Fixed-point FPGA implementations of Machine Learning Algorithms

Philip H.W. Leong, Computer Engineering Laboratory School of Electrical and Information Engineering

- Mission: to discover new ways of exploiting parallelism and customisation to solve computationally demanding problems.
 - Study how to achieve improved latency, throughput, energy and area efficiency using field programmable gate array (FPGA), VLSI and cluster computing technology.
- > Research
 - FPGA-based computing
 - Machine learning
 - Signal processing
 - Embedded systems

SYQ technique Two-speed multiplier LSTM-based spectral predictor

Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., "FINN: A framework for fast, scalable binarized neural network inference," FPGA'17

Binarized Neural Networks

- > The extreme case of quantization
 - Permit only two values: +1 and -1
 - Binary weights, binary activations
 - Trained from scratch, not truncated FP
- > Courbariaux and Hubara et al. (NIPS 2016)
 - Competitive results on three smaller benchmarks
 - Open source training flow
 - Standard "deep learning" layers
 - Convolutions, max pooling, batch norm, fully connected...

		cat	deer	dog	frog	horse	shi
56789	2 11/2 🔠 15		X	Y	Sec.	3470	4
56789	1/ 11 41 11:0	1	Stat		()	net	-
56989	10.5314	×	1	B.	4	T	1
56789		2	L.X	Ŷ	S.	PT	
56789				100	A	The	-
56789	7 5 4 8 1	-	76	X.	E.	af	
56789	1/11 4 21	633		à		A	-

	MNIST	SVHN	CIFAR- 10
Binary weights & activations	0.96%	2.53%	10.15%
FP weights & activations	0.94%	1.69%	7.62%
BNN accuracy loss	-0.2%	-0.84%	-2.53%

% classification error (lower is better)

Advantages of BNNs

Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG

- > Much smaller datapaths
 - Multiply becomes XNOR, addition becomes popcount
 - No DSPs needed, everything in LUTs
 - Lower cost per op = more ops every cycle
- > Much smaller weights
 - Large networks can fit entirely into onchip memory (OCM)
 - More bandwidth, less energy compared to off-chip

Precision	Peak TOPS		On-chip weights		
1b	~66	\wedge	~70 M	\wedge	
8b	~4		~10 M 🖌		\mathbf{r}
16b	~1	00¥	~5 M	30x	
32b	~0.3		~2 M		

> fast inference with large BNNs

Comparison

		Accuracy	FPS	Power (chip)	Power (wall)	kFPS / Watt (chip)	kFPS / Watt (wall)	Precision
	MNIST, SFC-max	95.8%	12.3 M	7.3 W	21.2 W	1693	583	1
Ş	MNIST, LFC-max	98.4%	1.5 M	8.8 W	22.6 W	177	269	1
	CIFAR-10, CNV-max	80.1%	21.9 k	3.6 W	11.7 W	6	2	1
	SVHN, CNV-max	94.9%	21.9 k	3.6 W	11.7 W	6	2	1
ž o	MNIST, <u>Alemdar</u> et al.	97.8%	255.1 k	0.3 W	-	806	-	2
\$	CIFAR-10, TrueNorth	83.4%	1.2 k	0.2 W	-	6	-	1
l	SVHN, TrueNorth	96.7%	2.5 k	0.3 W	-	10	-	1
	Max accuracy 10 – 100 loss: ~3% perform		Dx better mance		CIFAR-10/S\ comparable	/HN energy e e to TrueNortl	efficiency h ASIC	

- > Who would be willing to incur a loss in accuracy?
- > Can we get better accuracy with a little more hardware?

SYQ Quantisation

To compute quantised weights from FP weights

$$\boldsymbol{Q}_l = sign(\boldsymbol{W}_l) \odot \boldsymbol{M}_l$$

with,

$$M_{l_{i,j}} = \begin{cases} 1 & \text{if} & |W_{l_{i,j}}| \ge \eta_l \\ 0 & \text{if} & -\eta_l < W_{l_{i,j}} < \eta_l \end{cases}$$

$$\mathit{sign}(x) = \left\{ egin{array}{cc} 1 & ext{if } x \geq 0 \ -1 & ext{otherwise} \end{array}
ight.$$

where **M** represents a masking matrix, η is the quantization threshold hyperparameter (0 for binarised)

SYQ Quantisation

- Make approximation $W_l \approx \alpha_l Q_l, Q_l \in C$
- C is the codebook, $C \in \{C_1, C_2, \ldots\}$ e.g. $C = \{-1, +1\}$ for binary, $C = \{-1, 0, +1\}$ for ternary
- A diagonal matrix α_I is defined by the vector $\alpha_I = [\alpha_I^1, ..., \alpha_I^m]$:

$$\boldsymbol{\alpha} = diag(\alpha) := \begin{bmatrix} \alpha^{1} & 0 & \dots & 0 & 0 \\ 0 & \alpha^{2} & \dots & \vdots & 0 \\ \vdots & \vdots & \dots & \alpha^{m-1} & \vdots \\ 0 & 0 & \dots & 0 & \alpha^{m} \end{bmatrix}$$

• Train by solving $\alpha_{l} = \operatorname{argmin} E(\alpha, \mathbf{Q}) \quad s.t. \quad \alpha \ge 0, \ \mathbf{Q}_{l_{i-i}} \in \mathbb{C}$

lpha

> More fine-grained quantisation can improve approximation of weights

Training

 Straight through approximator used to address vanishing gradients problem Algorithm 1 SYQ Training Summary For DNNs.

Initialize: Set subgrouping granularity for S_l^i and set $\alpha_{l_0}^i$. **Inputs:** Minibatch of inputs & targets (I, Y), Error function $E(Y, \hat{Y})$, current weights W_t and learning rate, γ_t **Outputs:** Updated W_{t+1} , α_{t+1} and γ_{t+1}

 $\begin{aligned} & SYQ \ Forward: \\ & \text{for } l=1 \ \text{to } L \ \text{do} \\ & \mathcal{Q}_l = sign(\mathcal{W}_l) \odot \mathcal{M}_l \ \text{with } \eta, \text{ using (3) & (4)} \\ & \text{for } \text{ith subgroup in lth layer do} \\ & \text{Apply } \alpha_l^i \ \text{to } S_l^i \\ & \text{end for} \\ & \text{end for} \\ & \text{end for} \\ & \hat{Y} = SYQForward (I, Y, \mathcal{Q}_l, \alpha_l) \ \text{using (14)} \\ & SYQ \ Backward: \\ & \frac{\partial \hat{E}}{\partial \mathcal{Q}_l} = \text{WeightBackward}(\mathcal{Q}_l, \alpha_l, \frac{\partial \hat{E}}{\partial \hat{Y}}) \ \text{using (12) & (15)} \\ & \frac{\partial \hat{E}}{\partial \alpha_l} = \text{ScalarBackward}(\frac{\partial \hat{E}}{\partial \mathcal{Q}_l}, \alpha_l, \frac{\partial \hat{E}}{\partial \hat{Y}}) \ \text{using (11)} \\ & W_{t+1} = \text{UpdateWeights}(W_t, \frac{\partial \hat{E}}{\partial \mathcal{Q}_l}, \gamma) \\ & \alpha_{t+1} = \text{UpdateScalars}(\alpha_t, \frac{\partial \hat{E}}{\partial \alpha_u}, \gamma) \end{aligned}$

 $\gamma_{t+1} =$ UpdateLearningRate (γ_t, t)

For K filters, I Input feature maps of dimension FxF, N output feature maps
 P=K²INF²

Method	Scalars	Ops	MAC Tree
Layer (DoReFa)	1	P	Scaling Coefficient Multiply
Row (SYQ)	K	P	Activation /
Pixel (SYQ)	K^2	P	
Asymmetric (TTQ)	2	P + Z	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \\ \end{array} \\ & & \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ } \\ \end{array} \\ } \\ \end{array} \\ \end{array} \\ } \\ \end{array} \\ } \\ } \\ \end{array} \\ } \\ } \\ \end{array} \\ } \\ } \\ } \\ } \\ \end{array} \\ } \\ } \\ } \\ } \\ } \\ \end{array} \\ } $
Grouping (FGQ)	$K^2N/4$	P	
Channel (HWGQ/BWN)	N	P	+
			Accumulator

> Full precision for 1st and last layers, CONV layers pixel-wise, FC layer-wise

Model		1-8	2-8	Baseline	Reference
AlaxNat	Top-1	56.6	58.1	56.6	57.1
Alexinet	Top-5	79.4	80.8	80.2	80.2
VGG	Top-1	66.2	68.7	69.4	-
VUU	Top-5	87.0	88.5	89.1	-
DecNet 18	Top-1	62.9	67.7	69.1	69.6
Keshel-10	Top-5	84.6	87.8	89.0	89.2
DocNot 24	Top-1	67.0	70.8	71.3	73.3
Keshel-34	Top-5	87.6	89.8	89.1	91.3
BasNat 50	Top-1	70.6	72.3	76.0	76.0
RESINCI-JU	Top-5	89.6	90.9	93.0	93.0

Baseline is floating-point, reference <u>https://github.com/facebook/fb.resnet.torch</u> (ResNet) and <u>https://github.com/BVLC/caffe</u> (AlexNet)

Low-precision Activation and Different Subgrouping

Alexnet example

- > Lowering activation precision does not severely alter the training curve
 - Suggests gradient information from pixel-wise scaling compensates for information loss
- Accuracy difference between default pixel-wise and row/layer symmetric quantisation
 - Not much difference between pixel/row-wise except for binary case

		Row	Row-wise		-wise
Weights	Act.	Top-1	Top-5	Top-1	Top-5
1	2	-0.7	-0.5	-1.4	-2.2
1	8	-0.1	-0.3	-0.4	-2.2
2	2	+0.1	-0.0	-1.3	-1.5
2	8	-0.1	-0.1	-1.9	-1.7

Comparison with Previous Work

Model	Weights	Act.	Top-1	Top-5
BWN [24]	1	32	60.8	83.0
SYQ	1	8	62.9	84.6
TWN [19]	2	32	65.3	86.2
INQ [32]	2	32	66.0	87.1
TTQ [34]	2	32	66.6	87.2
SYQ	2	8	67.7	87.8

Model	Weights	Act.	Top-1	Top-5
HWGQ [2]	1	2	64.6	85.9
SYQ	1	4	68.8	88.7
SYQ	1	8	70.6	89.6
FGQ [21]	2	4	68.4	-
SYQ	2	4	70.9	90.2
FGQ [21]	2	8	70.8	-
SYQ	2	8	72.3	90.9

ResNet-18

ResNet-50

SYQ technique Two-speed multiplier LSTM-based spectral predictor

18

- > Multiplication arguably most important computational primitive
- High radix Modified Booth Algorithm with Wallace or Dadda trees generally accepted as the highest performing implementation
- Present technique which introduces a dynamic control structure to remove parts of the computation completely during runtime

Radix 4 Signed Multiplication

- > x and y are multiplicand and multiplier
- > for n-bit multiplication, radix r, where X_i, Y_i are the digits
- > Can be expressed recursively as

$$p[0] = 2^{n-2}(Y_1 + Y_0)x$$

$$p[j+1] = 2^{-2}(p[j] + 2^n(Y_{2j+1} + Y_{2j} - 2Y_{2j-1})x)$$

$$j = 1, \dots, N-1$$

$$p = p[N]$$

Key idea: don't need to add for Partial Product = 0 case

2-Speed Multiplier Algorithm

Data: y: Multiplier, x: Multiplicand Result: p: Product p = y; e = (P[0] - 2P[1]);for count = 1 to N do $\begin{vmatrix} PartialProduct = e * x; \\ p = sra(p,2); \\ P[2 * B - 1 : B] + = PartialProduct; \\ e = (P[1] + P[0] - 2P[2]);$ end Data: y: Multiplier, x: Multiplicand Result: p: Product p = y; e = (P[0] - 2P[1]);for count = 1 to N do p = sra(p,2);// If non-zero encoding, take the $K\tau$ path, otherwise the τ path if $e \neq 0$ then | // this path is clocked \bar{K} times PartialProduct = e * x; P[2 * B - 1 : B] + = PartialProduct;end e = (P[1] + P[0] - 2P[2]);end

2-Speed Datapath

The datapath is split into 2 sections, each with its own critical path

Non-zero encodings take $\overline{K}\tau$ and zero take τ

Two-Speed Control Circuit

> Non-zero encodings take $\overline{K}\tau$ and zero take τ

Distribution of Non-zero Encodings

Implementation

В	Туре	Area (LEs)	Max Delay (ns)	Latency (Cycles)	Power (mW)
64	Parallel(Combinatorial)	5104	14.7	1	2.23
	Parallel(Pipelined)	4695	6.99	4**	9.62
	Booth Serial-Parallel	292	3.9	33	2.23
	Two Speed	304	1.83 (τ)	45.2*	5.2
32	Parallel(Combinatorial)	1255	10.2	1	1.33
	Parallel(Pipelined)	1232	4.6	4**	5.07
	Booth Serial-Parallel	156	3.8	17	1.78
	Two Speed	159	1.76 (τ)	25.6*	3.18
16	Parallel(Combinatorial)	319	6.8	1	0.94
	Parallel(Pipelined)	368	3.2	4**	3.49
	Booth Serial-Parallel	81	2.72	9	1.67
	Two Speed	87	1.52 (τ)	14*	4.35

Area-Time Performance

SYQ technique Two-speed multiplier LSTM-based spectral predictor

- Highly dynamic and complex environments pose a challenge for current tactical/cognitive radios
- LSTMs have been extremely successful at difficult tasks such as speech recognition and machine translation
- > LSTM suitability for real-time radio applications not well studied
- > Can we effectively use ML in the next generation of radios?

Feedforward Neural Network

Recurrent Neural Networks

Long short-term Memory

Long Short-Term Memory is a type of **gated** Recurrent Neural Network (RNN) Proposed by Hocreiter and Schmidhuber in 1997

)

LSTM Mathematical Description

$$\begin{cases} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \operatorname{sigm} \\ \operatorname{sigm} \\ \operatorname{sigm} \\ \operatorname{tanh} \end{pmatrix} T^{l}_{(n_{l-1}+n_{l}),(4n_{l})} \begin{pmatrix} h^{l-1}_{t} \\ h^{l}_{t-1} \end{pmatrix}$$

$$\begin{aligned} c^{l}_{t} &= f \odot c^{l}_{t-1} + i \odot g \\ h^{t}_{l} &= o \odot \operatorname{tanh}(c^{l}_{t}) \end{aligned}$$

> Followed by a single linear fully connected layer

$$f_t = T_{n_L, n_L}^{L+1} h_t^L$$

a man is walking down the street with a suitcase \nearrow

Design Flow

System Architecture

- Implemented on Ettus X310
- Software
 - GNU Radio integration to manage data movement
 - Offline LSTM training
- > Hardware Acceleration
 - RFNoC framework
 - Prediction Core on FPGA

Floating-Point Accuracy

Fixed-point Implementation

- > Fixed-point implementations have lower latency
- > Q2.12 needed to preserve numerical accuracy

Prediction Accuracy

- > N=32 history, h=4 prediction horizon
- > Accuracy measured as the mean-squared error loss from true value
- > LSTM gives better predictions than conventional approaches

- THE UNIVERSITY OF SYDNEY
- C-code synthesised to Kintex-7 XC7K410T FPGA for Ettus X310
 - Achieves 4.3 µs latency (32 inputs and outputs)
- Limited by DSPs (~80% of 1540 available)
 - FC layer is fully unrolled to reduce prediction latency
- Most logic resources and on-chip memory used by RFNoC framework
 - Could customize design to reduce footprint and allow larger/deeper networks
 - Kintex Ultrascale with 2x more DSPs are already available

- THE UNIVERSITY OF SYDNEY
- > Described an LSTM module generator
 - Compatible with Tensorflow
 - Generates C programs of arbitrary size, topology and precision
 - Testable and synthesisable to efficient FPGA implementation
- Low-precision fixed point LSTM can achieve better spectral prediction accuracy than conventional approaches such as Naïve or ARIMA
- Real-time LSTM-based spectral prediction feasible
 - Input/output lengths of 32; Q2.12 implementation fits easily on Ettus X310 and achieves latency of 4.3 us
- Our future research will explore how such predictions can be used to improve tactical/cognitive radios

- > Presented three ideas for improving neural network performance
 - SYQ apply symmetry to the quantisation of a CNN
 - TS multiplier use special cases in distribution to reduce critical path (helps for relatively large wordlength)
 - LSTM integrate all parts of a system to minimise latency
- > The three ideas can be combined for greater gains in efficiency

Available from http://phwl.org/papers/

- Julian Faraone, Nicholas Fraser, Michaela Blott, and Philip H.W. Leong. <u>SYQ:</u> <u>Learning symmetric quantization for efficient deep neural networks</u>. In *Proc. Computer Vision and Pattern Recognition (CVPR)*, June 2018. (doi:10.1109/CVPR.2018.00452)
- > Duncan J.M. Moss, David Boland, and Philip H.W. Leong. <u>A two-speed, radix-4</u>, <u>serial-parallel multiplier</u>. *IEEE Transactions on VLSI Systems*, 2018. accepted 3 Nov, 2018.
- Siddhartha, Yee Hui Lee, Duncan J.M. Moss, Julian Faraone, Perry Blackmore, Daniel Salmond, David Boland, and Philip H.W. Leong. Long short-term memory for radio frequency spectral prediction and its real-time FPGA implementation. In *Proc. MILCOM*, October 2018.