed to provide different

signal sources including other MAC units and block ports per configuration. These allow

rearrangement of the MAC units for implementing different projections as configurations.

This flexibility is run-time controllable by dedicated mode signals.
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FIGURE 5.9. Parameterized flexible systolic architecture for a configuration
expressed by Notation 5.7

The I signal is also registered in the flexible windowing circuit and this circuit can handle

windowing for different Wstride and Wbuffer. Its design supports different Wbuffer and Wstride

across all desired configurations. An example of this circuit which supports Wstride = 1

or 2 and Wbuffer ≤ 3 is depicted in Figure 5.10C. This generates Icascade, which should be

connected to the next PE where windowing is required. Registering I prevents excessive

propagation delay. To store the W values, each MAC unit has a shift register. Finally, Ocascade

carries partial results. To maximize the frequency of a MAC computation, this signal is also

registered. The corresponding register for the Icascade signal is augmented with a windowing

circuit.

By cascading the O signals of N MAC units, an N -point dot-product computation is im-

plemented. By including the cascade of I signals, the dot product computations with input

windowing is achievable. Figure 5.10D shows the cascading arrangement for N = 3.
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(B) A serial multiplier-armed MAC unit
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(D) Cascading MAC units using Icascade and Rescascade signals

FIGURE 5.10. A MAC unit and cascading technique

Figure 5.10B shows the modifications of the MAC unit to support higher-precision computa-

tions through serial multiplication. We include a deeper shift register for saving the higher and

lower parts of the weight, multiplexing, shifting circuit and an extra multiplexer for reusing
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the partial result. These circuits require a small sequencer which is compile-time configurable

and includes a run-time enable signal.

The operation of MAC units with high precision support is slightly different compared to the

baseline version. Considering PI and PW as the input precisions, this type of MAC unit can

compute PI × PW , PI × 2PW , 2PW × PW , or 2PW × 2PW MAC operations in 1, 2, 2, or 4

cycles respectively. This means the MLBlock’s computation pipeline delivers new output in

1, 2, 2, or 4 cycles. On the other hand, loading the deeper weight shift register also requires

2× increase in bandwidth or the loading latency.

We should note that this architecture does not practically scale with the number of MAC

units and configurations due to implementation costs. As the focus of this work is on FPGA

EBs with area approximately the same as a DSP48E2, the number of MACs are limited and

only a small number of configurations are required. This also raises the necessity for smart

configuration selection. Fortunately, many routing resources are shared between different

configurations, i.e, wide partial result signals which are always connected to the previous

MAC unit. This leads to significant optimisation opportunities for the synthesis process.

5.3.2 MLBlock-M Optimisations

In addition to the introduced general block designing procedures, we applied some optimisa-

tions to make the MLBlocks a practical solution as an FPGA EB. In our models, an MLBlock

has a configuration signal mode to change between configurations at run-time. This also

controls the block output multiplexers.

To place MLBlocks on FPGA architectures, we suggest a DSP-like columnar placement.

Similar to DSP dedicated cascading routing between two adjacent MLBlocks for O signals

is possible. This offers dot-product computation expansion using multiple MLBlocks. We

removed input port for Oin while providing internal multiplexer to select between the cascaded

Ocascade signal from the previous MLBlock and constant zero. The main reason behind this is

managing IO requirements where, in practice, MLBlocks will be instantiated in the cascade

mode and on average, these very wide inputs are not used.
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FIGURE 5.11. Columnar placement of BRAMs, DSP48E2, and MLBlock-12

Efficient distributed interface to/from memory blocks, the same for DSP, is imaginable as

depicted in Figure 5.11 for MLBlock-12. This enables efficient cascading of the MLBlock

computations where partial results are passed to the next MLBlock via dedicated cascade

interconnections. It is crucial as using FPGA fabric for high-precision partial result signals

pose significant routing challenges.

Initially, we assume a MAC unit comprises 8 × 8-bit multiplication followed by 32-bit

accumulation. Using a serial multiplier configuration, we expand the supported precisions to

the three cases of 8× 16, 16× 8, and 16× 16 multiplication followed by 32-bit accumulation.

To define IO constraints, we used the Xilinx FPGA Ultrascale+ architecture as a model. Since

MLBlock is a (partial) replacement for DSP blocks, we select constraints similar to a DSP

block. Although the memory to DSP block ratio varies among the different part numbers, we

assume a 1 : 1 ratio of DSP48E2 to BRAM18 blocks, and use the same ratio for MLBlock and

BRAM18. Recently, Samajdar et al. [45] showed how dedicated cascade interconnections of

BRAM18s could be used to implement an efficient 18-bit streaming FIFO which is matched to

DSP requirements. In contrast, MLBlocks require higher bandwidth. As tested using Vivado

2018.3, a 36-bit FIFO implementation by a single BRAM18 and custom FIFO controller
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circuitry using LEs is achievable working with highest routing fabric clock rate. Thus, we

limit the bandwidth for I signals to 36-bits. Similar to [45], to stream in the W signals, we use

URAMs which can provide 8-bit signals per DSP/MLBlock [45] (one 72-bit width URAM

per 9 DSPs). Since DSP48E2 have more than 171 input and output data signals, we limit the

Oout signal up to 4× 32 bits to maintain the same range number of data signal IOs. Note,

we do not consider a limit for input O, as it will either enter the MLBlocks using the cascade

routing or it would be constant zero.

5.4 Experiments and Results

In this section, we first demonstrate configuration selection. Next, the performance of MLB-

lock architectures over the Xilinx DSP48E2 for low-precision arithmetic is presented. Then,

we integrate the serial multiplication technique with MLBlocks and evaluate performance

for both high and low-precision computation. Next, we study MLBlock architectures as an

overlay. Afterwards, we study the performance enhancement of replacing DSP48E2 blocks

with MLBlock instances for Xilinx Ultrascale+ architecture in details, considering limitation

on the number of EBs and the data scheduling overheads. Finally, we compare our MLBlock

instances with other solutions for both Xilinx and Intel architectures using well-known CNN

benchmarks.

For evaluation, we use the Baidu DeepBench benchmark [259], a collection of computation

kernels from three categories of CNNs, RNNs, and general matrix multiplys (GEMMs)

selected from real image detection, voice recognition, and text processing applications. Both

inference and training tasks are represented. Table 5.1 lists the selected kernels and their

loop variable iteration limit and stride. We report the results in three ways: averaged over all

benchmark instances, averaged over the instances of each group (GEMM, CNN, RNN), and

performance of individual instances (instance names are used individually).

We synthesized MLBlocks using Encounter(R) RTL Compiler RC14.11 targeting STMicro

28nm technology, with 750 MHz as the synthesis clock frequency target. This is the maximum

practical frequency for Xilinx DSP48E1 on Virtex-7 using the same technology node [191].
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TABLE 5.1. Loop variable iteration limit and stride, (limit, stride), for selected
kernels from DeepBench [259]. (GEMMs: [row,column]×[row,column],
CNNs: B[X ,Y ,C]∗ K[FX ,FY ,C], RNNs: (Hidden layer size, batch size))

ID Details b0 b1 b2 e0 r0 r1 r2

G
E

M
M

0 [1760,1760]×[1760,128] (1760,1) - - (128,1) - - (1760,1)
1 [7860,2560]×[2560,64] (7860,1) - - (64,1) - - (2560,1)
2 [2560,2560]×[2560,64] (2560,1) - - (64,1) - - (2560,1)
3 [5124,2560]×[2560,9124] (5124,1) - - (9124,1) - - (2560,1)
4 [3072,1024]×[1024,128] (3072,1) - - (128,1) - - (1024,1)
5 [5124,2048]×[2048,700] (5124,1) - - (700,1) - - (2048,1)
6 [35,2048]×[2048,700] (35,1) - - (700,1) - - (2048,1)
7 [3072,1024]×[1024,3000] (3072,1) - - (3000,1) - - (1024,1)
8 [512,2816]×[2816,6000] (512,1) - - (6000,1) - - (2816,1)
9 [7680,2560]×[2560,1] (7680,1) - - (1,1) - - (2560,1)

10 [7680,2560]×[2560,2] (7680,1) - - (2,1) - - (2560,1)
11 [7680,2560]×[2560,1500] (7680,1) - - (1500,1) - - (2560,1)
12 [10752,3584]×[3584,1] (10752,1) - - (1,1) - - (3584,1)
13 [5124,2048]×[2048,700] (5124,1) - - (700,1) - - (2048,1)
14 [35,2048]×[2048,700] (35,1) - - (700,1) - - (2048,1)
15 [3072,1024]×[1024,1500] (3072,1) - - (1500,1) - - (1024,1)
16 [7680,2560]×[2560,1] (7680,1) - - (1,1) - - (2560,1)
17 [7680,2560]×[2560,1500] (7680,1) - - (1500,1) - - (2560,1)
18 [7680,2560]×[2560,1] (7680,1) - - (1,1) - - (2560,1)

C
N

N

0 32[700,161,1]∗32[5,20,1] (700,2) (161,2) (32,1) (32,1) (5,1) (20,1) (1,1)
1 8[54,54,64]∗64[3,3,64] (54,1) (54,1) (8,1) (64,1) (3,1) (3,1) (64,1)
2 16[224,224,3]∗64[3,3,3] (224,1) (224,1) (16,1) (64,1) (3,1) (3,1) (3,1)
3 16[7,7,512]∗512[3,3,512] (7,1) (7,1) (16,1) (512,1) (3,1) (3,1) (512,1)
4 16[28,28,192]∗32[5,5,192] (28,1) (28,1) (16,1) (32,1) (5,1) (5,1) (192,1)
5 4[341,79,32]∗32[5,10,32] (341,2) (79,2) (4,1) (32,1) (5,1) (10,1) (32,1)
6 1[224,224,3]∗64[7,7,3] (224,2) (224,2) (1,1) (64,1) (7,1) (7,1) (3,1)
7 1[56,56,256]∗128[1,1,256] (56,2) (56,2) (1,1) (128,1) (1,1) (1,1) (256,1)
8 2[7,7,512]∗2048[1,1,512] (7,1) (7,1) (2,1) (2048,1) (1,1) (1,1) (512,1)
9 1[112,112,64]∗64[1,1,64] (112,1) (112,1) (1,1) (64,1) (1,1) (1,1) (64,1)

10 1[56,56,256]∗128[1,1,256] (56,2) (56,2) (1,1) (128,1) (1,1) (1,1) (256,1)
11 1[7,7,512]∗2048[1,1,512] (7,1) (7,1) (1,1) (2048,1) (1,1) (1,1) (512,1)

R
N

N

0 RNN (1760, 16) (1760,1) - (16,1) (1760,1) - - (3520,1)
1 RNN (2560, 32) (2560,1) - (32,1) (2560,1) - - (5120,1)
2 LSTM (1024, 128) (4096,1) - (128,1) (1024,1) - - (2048,1)
3 GRU (2816, 32) (8448,1) - (32,1) (2816,1) - - (5632,1)
4 LSTM (1536, 4) (6144,1) - (4,1) (1536,1) - - (3072,1)
5 LSTM (256, 4) (1024,1) - (4,1) (256,1) - - (512,1)
6 GRU (2816, 1) (8448,1) - (1,1) (2816,1) - - (5632,1)
7 GRU (2560, 2) (7680,1) - (2,1) (2560,1) - - (5120,1)
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Please note, we use post-synthesis results to report area in um2 and power in mW directly

according to the reports. The DSP48E2 Verilog model was an open source version available

through [1].

5.4.1 Configuration Selection Methods

TABLE 5.2. Selection methods for MLBlock-12 (results based on average
over all benchmark cases)

Method Utilization Area† Obj‡ # Synth. time

Greedy 88.241 6093 1 1 1–2 mins

1-Config 72.000 5243 0.94 28 3–4 mins

2-Config 86.019 5245 1.13 378 1–2 hours

3-Config 88.192 5634 1.08 3276 ≈ a day

4-Config 88.241§ - - 20475 ≈ a week

5-Config 88.241§ - - 98280 ≈ a month
†um2, ‡normalized objective: Utilization

Area

Table 5.2 summarizes results for MLBlock-12 using different design exploration techniques.

The greedy approach chooses four configurations leading to higher area while delivering

the highest utilization rate. In contrast, the N -Config approach maximises compute density

(Utilization
Area

) as shown in column Obj. The N -Config approach requires synthesis to be executed

within its search loop and is therefore time consuming. However, calculating utilization rate

is quick. We comment that as reported in Table 5.2 the utilization rate plateaus for N ≥ 4,

but at the same time, in general supporting more complex configurations results in a higher

implementation cost, so little improvement is expected. The search space of 2/3-Config

is also shown in Figure 5.12. The wide range of utilization rate is due to a mismatch in

supported stride or unrolling of the selected projection and benchmarks. The final compute

density (utilization/area) can vary by up to two orders of magnitude, highlighting the need

for automated design space exploration. Although 2-Config delivers the best performing

MLBlock for our benchmark, for the remaining experiments we used the Greedy method

for its speed. The resource utilization range is also larger for Greedy since supporting more

configurations requires more routing and buffering resources.
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FIGURE 5.12. Search space for MLBlock-12 using 2 and 3-Config technique
(results based on average over all benchmark cases). The most efficient
architecture is pointed by red (Area: um2).

5.4.2 MLBlocks vs. DSP48E2

Using the same IO constraints as DSP48E2, we generate MLBlocks for different numbers

of MAC units and results are summarized in Table 5.3. We normalized the area and power

values based on the results for our DSP48E2 model, where the absolute numbers are 7208.87

um2 and 19.516 mW , respectively. From the table, it can be seen that in an MLBlock-M ,

area and power scale linearly with M . All 8× 8 precision configurations have significantly

lower power and area than the DSP48E2. It is also important to note that the MLBlock-M

can perform M/2 times more MACs per cycle at 8-bit precision.

Compute density (or performance per area) can be calculated as Utilization×MACs
Area . Fig-

ure 5.13 shows this metric for the different benchmark classes. The performance of MLBlocks

can be seen to be around 6× higher than DSP48E2 for 8-bit multiply and 32-bit accumulate

operations. This is because the MLBlock architecture can provide more MACs without

increasing routing. Also, DSP48E2 includes some unneeded circuits such as a 48-bit compar-

ator, wide logic functions, pre-adder, and wider accumulator. It is notable that MLBlock-12

is also 15% smaller than a DSP48E2. To be fair, these extra features are required for other
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TABLE 5.3. Post-synthesis results for different EB architectures

EB name Precisions Utilization Area∗ Power∗

DSP48E2 27× 18 or two 8× 8 ≈ 1 1 1

MLBlock-12 8× 8 88% 0.85 0.98

MLBlock-9 8× 8 86% 0.66 0.81

MLBlock-8 8× 8 92% 0.56 0.65

MLBlock-6 8× 8 93% 0.46 0.54

MLBlock-12 (16/8)× (16/8) 88% 1.44 1.81

MLBlock-9 (16/8)× (16/8) 86% 1.20 1.57

MLBlock-8 (16/8)× (16/8) 92% 0.96 1.20

MLBlock-6 (16/8)× (16/8) 93% 0.80 1.02
∗normalized
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FIGURE 5.13. Compute density of various MLBlocks for low precision com-
putations (results based on average for each benchmark category and over all
benchmark cases)

applications not considered in this study and replacing a percentage of DSP48E2s with

MLBlocks could achieve a compromise.

Figure 5.13, also shows how the number of MAC units affects the efficiency. MLBlock-12

is a particularly good choice as 12 it is divisible by 2, 3, 4 and 6, making the mapping of

different loop counts more efficient. In general, choosing an M with a diverse set of factors



128 5 MLBLOCKS: RETHINKING EMBEDDED BLOCKS FOR MACHINE LEARNING APPLICATIONS

leads to a higher utilization rate. Thus, MLBlock-9 shows a lower performance in general

and is particularly bad for the LSTM cases; its excellent performance in CNN benchmarks is

due to the fact that 3 is a common window size.

The other aspect of MLBlocks is IO efficiency. Physically this corresponds to providing local

connections and run-time configuration flexibility inside the block, instead of relying on FPGA

fabric and LE-based multiplexing. For instance, MLBlock-12 requires 24-bit data signals per

MACs while this number is 93 for the DSP48E2. In both cases, the computations themselves

are still dot-product computations. The key to MLBlock’s efficiency lies in avoiding global

routing by providing internal broadcasting or using windowing.

5.4.3 MLBlocks with High-precision Support

Adding some additional circuitry to the 8 × 8 bit multiplier can enable its use as a serial-

parallel multiplier to achieve higher precision. We now describe a high precision MLBlock

which supports 8/16 × 8/16 + 32-bit MAC operations. The effect of this change on area,

utilization and power is shown in the bottom half of Table 5.3. As expected, the area

increases and performance of low-precision arithmetic is reduced to around 3.5× since

multiplication becomes a multi-cycle operation. Figure 5.14 shows the compute density of

different high precision MLBlocks. While adding high precision support necessarily decreases

the performance advantage and increases area, the overall compute density is still a significant

improvement over DSP482E. Indeed, MLBlock-8 is 4% smaller than DSP48E2 while having

approximately 3× higher compute density for 8-bit operations and 2× higher compute density

for 16-bit operations.

5.4.4 MLBlocks as Overlays

MLBlock models can also be used as soft IP cores which utilize FPGA logic elements.

Although these models are not optimized for look-up table based implementations, studying

them as overlays brings insight into the MLBlock architecture and its variations.
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FIGURE 5.14. Compute density of various MLBlocks using serial-parallel
multipliers for high/low precision computations (results based on average for
each benchmark category and over all benchmark cases)

TABLE 5.4. Post implementation resource and timing results for different EB
architectures as overlays

EB name Precision CLBs Registers (MHz)
fMax Performance/CLB

DSP48E2 27× 18 338 564 154 0.91

MLBlock-12 8× 8 324 649 221 7.20

MLBlock-9 8× 8 243 650 251 7.99

MLBlock-8 8× 8 187 553 222 8.74
MLBlock-6 8× 8 160 386 223 7.78

MLBlock-12 (16/8)× (16/8) 605 1054 223 3.89

MLBlock-9 (16/8)× (16/8) 419 941 211 3.90

MLBlock-8 (16/8)× (16/8) 383 674 225 4.32
MLBlock-6 (16/8)× (16/8) 291 606 197 3.78

8×8 MAC (32-bit acc.) 8× 8 19 80 378 19.89

Table 5.4 summarizes the required FPGA resources for implementing MLBlock-12, 9, 8, 6

with and without high precision support. We report post-implementation results targeting the

Virtex UltraScale+ architecture (part number xcvu5p-flva2104-1-i).
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Considering the resource utilization of a single-cycle signed 8×8 multiply and 32-bit accumu-

lation unit, we calculate the resource overhead due to the additional routing for MLBlock-M

(without high precision support) by CLBMLBlock-M−M×CLB8×8MAC
M×CLB8×8MAC

, where CLBMLBlock-M and

CLB8×8MAC are the CLB costs for MLBlock-M and the single-cycle signed 8× 8 MAC unit,

respectively. Using that, MLBlock models (without high precision support) introduce 37%

resource overhead on average. This means MLBlocks as EBs encapsulate significant run-time

configurable routing resources, it could subsequently reduce routing pressure in deployments

where run-time reconfiguration is required.

In addition, using the utilization rates from Table 5.3, we calculate performance per CLB as
MACs×Utilization×FMax

CLB . MLBlock-8 delivers the highest score, due to 1) high utilization rate over

the benchmarks, and 2) an efficient configuration set. This is the same conclusion as for the

standard cell synthesis results.

5.4.5 Performance Analysis Considering Data Scheduling

Increasing compute density does not necessarily translate to higher performance. Utilizing

the added compute power relies on efficient data scheduling and becomes crucial when the

number of EBs are limited and data movement overheads are significant. In MLBlocks, there

is a narrow port for streaming in one of the inputs, which means an MLBlock-M requires M

cycles to be (re)initialized. The pipeline registers within MAC units causes a number of cycles

of delay before the first output appears. This latency may vary between the configurations of

an MLBlock.

To explore the effect of data scheduling, we developed an open source Verilog generator [253]

for circuits expressed as nested loops according to Algorithm 1. The generator instantiates

the data path (EB instances, memories interconnections and memories) together with a

corresponding state machine to implement the algorithm. The design space exploration is

constrained by selected data flow, the number of EBs, memory components, and EB interfaces.

We select a weight stationary data flow for this experiment. Assuming Ultrascale+ architecture,

BRAM and URAM blocks are used to define the memory components. The required clock
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FIGURE 5.15. Performance speedup of various MLBlock instances compar-
ing to DSP48E2 for various budget for number of available EBs with narrowing
the EB column’s width

cycles is the optimization objective as a proxy for performance. This considers both 1)

(re)initialization, and 2) the computation pipeline latencies for MLBlocks. We modelled

an MLBlock by describing each compute projection as a separate logical EB. The best

performing projection represents the MLBlock performance for the given input algorithm.

Number of EBs vs performance: Generally, weight stationary data flow works better when

compute units have sufficient memory to buffer the fetched kernel parameters and avoid

unnecessary data transfers. Increasing the number of EBs or their embedded memories leads

to scheduling schemes with higher data reuse. Figure 5.15 shows the normalized speedup

for different MLBlock instances comparing to the implementations with the same number

of the DSP48E2 blocks. We swept the EB budget through the multiples of 96, where 96 is

the common number of DSPs in a DSP column for this FPGA family. In this experiment, we

again used the DeepBench benchmarks.

We first replace each DSP48E2 block with an MLBlock-M without changing the EB column

size. This is possible as MLBlock instances are all smaller than the DSP48E2. Hence, with

the same area footprint, MLBlock-12, 9, 8, and 6, are 6, 4.5, 4, 3× denser than the DSP48E2

for low-precision arithmetic.
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Generally, the performance gain is expected to be the same as the compute density for an

MLBlock-M architecture. However, for small numbers of EBs/DSP48E2s, the MLBlock-M

architecture struggles with the high number of costly data transfers. Although MLBlock-M

offers M× larger memories suitable for reusing a larger portion of the kernels, it also requires

M× longer (re)initialization phases compared to their DSP48E2 counterpart. This trade-off

restricts the performance speedup of MLBlocks to about 2-3×.

As the number of EBs/DSP48E2s are increased, the performance speedup for both MLBlocks

and DSP48E2 columns improve. However, due to the higher memory and compute power

density, the MLBlock architecture avoids unnecessary data movements, leading to higher

performance. In fact, the growth surpasses the performance speedup expectations because of

benchmark instances where the MLBlock memories are sufficient to save and reuse the kernel

parameters, while DSP48E2 must incur the overhead of extra data transfers. Eventually both

architectures reach the point that weights can be stored on the compute unit memories without

excessive data movements and overheads. As can be seen in Figure 5.15, the performance

speedups converge to the compute density ratios.

Figure 5.16 displays the speedups for each benchmark case, assuming the fixed budget of

4800 EBs. As expected, the average speedups should be consistent with the abovementioned

computation density rates. Somewhat surprisingly, it varies among the benchmark groups and

their members. For CNNs, the speedups are consistently close to the computation density

ratios. However, for GEMMs, this is not always the case as some kernels have very low reuse

factors or extremely narrow dimensions, e.g. GEMM-9, 10, 12, 16, 18. In contrast, due to

the very large matrix multiplications in RNNs, there are some cases (e.g. RNN-1, 3, 6, 7) in

which MLBlocks surpass the nominal speedup rates. This is because of their larger memories

to save and reuse weights, which leads to a higher utilization rate while having more MAC

units.

If narrowing the EB column’s width is allowed, a small reduction in the FPGA footprint is

expected. As given in reference [260], the DSP blocks contribute to only 5% of the total

FPGA fabric. Using the estimated area ratios, the total FPGA chip area reduction is in the
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FIGURE 5.16. Performance speedup of various MLBlock instances compar-
ing to DSP48E2 for fixed budget of 4800 EBs

range of 1-2.7%, which slightly enhance the results on Figure 5.15 without affecting the

trends.

It may also be possible to use the saved area to instantiate more MLBlocks in a column.

Figure 5.17 shows the performance comparison where each DSP48E2 column is replaced

by an MLBlock column with 122, 145, 171, or 208 instances of MLBlock-12,-9,-8, or -6

respectively. As expected, similar to Figure 5.15, initially, the number of EBs limits the

performance to the range of 2.5-5×. Since each column includes more EBs; increasing the

number of columns enhances the performance at higher rates. Thus, the same trend with

higher performance gains is achieved. Finally, the performance speedups converge to the

compute density rates, which are shown in Figure 5.13. Note, in this setting, each MLBlock

column may require more than a column of BRAM support as the 1:1 BRAM-MLBlock ratio

is not preserved. Consequently, denser memory units are required to achieve such gains.
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5.4.6 Comparison with Commercial Devices

5.4.6.1 Xilinx Architecture:

To demonstrate the effectiveness of the suggested design methodology, we first compare

MLBlocks with other expert-designed alternatives for DSP48E2 from industry (Xilinx DSP58)

and academia (PIR-DSP[1]). We use a new benchmark comprising computation kernels

of convolution and fully-connected layers for two well known CNNs (VGG16 [90] and

ResNet18 [91]) (batch size 2), while keeping the same MLBlocks as for the DeepBench [259]

kernels.

The plots in Figure 5.18 compare the average speedup of VGG16 and ResNet18 kernels using

MLBlocks, PIR-DSP, DSP58, and DSP48E2, assuming a fixed budget of 360 (Figure 5.18A)

and 4272 (Figure 5.18B) EBs. These represent small embedded (Ultra 96v2 [261]) and large,

high-end (ZCU111 [262]) FPGA development board specifications respectively.

As expected, similar to Figure 5.15, MLBlock modes achieve higher speedups for low

precision arithmetic in both scenarios. In the embedded scenario, as the benchmark set is

heavily weighted with standard 2D convolution layers having 3× 3 kernels, MLBlock-9 is a
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(A) Considering Xilinx Zynq UltraScale+ MPSoC ZU3EG resources as an embedded
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FIGURE 5.18. Performance comparison between MLBlocks and expert-
designed replacement for Xilinx DSP48E2 from both academia and industry
considering both embedded and high-end FPGAs

better fit for the computations and delivers the best performance. In contrast, by increasing the

size of EBs (high-end scenario), the performance speedups converge to the compute density

ratios, and MLBlock-12 achieves the best performance.
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PIR-DSP [1] and MLBlock-6 both can do six low-precision (8× 8-bit) MACs. Interestingly,

one of the MLBlock-6 configurations exactly matches the low precision mode in PIR-DSP

(two parallel 3-element dot-products). However, other configurations of MLBlock-6 result

in more efficient computation tiling comparing to PIR-DSP. Furthermore, PIR-DSP’s com-

mitment to backward compatibility meant retaining extra circuits such as a large pre-adder,

comparator, and wide logic circuits. Consequently, it has about 18% larger area than DSP48E2.

In our comparison, we dismiss this area overhead. This gap is larger when the number of

EBs are limited, as extra configurations help to boost the performance. By increasing the

number of EBs, the speedups converge to compute density rates which are the same for both

architectures.

DSP58, with three low-precision MAC operations, shows performance between PIR-DSP

and DSP48E2 with 6 and 2 MACs, respectively. Similar to PIR-DSP, it has an area overhead

due to backward compatibility with the DSP48E2. Since there is no published information

available, we assume that similar DSP/CLB/BRAM ratios for both DSP48E2 and DSP58, and

also assume the same area and working frequency for these two DSPs.

5.4.6.2 Intel Architecture:

The suggested design methodology can be applied to other FPGA architectures, such as

Intel FPGAs. Although it is better to recreate MLBlock instances according to the area

and IO constraints of the new architecture, for consistency we use our previously generated

instances. We gathered implementation results for MLBlocks, Stratix-10 DSP, an alternative

DSP proposed in [209], as well as Tensor Slice [219] all in Table 5.5. Since the other DSPs

support high precision, they are compared with MLBlocks with high-precision support.

The last column of this table presents our comparison metric calculated as # of MACs
Area×Delay for both

high and low-precision arithmetic, which considers both performance and implementation

costs. MLBlocks (especially MLBlock-8 and 12) delivers the highest score for both high

and low-precision. As expected, Tensor Slice, with its high number of MACs, is the next

best design. To be fair, this architecture supports floating-point and element-wise operations,

which are not included in MLBlocks. The next architecture is that of Boutros et al. [209].
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TABLE 5.5. Implementation results comparison between MLBlocks, Intel
Stratix-10 DSP and its alternatives

EB name Precision
# of MACs Area Tech. fmax

# of MACs
Area×Delay

∗

8×8 16×16 (um2) (nm) 8×8 16×16

[209]
Stratix-10 DSP

27×27,18×18 2 1 8404 28 600 1 1

MLBlock-6 8× 8 6 - 3315 28 750 9.5 -
MLBlock-8 8× 8 8 - 4026 28 750 10.4 -
MLBlock-9 8× 8 9 - 4789 28 750 9.9 -
MLBlock-12 8× 8 12 - 6093 28 750 10.3 -

MLBlock-6 (16/8)× (16/8) 6 6 (4cyc.) 5776 28 750 5.5 2.7
MLBlock-8 (16/8)× (16/8) 8 8 (4cyc.) 6907 28 750 6.1 3.1
MLBlock-9 (16/8)× (16/8) 9 9 (4cyc.) 8643 28 750 5.5 2.7
MLBlock-12 (16/8)× (16/8) 12 12 (4cyc.) 10378 28 750 6.1 3.0

[209]
Boutros et al.

27×27,18×18,9×9,4×4 4 2 8810 28 600 1.9 1.9

[219]
Tensor Slice FP16×FP16, 8× 8 64 - 50032 22 371 3.3 -

∗normalized

Although it is a suitable replacement for Intel DSPs, backward compatibility prevents it

from offering a dense low-precision compute unit. However, in high-precision mode, its

performance (similarly for Stratix-10 DSP) only halves whereas MLBlocks performance

is reduced by a factor of 4. Nevertheless, while [209] narrows the gap for high-precision

computation, MLBlocks still obtain the best performance.

Due to the lack of public information, we were not able to compare our work with other

commercial solutions such as the Achronix MLB72 [217] or AI-tensor from Intel [216]. We

also note that the AI-tensor implementation is different to MLBlocks. For instance, AI-tensor

uses a pipelined adder-tree structure whereas MLBlocks are based on systolic arrays. AI-

tensor also includes a double buffering system to cover reloading latencies, which is not

present in our architecture.

However, aside from these differences, the computation of these two units are special cases of

our architecture, which our tool explores, based on a systolic array architecture. For instance,
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AI-tensor is able to compute three 10-element dot-products (one input is shared). Focusing

only on the computation, we can describe this single computation by a couple of projections:

1) <(1,-,-),10,3,1,1> (one shared 10-element input I and three sets of 10-element weights),

and 2) <(1,-,-),10,1,3,1> (10-element shared input W and three batches of 10-element of I). If

the number of MAC units is 30, our tool automatically considers these two projections along

with other choices such as <(1,-,-),3,10,1> and <(3,1,1),10,1,1>.

5.5 Summary

This chapter proposed a novel methodology for designing coarse-grained embedded blocks

for machine learning applications. The procedure is based on modelling the computations

and providing a mapping to different configurations of a flexible architecture. Using a set of

benchmarks applicable to text, voice and image processing applications, together with design

constraints from a commercial Xilinx FPGA, different instances of MLBlock architecture

are generated. The results show that MLBlock instances can provide a 6× improvement

in compute density over the Xilinx DSP48E2 in the same technology for 8-bit arithmetic

without increasing port requirements. MLBlocks with 16-bit configuration, which use serial

multipliers, can achieve 2× more computation performance per area compared to the Xilinx

DSP48E2. This approach generalises earlier work which either focused on the implementation

of a single type of DNN, or creating an FPGA/ASIC generator for arbitrary DNNs; rather, the

presented method discovers an efficient embedded block that covers a representative set of

algorithms represented by the benchmark set.
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Conclusion

This research investigated the suitability of traditional FPGA architectures for low-precision

deep learning applications and identified a number of opportunities for FPGA architecture

specialization to better support deep learning. Based on quantitative studies, it was found that

modification of conventional EBs (Chapters 3 and 4) or substituting them with specialised

ones (Chapter 5) lead to significant gains without substantial overheads. Results indicate that

minor specialisation in FPGA architectures can dramatically enhance the compute density for

embedded DNN applications.

First, the PIR-DSP architecture was introduced that incorporates precision, interconnect and

reuse optimisations to better support 2-dimensional low-precision DNN applications. A

performance analysis using embedded DNN workloads shows that this architecture can signi-

ficantly reduce the energy consumption for low-precision implementations, albeit requiring

an extra cycle of latency and a 28% area overhead. The main disadvantages of this approach

originated in the assumption of backward compatibility, as supporting previous modes limits

circuit flexibility and performance gains. While PIR-DSP improves the performance of

DNN kernels such as SConv, PW, DW, and FC layers, the extra reconfigurability impacts all

applications, most of which do not receive any benefit.

The limitations of traditional FPGA LUT-based architectures for the implementation of

compressor trees were then discussed, and instead, several low-cost modifications that lead to

significantly improved-performance GPCs and the XnorPopcount operation were proposed. It

was shown through the developed ILP technology mapper model that the suggested vendor-

agnostic structure, called LUXOR, has minimal implementation overhead and reduces the

logic utilisation for compressor trees by up to 36% (average 12–19%) over both Intel and
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Xilinx FPGAs. The suggested LUXOR architecture has two key advantages over other

solutions reviewed in Chapter 2: 1) its vendor-agnostic characteristic makes it applicable to

virtually any LE architecture, and 2) its applicability to a wide range of applications. However,

to comprehensively examine this feature, the suggested configurations should be integrated

into synthesisers. This was not studied in this work. Afterwards, two carefully-crafted vendor-

specific modifications for Xilinx and Intel architectures were introduced, which enhanced the

performance gains up to 48% (average 26–34%) at the cost of an additional 3–6% silicon

area. Although these modifications are particularly presented for these two architectures, they

are still likely to be applicable to LEs from other vendors because of the overall architectural

similarities between LE architecture and the solution simplicity.

Finally, a novel methodology for designing coarse-grained embedded blocks for machine

learning applications was proposed. The presented technique is the first automatic design

space exploration for EB blocks targeting ML and BLAS applications that enables finding

near-optimum architectures from a given benchmark set. The approach was based on gener-

alised modelling of the computations and mapping to different configurations of a flexible

architecture. Using a benchmark-driven flow, instances of our architecture, called MLBlocks,

were generated that offer higher compute density compared to commercialised and academic

DSP blocks without increasing port requirements.

Highly specialised EBs’s highlighted in this study should not be seen as a replacement for

traditional DSP blocks as high-precision arithmetic is still relevant to many FPGA applica-

tion domains including ML and linear algebra. A partial replacement of DSP blocks with

MLBlocks may be a good compromise, with the best ratio depending on the benchmark set.

Indeed, MLBlocks could be readily extended to explore this problem.

In summary, contemporary FPGA architectures are heavily optimised for applications that

were historically dominated by high-precision digital signal processing applications. The

undeniable and fast-growing demand for deploying DNN applications in embedded devices is

shifting the required characteristics to low-precision arithmetic and memory-intensive data

paths. Current FPGA blocks offer poor native support for such problems, which demands

rethinking the architecture at all levels.
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6.1 Future Outlook

Moving forward, there are still numerous unanswered research questions regarding FPGA

architectures. These, in a sense, also apply to all reconfigurable architectures. First and

foremost, the ongoing shift in on-demand applications is trending toward more compute and

memory-intensive data paths that necessitate architecture specialisation. Although this thesis

focused on compute blocks, rethinking the entire FPGA architecture, including memory and

routing resources, is necessary.

Next, as also raised in [184], the new AI and high performance computing (HPC) workloads

themself have different characteristics, which poses challenges to supporting such diversity.

Future work may also study new EB architectures that can effectively support these two

application classes. This will clarify to what degree the FPGAs should maintain their spirit of

generality and whether the move towards increasingly domain-specific FPGA architectures

will continue.

PIR-DSP and LUXOR architectures that were respectively discussed in Chapters 3 and

4 are handcrafted optimisations open to further improvements. In particular, our initial

investigations show that optimizing the critical path of the PIR-DSP by providing a bypass

path for the unused pre-adder could enhance frequency by about 25% and potentially remove

the extra cycle of latency introduced by our additional pipeline stage. A thorough study of

opportunities to further optimise data paths could be undertaken.

Finally, the proposed model in Chapter 5 assumes the algorithm only comprises MAC

operations, and there are no output data dependencies apart from accumulation. Future

work will involve generalisation to support other classes of problems, such as digital signal

processing and stencil computations. Meanwhile, the suggested MLBlock architecture is

only a proof of concept. Expanding the design search space by improved input/output

schemes, double buffering, and various data stationary types can greatly enhance performance

and efficiency. A careful comparison of EBs for low-precision arithmetic compared to

implementations using fined-grained logic elements is also planned.



Acronyms

AI: artificial intelligence

ALM: adaptive logic module

ALU: arithmetic logic unit

ANN: artificial neural network

APD: Area-Performance Degree

ASIC: application-specific integrated circuit

BLAS: basic linear algebra subprograms

BN: batch normalisation

BNN: binarised neural network

CGRA: coarse-grained gate array

Cin: carry-in

CLB: configurable logic element

CNN: convolutional neural network

Conv: convolutional

Cout: carry-out

CPLD: complex PLD

CPU: central processing unit

CSA: carry-save adder

DFT: discrete fourier transformation

DNN: deep neural network

DSP: digital signal processing

DW: depth-wise convolution

eASIC: embedded ASIC

EB: embedded block

eFPGA: embedded FPGA
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FA: full-adder

FC: fully connected

FF: flip-flop

FIFO: first in first out

FP: floating-point

FPGA: field-programmable gate array

GAN: generative adversarial network

GEMM: general matrix multiply

GPC: generalised parallel counter

GPGPU: general-purpose computing on graphics processing unit

GPU: graphics processing unit

GRU: gated recurrent unit

HA: half-adder

HPC: high performance computing

ILP: integer linear programming

ILSVRC: ImageNet Large Scale Visual Recognition Competition

IO: Input/Output

LAB: logic array block

LB: logic block

LE: logic element

LSTM: long-short-term memory

LUT: look-up table

MAC: multiply-accumulate

ML: machine learning

MLP: multi-layer perceptron

MSB: most significant bit

MVU: matrix-vector unit

NAS: network architecture search

NN: neural network

PAL: programmable array logic
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PLA: programmable logic array

PLD: programmable logic device

PPA: performance per area

PW: point-wise convolution

RCA: ripple-carry adder

ReLU: rectified linear unit

RF: register file

RNN: recurrent neural network

SConv: standard convolutional

SPLD: simple PLD

SR: shift-register

XPE: Xilinx Power Estimator
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