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Computer Engineering Laboratory

› Mission: to discover new ways of exploiting parallelism and customisation 
to solve computationally demanding problems. 
- Study how to achieve improved latency, throughput, energy and area efficiency 

using field programmable gate array (FPGA), VLSI and cluster computing 
technology.

› Research
- FPGA-based computing

- Machine learning

- Signal processing

- Embedded systems

2



SYQ technique
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Overview

Two-speed multiplier
LSTM-based spectral predictor



Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., “FINN: A framework for fast, scalable binarized neural 
network inference,” FPGA’17



Binarized Neural Networks

› The extreme case of quantization

- Permit only two values: +1 and -1

- Binary weights, binary activations

- Trained from scratch, not truncated FP

› Courbariaux and Hubara et al. (NIPS 2016)

- Competitive results on three smaller 
benchmarks

- Open source training flow

- Standard “deep learning” layers

- Convolutions, max pooling, batch norm, fully 
connected…
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MNIST SVHN CIFAR-
10

Binary weights & 
activations

0.96% 2.53% 10.15%

FP weights &
activations

0.94% 1.69% 7.62%

BNN accuracy 
loss 

-0.2% -0.84% -2.53%

% classification error (lower is better)



Advantages of BNNs

› Much smaller datapaths
- Multiply becomes XNOR, addition 

becomes popcount

- No DSPs needed, everything in LUTs

- Lower cost per op = more ops every 
cycle

› Much smaller weights
- Large networks can fit entirely into on-

chip memory (OCM)

- More bandwidth, less energy compared 
to off-chip

› fast inference with large BNNs 

6

Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG
On-chip
weights

~70 M

~10 M

~5 M

~2 M

Precision

1b

8b

16b

32b

30x

Peak TOPS 

~66

~4

~1

~0.3

200x



Comparison
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› Who would be willing to incur a loss in accuracy?
› Can we get better accuracy with a little more hardware?

Issues with Low-Precision
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SYQ Quantisation
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SYQ Quantisation
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Subgrouping

› More fine-grained quantisation can improve approximation of weights
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Pixel-wise scaling Row-wise scaling  (layer-wise also option)



Training

› Straight through approximator 
used to address vanishing 
gradients problem
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Resource Utilisation

› For K filters, I Input feature maps of dimension FxF, N output feature maps
› P=K2INF2
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Results
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› Full precision for 1st and last layers, CONV layers pixel-wise, FC layer-wise

Baseline is floating-point, reference https://github.com/facebook/fb.resnet.torch (ResNet) 
and https://github.com/BVLC/caffe (AlexNet)

https://github.com/facebook/fb.resnet.torch
https://github.com/BVLC/caffe


Low-precision Activation and Different Subgrouping

› Lowering activation precision does not severely alter the training curve
- Suggests gradient information from pixel-wise scaling compensates for information loss

› Accuracy difference between default pixel-wise and row/layer symmetric 
quantisation
- Not much difference between pixel/row-wise except for binary case
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Alexnet example



Comparison with Previous Work
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ResNet-18 ResNet-50
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Introduction

› Multiplication arguably most important computational primitive
› High radix Modified Booth Algorithm with Wallace or Dadda trees generally 

accepted as the highest performing implementation
› Present technique which introduces a dynamic control structure to remove parts 

of the computation completely during runtime
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Radix 4 Signed Multiplication

› x and y are multiplicand and multiplier
› for n-bit multiplication, radix r, where Xi, Yi are the digits
› Can be expressed recursively as
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Radix 4 Booth Serial Multiplier
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Radix 4 Booth Serial Multiplier
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Key idea: don’t need to add for Partial Product = 0 case 



2-Speed Multiplier Algorithm
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2-Speed Datapath
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The datapath is split into 2 sections, each with its own critical path

Non-zero encodings take !"# and zero take #



Two-Speed Control Circuit
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Example

› Non-zero encodings take !"# and zero take #
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Distribution of Non-zero Encodings
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Implementation
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Area-Time Performance
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Motivation

› Highly dynamic and complex environments pose a challenge for current 
tactical/cognitive radios

› LSTMs have been extremely successful at difficult tasks such as speech 
recognition and machine translation

› LSTM suitability for real-time radio applications not well studied
› Can we effectively use ML in the next generation of radios?
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Feedforward Neural Network
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No state Can’t deal with 
sequential data

(Matheus, 2016)

h=f(W1.X+b1)

Y=g(W2.h+b2)



Recurrent Neural Networks
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(Geitgey, 2016)

Can’t deal with 
large gaps

Source: colah’s blog (with permission)



Long short-term Memory
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Long Short-Term Memory is a type of gated Recurrent Neural Network (RNN) 
Proposed by Hocreiter and Schmidhuber in 1997

Source: colah’s blog (with permission)



LSTM Mathematical Description
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› LSTM

› Followed by a single linear fully connected layer 



Applications
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Design Flow
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Tensorflow
(with quantization 

modelling)802.11p
Spectral data
(repeating
frame captures)

Hyperparameters:
NN arch, FFT len, 
horizon, LR, …

lstmgen

Tensorflow
Object

Arithmetic parameters 
(type, precision)

C program with
Test Vectors

Compile for verification
Synthesize to FPGA



LSTM Core Architecture
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N=32



System Architecture
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› Implemented on Ettus X310 

› Software
- GNU Radio integration to 

manage data movement

- Offline LSTM training

› Hardware Acceleration
- RFNoC framework

- Prediction Core on FPGA



Floating-Point Accuracy
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Timesteps into future (h)



Fixed-point Implementation

41

› Fixed-point implementations have lower latency
› Q2.12 needed to preserve numerical accuracy

Timesteps into future (h)



Prediction Accuracy

› N=32 history, h=4 prediction horizon
› Accuracy measured as the mean-squared error loss from true value
› LSTM gives better predictions than conventional approaches
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Resource utilization
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› C-code synthesised to Kintex-7 
XC7K410T FPGA for Ettus X310 
- Achieves 4.3 μs latency (32 inputs and 

outputs)

› Limited by DSPs (~80% of 1540 
available)
- FC layer is fully unrolled to reduce 

prediction latency

› Most logic resources and on-chip 
memory used by RFNoC
framework
- Could customize design to reduce 

footprint and allow larger/deeper 
networks

- Kintex Ultrascale with 2x more DSPs 
are already available
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Conclusion

› Described an LSTM module generator 

- Compatible with Tensorflow

- Generates C programs of arbitrary size, topology and precision

- Testable and synthesisable to efficient FPGA implementation

› Low-precision fixed point LSTM can achieve better spectral prediction accuracy 

than conventional approaches such as Naïve or ARIMA

› Real-time LSTM-based spectral prediction feasible

- Input/output lengths of 32; Q2.12 implementation fits easily on Ettus X310 and achieves 

latency of 4.3 us

› Our future research will explore how such predictions can be used to improve 

tactical/cognitive radios
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Summary

› Presented three ideas for improving neural network performance
- SYQ – apply symmetry to the quantisation of a CNN

- TS multiplier – use special cases in distribution to reduce critical path (helps for 
relatively large wordlength)

- LSTM – integrate all parts of a system to minimise latency

› The three ideas can be combined for greater gains in efficiency
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