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: Computer Engineering Laboratory

» Mission: to discover new ways of exploiting parallelism and customisation
to solve computationally demanding problems.

- Study how to achieve improved latency, throughput, energy and area efficiency
using field programmable gate array (FPGA), VLSI and cluster computing
technology.

» Research

FPGA-based computing

Machine learning

Signal processing

Embedded systems




Overview

SYQ technique
Two-speed multiplier

LSTM-based spectral predictor
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- Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., “FINN: A framework for fast, scalable binarized neural
network inference,” FPGA17

tens of megabytes of floating point weight data
(from training)
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billions of floating point multiply-accumulate ops

(several joules of energy)
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Binarized Neural Networks
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» The extreme case of quantization

- Permit only two values: +1 and -1

- Binary weights, binary activations
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- Trained from scratch, not truncated FP

- Competitive results on three smaller Bi?_aryt_WGightS & 096%  2.53% 10.15%
benchmarks activations
. FP weights & 0.94% 1.69% 7.62%
- Open source training flow T -
- Standard “deep learning” layers BNN accuracy -0.2% -0.84% -2.53%
loss

- Convolutions, max pooling, batch norm, fully

connected... % classification error (lower is better)
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Advantages of BNNs

Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG

weights
- Multiply becomes XNOR, addition 1b ~66 ~70 M
becomes popcount - ) e
- No DSPs needed, everything in LUTs 16b ~1 ~5 M
- Lower cost per op = more ops every 32b ~0.3 ~2 M
cycle
» Much smaller weights » fast inference with large BNNs

- Large networks can fit entirely into on-
chip memory (OCM)

- More bandwidth, less energy compared
to off-chip
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Comparison

Accuracy Power kFPS/Watt kFPS /Watt Precision

(wall) (chip) (wall)

MNIST, SFC-max 1
MNIST, LFC-max 1
CIFAR-10, CNV-max 1
SVHN, CNV-max 1
MNIST, Alemdar et al 2
CIFAR-10, TrueNorth 1
SVHN, TrueNorth 1

Max accuracy 10 — 100x better CIFAR-10/SVHN energy efficiency
loss: ~3% performance comparable to TrueNorth ASIC
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Issues with Low-Precision

» Who would be willing to incur a loss in accuracy?

» Can we get better accuracy with a little more hardware?




SYQ Quantisation

- To compute quantised weights from FP weights
Q) = sign(W),) © M,

with,

1 if ‘W.. >
M, i Wl =
o if —n< W/I.’j <1

1 ifx>0
-1 otherwise

sign(x) = {

where M represents a masking matrix, n is the
quantization threshold hyperparameter (0 for binarised)




SYQ Quantisation

« Make approximation W, ~ o;Qy, Q, € C

* C is the codebook, C € {Cy,Co, ...} €.9.C ={—1,+1} for
binary, C = {—1,0,+1} for ternary

- A diagonal matrix « is defined by the vector

) = [a},...,a}"]:

a = diag(a) =

- Train by solving
a; = argmin F(a, Q)

(87

v

1 . 0 0
0 o® . : 0
: : am1
0O O 0 am |
s.t. « 2 O, Qli,j e C
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Subgrouping

» More fine-grained quantisation can improve approximation of weights
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Row-wise scaling (layer-wise also option)
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Training

Algorithm 1 SYQ Training Summary For DNNSs.

. . Initialize: Set subgrouping granularity for S} and set o] .
» Straight through approximator Inputs: Minibatch of inputs & targets (I, Y), Error func-

used to address vanishing tion E(Y, }7), current weights W, and learning rate, v,
. Outputs: Updated Wiy 1, op1 and ;41
gradients problem

SYQ Forward:
for 1=1 to L do
Q, = sign(W;) ® M, with n, using (3) &
for ith subgroup in Ith layer do
Apply o} to S]
end for
end for

Y = SYQForward (1,Y,0Q,, o) using

S YQ Backward:

98 WelghtBackward(Ql, i, 22) using |> &

W = ScalarBackward (2% a0, > gff) using ( Ib

Wit1 = UpdateWelghts(Wt, 8Q L )

41 = UpdateScalars(a, 2 e £~y
Vel = UpdateLearningRate(%, t)

12
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Resource Utilisation

» For K filters, | Input feature maps of dimension FxF, N output feature maps

) P=K2INF2
Method Scalars Ops MAC Tree

Layer (DoReFa) 1 P e N
ROW (SYQ) K P / Activation
Pixel (SYQ) K? P /
Asymmetric (TTQ) 2 P+7Z © ©) G
Grouping (FGQ) K*N/4 P = J
Channel HWGQ/BWN) | N P o

/

Accumulator
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Results

» Full precision for 15t and last layers, CONV layers pixel-wise, FC layer-wise

Model 1-8 | 2-8 | Baseline | Reference
o S
VGG | v e | ss | so1 |
ResNet18 | 10075 | 46 | 78 | 890 | 30
ResNet34 | 10| 006 | gog | 891 | o1
ResNet30 | 1 | g | 50 | 950 | 950

Baseline is floating-point, reference https://github.com/facebook/fb.resnet.torch (ResNet)
and https://github.com/BVLC/caffe (AlexNet)

14
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Low-precision Activation and Different Subgrouping

Alexnet example

» Lowering activation precision does not severely alter the training curve
- Suggests gradient information from pixel-wise scaling compensates for information loss

» Accuracy difference between default pixel-wise and row/layer symmetric
quantisation

Not much difference between pixel/row-wise except for binary case

0.9 —— Train 1-8
e Row-wise Layer-wise
1\ Ve Weights Act. | Top-1 Top-5 | Top-1 Top-5
2 -0.7 -0.5 -1.4 2.2

8 -0.1 -0.3 -04 2.2

2 +0.1 -0.0 -1.3 -1.5
8

-0.1 -0.1 -1.9 -1.7

0.7 1

Error

NN ==

0.5 1

0.4

0 20 40 60 80 100 120
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Comparison with Previous Work

Model Weights Act. Top-1 Top-5

Model Weights Act. Top-1 Top-5 HWGQ 1 ) 64.6 359
BWN 1 32 60.8 83.0 SYQ 1 4 688 887
SYQ 1 8 62.9  84.6 SYQ 1 8 70.6  89.6
TWN [19] 2 32 65.3 86.2 FGQ [21] 2 4 68 4 B
INQ 2 32 660 7.1 SYQ 2 4 70.9  90.2
TTQ 2 32 66.6 87.2 FGQ 2 ] 70.8 _
SYQ 2 8 67.7 87.8 SYQ 2 8 72.3 90.9

ResNet-18 ResNet-50
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Two-speed multiplier

Overview

18



Introduction

» Multiplication arguably most important computational primitive

» High radix Modified Booth Algorithm with Wallace or Dadda trees generally
accepted as the highest performing implementation

» Present technique which introduces a dynamic control structure to remove parts
of the computation completely during runtime

19
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Radix 4 Signed Multiplication

» X and y are multiplicand and multiplier
» for n-bit multiplication, radix r, where X,, Y, are the digits

» Can be expressed recursively as

pl0] = 2" (V1 + Yoz
pli+1] = 27°(plj] + 2" (Yoj+1 + Yoj — 2Yo;_1)2)
j=1,...,N—1
p = p[N]

20
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B

Partial
‘Product

Multiplicand

+/‘ B

G

Partial
Product
enerator

Encoder

E

Product

= hift
ena

Radix 4 Booth Serial Multiplier

2"2(Y1 + Yoz
272(p[j] + 2" (Yaj41 + Yo, — 2Ya;_1)x)
j=1,...,N—1

p[V]

TABLE I: Booth Encoding

Yiro Yie1 Y e

- -0 O OO
= 00O O0OMM= OO
—_—OoO RO, OO
O FIFINN == O

2 and 1 represent —2 and —1 respectively.
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: Radix 4 Booth Serial Multiplier

Key idea: don’t need to add for Partial Product = 0 case

pl0] = 2" (Y7 +Yo)x
. ) .
pli+1 = 277°(plj] +2"(Yoj11 + Yo; — 2Ya; 1))
j=1,....N—1
Multiplicand p = p|[N]
Partial TABLE I: Booth Encoding
Partial
0 0 0 0
Genelrator 0 o 1 1
0 1 0 1
B 1B 0 1 1 2
Encoder | 0 0 >
1 0 11
1 1 0o 1
Y .—I—EWt 1 1 1 0
Product ena 2 and 1 represent —2 and —1 respectively.

22
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Data: y: Multiplier, x: Multiplicand
Result: p: Product
P =Y
e = (P[0] — 2P[1]);
for count =1 to N do
Partial Product = e x x;
= sra(p,2);
P[2x B —1: B] + = Partial Product,
e = (P[1] + P|[0] — 2P[2]);

end

2-Speed Multiplier Algorithm

Data: y: Multiplier, z: Multiplicand

Result: p: Product

P =Y

e = (P[0] — 2P[1]);

for count =1 to N do

p = sra(p,2);

// If non-zero encoding, take the K7
path, otherwise the 7 path

if ¢ # 0 then
// this path is clocked K times
Partial Product = e x x;
P[2x B —1: B| + = Partial Product;

end

e = (P[1] + P[0] — 2P[2]);

end

23
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2-Speed Datapath

The datapath is split into 2 sections, each with its own critical path

Non-zero encodings take Kt and zero take t

Multiplicand '''''''''''''''''''''''''''''''''''''''' Multlpllcand

|

Partial - Partial :
Product Partial Product Partial %
+ 5 Product + 5 Product LN
Generator Generator|

1
¢ 1B B
B B Encoder EnccA)der
E skip
E 4 —=ohift
v — Product — T
Product @
ena
Y

24
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Two-Speed Control Circuit

[ Counter] —(+—(

(?)—.

Counterl++ ﬁ
Counter2 T
I (+) «}

(a) Controller flowchart (b) Control Circuit
Multiplicand

l

rartial Partial
Product
+ 5 Product Kz
Generator

B B | Encoder |
A
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Example

» Non-zero encodings take Kt and zero take 1

Bit Representation Action Time PartialProduct
1111010001[00 skip 7t Ox X 2
11110100010 add 7+ Kr 1x X 2°
111101000 skip 2+ Kr Ox X 2'
1111010 add 2+ 2Kr 1x X 2°
111110 add 27 + 3Kz 1x X 2°
111 skip 3r+ 3Ke Ox X 2

26
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Distribution of Non-zero Encodings

0.5 10.71 n
\‘ —=— Uniform
\ —4— (Gaussian
041 | —e— Gaussian-8 | |
\‘ —eo— LeNet75
| —e— AlexNet
0.3 :

<
DO
{

S
H
|

Probability of Encountering Encoding

\ \ | | \ \
6 7 8 9 1011 12
# of Non-Zero Encodings

I
13 14 15 16
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Implementation

B | Tvpe Area  Max Delay Latency  Power
YP (LEs) (ns) (Cycles) (mW)
Parallel(Combinatorial) | 5104 14.7 1 2.23
64 Parallel(Pipelined) 4695 6.99 4% 9.62
Booth Serial-Parallel 292 3.9 33 2.23
Two Speed 304 1.83 (1) 45.2% 5.2
Parallel(Combinatorial) 1255 10.2 1 1.33
32 Parallel(Pipelined) 1232 4.6 4% 5.07
i Booth Serial-Parallel 156 3.8 17 1.78
Two Speed 159 1.76 (1) 25.6% 3.18
Parallel(Combinatorial) | 319 6.8 | 0.94
16 Parallel(Pipelined) 368 3.2 4k 3.49
Booth Serial-Parallel 81 2.72 9 1.67
Two Speed 87 1.52 (1) 14%* 4.35

28
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Area-Time Performance

| |
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LSTM-based spectral predictor

Overview

30



Motivation

» Highly dynamic and complex environments pose a challenge for current
tactical/cognitive radios

» LSTMs have been extremely successful at difficult tasks such as speech
recognition and machine translation

» LSTM suitability for real-time radio applications not well studied
» Can we effectively use ML in the next generation of radios?

31
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: Feedforward Neural Network

Dend; Cell Body Terminal
(Receiver) ) (Processes Information) (Networked to dendrite:
of oth: ms)
Flow of ii tion

::,‘}Y

Y=g(W2.h+b2)

(Matheus, 2016)

h=f(W'.X+b")

No state . Can’t deal with

sequential data

32
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Recurrent Neural Networks

Input: Stateful Model Output:
a Word Most likely next word

—> Recurrent
Neural Network

Memory of previous words
Output so far:

influence next predicition Can’t deal with
large gaps
Machine

;
L>A = A —

h)
I
A

An unrolled recurrent neural network. Source: colah’s bIog (Wlth permission)

33
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Long short-term Memory

Long Short-Term Memory is a type of gated Recurrent Neural Network (RNN)
Proposed by Hocreiter and Schmidhuber in 1997

6 b 6%)

A
4 N\ N )
—>—® @ —>
Ganh>
A 1 1 A
o |[o][tanh] [ O |
—> | | | —
\_ J / \ V,

The repeating module in an LSTM contains four interacting layers.

|
@ ® @

® )
4 T
Neural Network Pointwise Vector
I l Layer Operation Transfer Concatenate Copy
© ® © y P

Source: colah’s blog (with permission)
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LSTM Mathematical Description

y LSTM
(1) [ siem) .
fl | sigm T h,
ol = sigm (nj—1+n7),(4n;) hi—l
\g) \tanh/
Ci = fO Cf:_l +10g
hi = o® tanh(c;)

» Followed by a single linear fully connected layer

fo=Ta" 0 hy

nr.,nj,

35
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Applications

0 “Ok Google”
Goog le
% Translate

T a living room with a T aman riding a
couch and a television bike on a beach

a man is walking down the street with a suitcase /!

36
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Design Flow

Tensorflow
Tensorflow Object

C program with
Test Vectors

(with quantization Istmgen
802.11p modelling) , o
Spectral data Compile for verification
(repeating

Synthesize to FPGA

frame captures)

Hyperparameters:
NN arch, FFT len,
horizon, LR, ...

Arithmetic parameters
(type, precision)

37



I'HE UNIVERSITY OF
=) SYDNEY

- LSTM Core Architecture

N=32 MMIO

Weight Update
YOLF vQl.F
«
& S S
[ _\.0\ -\'o f\,-\— e H
AXI-Stream Interface | g Y LSTM 3 FC K uq:) | AXI-Stream Interface
(16bit Short) S 1 Cell i | 5 | asevitshon
(08} m :
Context
Counter

Prediction Core

38
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System Architecture

» Implemented on Ettus X310

Software Framework
y Software
- GNU Radio integration to | FFT Training / Visualisation | &
manage data movement ;74
- Offline LSTM training 1 A 'i')
» Hardware Acceleration .
Hardware Driver
- RFNoC framework
- Prediction Core on FPGA
Crossbar
v v 5
T3
. Prediction Core
Radio Core ( Shim + HLS )

39
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H

MSE (Prediction vs. Actual)
N w

Floating-Point Accuracy

— | .STM

Naive

ARIMA

Moving Average

S X 102 WIFI Spectral Prediction (LSTM vs. Different Baseline Models)
T I T I T

T

[

f

Timesteps into future (h)

25 30

35
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Fixed-point Implementation

» Fixed-point implementations have lower latency

» Q2.12 needed to preserve numerical accuracy

MSE (Prediction vs. Actual)

5 X 103 WIFI Spectral Prediction (Ori FFT; Sampling Gap=1; With FC)
I I I I I

N

w

\}

—

Naive

== | STM (Float)
LSTM (Q2.10)

= | STM (Q2.12)

= | STM (Q2.14)

10 15 20 25 30 35

Timesteps into future (h)
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: Prediction Accuracy

» N=32 history, h=4 prediction horizon
» Accuracy measured as the mean-squared error loss from true value

» LSTM gives better predictions than conventional approaches

. Naive Prediction Error . LSTM Prediction Error

Density Count
o o 3

(6)]

0.00 0.05 0.10
Mean Squared Error (MSE)
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Resource utilization

» C-code synthesised to Kintex-7
XC7K410T FPGA for Ettus X310 W Matrix Multiply [ILSTM  FC Il Shim [ Ettus RfNoC

- Achieves 4.3 ps latency (32 inputs and 80

outputs) [ ]

» Limited by DSPs (~80% of 1540
available)

(o))
o

- FC layer is fully unrolled to reduce
prediction latency

N
o

» Most logic resources and on-chip
memory used by RFNoC
framework

Percentage of total
available resource

N
o

- Could customize design to reduce
footprint and allow larger/deeper
networks

- Kintex Ultrascale with 2x more DSPs LUTs BRAM36K DSP48E
are already available Resource

43



Conclusion

» Described an LSTM module generator
- Compatible with Tensorflow
- Generates C programs of arbitrary size, topology and precision
- Testable and synthesisable to efficient FPGA implementation

» Low-precision fixed point LSTM can achieve better spectral prediction accuracy
than conventional approaches such as Naive or ARIMA

» Real-time LSTM-based spectral prediction feasible

- Input/output lengths of 32; Q2.12 implementation fits easily on Ettus X310 and achieves
latency of 4.3 us

» Our future research will explore how such predictions can be used to improve
tactical/cognitive radios
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Summary

» Presented three ideas for improving neural network performance

- SYQ — apply symmetry to the quantisation of a CNN

- TS multiplier — use special cases in distribution to reduce critical path (helps for
relatively large wordlength)

- LSTM - integrate all parts of a system to minimise latency

» The three ideas can be combined for greater gains in efficiency

45
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