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Introduction

› How do we measure performance?
› What tools can we use to explore a design space?
› What is the impact of VLSI technology on FPGA design?
› Technology trends influence architecture. Can we understand how they change 

with time?
› Case study

- Matrix multiplication
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Performance

› Understand what needs to be optimised (and what doesn’t)
› Tradeoff between speed, area, latency, throughput, energy, cost, accuracy …

- Cannot optimise them all, e.g. usually can increase speed if cost unimportant

› Good design is a tradeoff 
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Cost Energy



Area
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Moore’s Law [1]

› Gordon Moore in 1965 
predicted number of 
transistors in an IC will 
double ≈ two years

› This has driven the 
semiconductor industry for 
many decades

› Made FPGAs practical 
(first commercial FPGA 
XC2064 which had 64 
CLBs with 2x 3-LUTs per 
CLB) 

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, April 1965



Moore’s Law [1]

› He made the bold claim that 65,000 components could fit on an IC by 1975 (at 
the time they had 50)!

› Cartoon is from the same paper

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, April 1965
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Question

› If x is the year and y is the number of transistors on an integrated circuit, give an 
equation to model Moore’s Law.

8



1/λ2 vs year [2]

› FPGA lambda from 
previous table 
plotted vs year

› Transistor density 
doubling every two 
years, in agreement 
with Moore’s Law

› Can use equation to 
estimate extrapolate



Design Size (number of LUTs) [2]

› x’s are the number of 
LUTs in the largest 
FPGA of that year

› o’s are FCCM 
designs

› Tech design size 
doubles every 2.5 
years (slightly slower 
than Moore’s Law)

› Inaccuracies because 
we don’t count clock 
trees and hard blocks



Speed
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Speedup

› Texecution=Tclk * N
- Where N is the number of clock cycles to complete the task

› Speed S = 1/Texecution

› The speedup of machine A with execution time TA over machine B with 
execution time TB

- Speedup = SpeedA/SpeedB

= TB/TA

› Real-time measures often reflect performance per unit time
- GOPS (billion operations per second)

- GFLOPS (billions of floating point operations per second)
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Amdahl’s Law [3]

› Gene Amdahl in 1967 gave us a way to think about parallelism

› If B is the fraction of algorithm which is serial (e.g. I/O), and Tp is the execution 
time for p processors)

› Speedup = T1 / Tp

=

› This equation gives us a way to estimate the speedup of a system
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p
pB+ (1−B)



Amdahl’s Law Example

Most important issue is I/O (and memory) overhead!
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› A program takes 3600 s to execute but 
must read 100GB of data from a file. If 
we replace the CPU with an FPGA 
accelerator which is 100x faster, what 
is the speedup?

› Speedup = 

› B=100/(3600+100)=0.027
› p=100
› Speedup = 3700 s / 137 s

= 100/(100*B+(1-B))
=27.2059

p
pB+ (1−B)

CPU

File

Recv
100GB
of data 
(transfer 
takes 
100 s)

CPU takes 3600 s to 
process data



Dennard’s Law [4]

› Dennard in 1974: as transistor feature size (κ or commonly λ) decreases, power 
stays proportional to area
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Clock Frequency (1999-2013) [2] 
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› Tech freq doubles 
every 8 years

› Research freq
doubles every 6
years

› Tracking with what 
might be expected 
based on 
technology scaling



Frequency of IP Cores [2]

› Device technology 
trend is black line

› Designs have trend 
consistent with 
technology



Breakdown of Dennard’s Law

› Clock speeds are not rising according to Dennard’s Law as transistors have stopped 
getting faster

› Voltage essentially stopped shrinking 10 years ago

› Thermal noise (kT/q = 25 mV at room temperature)

› Subthreshold leakage current

› Cannot reduce voltage and current so that power density is no longer constant

› In fact rising sharply

› Designs used to be speed constrained, now they are power constrained

› Cannot turn on all parts of the chip at the same time (% which must be off is called Dark 
Silicon)
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Power
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Power Consumption

› P=CV
2
f and it fundamentally limits performance gains

› Three main components in an FPGA

- Static, Dynamic, I/O

› Dennard scaling says halving lambda decreases P by 4 (broken down due to 

statis P)

Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf



Static Power

21Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf



Dynamic Power

22Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf



I/O Power

23Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf



Programmable Power Technology

› High threshold voltage – low leakage but low speed

› Not all LUTs are on the critical path so some can be slower

› CAD tools plus configurable substrate bias allow reduced power without 

sacrificing speed

24
Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf



Reducing Power in FPGA Designs

› Use minimum possible voltage

› Reduce switching activity

› Use most advanced process technology with best hard blocks

› Use device with appropriate hard blocks

› Do not clock unused parts of circuit

25Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf



ASICs vs FPGAs [6]

› Kuon and Rose compared FPGAs and ASICs on a number of benchmarks and 
found that FPGAs are

- 20x larger area

- 3-4x slower

- 10x higher power

› Embedded blocks improve area and power significantly (if utilised) 
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Design Space Exploration
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Flynn’s Taxonomy

› Classification of computer 
architectures made in 1966 by Michael 
Flynn (IBM)

› Based on whether instruction and data 
streams are parallel

› SISD – serial processor
› SIMD – array or vector processor
› MISD – for fault tolerance, systolic 

array
› MIMD – multicore or distributed 

processor



Design Space Exploration

› Options include

- Algorithm (most important)

- Parallelism

- Precision

- Interface

- Customisation

› Within each are other options and so the actual design space is extremely large

› Key to making good designs is to have good judgment regarding the tradeoffs

- These may be different depending on what you need to optimise

- Can be estimated using back-of-envelope techniques and reduced implementations

- Finding suitable input data to characterise your application is also a big issue
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Pareto Frontier

› For competing factors such as speed and area efficiency (1/area)
› Pareto Frontier separates infeasible from feasible designs
› We want to be as close to the optimal as possible
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Area Efficiency

Speed

Feasible 
Designs

Infeasible 
Designs



Summary

› Introduced some important principles
- Moore’s Law (tells us how IC area scales)

- Dennard’s Law (tells us how IC technology scales)

- Amdahl’s Law (tells us how to estimate speedup for parallel processing)

› FPGA designs have followed technology

› Design space is large (curse of dimensionality) so we need to be selective and 
tried to be close to Pareto Frontier

› Exploration must be done right to avoid having to redesign system
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Review Exercises

› Explain in your own words:
- Moore’s Law (tells us how IC area scales)

- Dennard’s Law (tells us how IC technology scales)

- Amdahl’s Law

› A problem has a section of non-parallelisable code which takes 100 s to execute, 
and the rest of the code is parallelisable and takes 1 hour to process. If we are 
given the task of designing an FPGA accelerator to replace the CPU and wish to 
achieve a speedup of 100, what should the speedup of the FPGA accelerator 
core be? What if it takes a day to process?

›
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Case Study – Matrix Multiplication
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Introduction

› Serve as an example of design exploration of matrix multiplication
› While examples are for a processor with cache, they are equally valid for an 

FPGA with external memory



Outline

› Performance Modeling
› Matrix-Vector Multiply (Warmup)
› Matrix Multiply Cache Optimizations



Why Matrix Multiplication?

› An important kernel in many problems

- Appears in many linear algebra algorithms

- Bottleneck for dense linear algebra

- One of the 7 dwarfs / 13 motifs of parallel computing

- Closely related to other algorithms, e.g., transitive closure on a graph using Floyd-
Warshall

› Optimization ideas can be used in other problems

› The best case for optimization payoffs

› The most-studied algorithm in high performance computing

Slide: James Demmel UCB



Motif/Dwarf: Common Computational Methods
(Red Hot ® Blue Cool)
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1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

Slide: James Demmel UCB



Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Slide: James Demmel UCB



Note on Matrix Storage

› A matrix is a 2-D array of elements, but memory addresses are �1-D�
› Conventions for matrix layout

- by column, or �column major� (Fortran default); A(i,j) at A+i+j*n
- by row, or �row major� (C default) A(i,j) at A+i*n+j
- recursive (later)

› Column major (for now)
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Column major Row major

cachelines Blue row of matrix is  
stored in red cachelines

Figure source: Larry Carter, UCSD

Column major matrix in memory

Slide: James Demmel UCB



Computational 
Intensity: Key to 
algorithm efficiency

Machine 
Balance: 
Key to 
machine 
efficiency 

Using a Simple Model of Memory to Optimize

Slide: James Demmel UCB

› Assume just 2 levels in the hierarchy, fast and slow

› All data initially in slow memory
- m = number of memory elements (words) moved between fast and slow memory 

- tm = time per slow memory operation

- f = number of arithmetic operations

- tf = time per arithmetic operation << tm

- q = f / m average number of flops per slow memory access

› Minimum possible time = f* tf when all data in fast memory

› Actual time 
- f * tf + m * tm = f * tf * (1 + tm/tf * 1/q) 

› Larger q means time closer to minimum f * tf

- q ³ tm/tf needed to get at least half of peak speed



Warm up: Matrix-vector multiplication

{implements y = y + A*x}

for i = 1:n

for j = 1:n

y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)

Slide: James Demmel UCB



Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n

{read row i of A into fast memory}
for j = 1:n

y(i) = y(i) + A(i,j)*x(j)
{write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f = number of arithmetic operations = 2n2

• q = f / m » 2

• Matrix-vector multiplication limited by slow memory speed

Slide: James Demmel UCB



Modeling Matrix-Vector Multiplication

› Compute time for nxn = 1000x1000 matrix
› Time 

- f * tf + m * tm = f * tf * (1 + tm/tf * 1/q) 

- = 2*n2 * tf * (1 +  tm/tf * 1/2)
› For tf and tm, using data from R. Vuduc�s PhD (pp 351-3)

- http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

- For tm use minimum-memory-latency / words-per-cache-line 
Clock Peak Linesize t_m/t_f
MHz Mflop/s Bytes

Ultra 2i 333 667 38 66 16 24.8
Ultra 3 900 1800 28 200 32 14.0
Pentium 3 500 500 25 60 32 6.3
Pentium3M 800 800 40 60 32 10.0
Power3 375 1500 35 139 128 8.8
Power4 1300 5200 60 10000 128 15.0
Itanium1 800 3200 36 85 32 36.0
Itanium2 900 3600 11 60 64 5.5

Mem Lat (Min,Max) 
cycles machine

balance
(q must 
be at least
this for 
½ peak 
speed)

Slide: James Demmel UCB
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Simplifying Assumptions

› What simplifying assumptions did we make in this analysis?
- Ignored parallelism in processor between memory and arithmetic within the 

processor
- Sometimes drop arithmetic term in this type of analysis

- Assumed fast memory was large enough to hold three vectors
- Reasonable if we are talking about any level of cache
- Not if we are talking about registers (~32 words)

- Assumed the cost of a fast memory access is 0
- Reasonable if we are talking about registers
- Not necessarily if we are talking about cache (1-2 cycles for L1)

- Memory latency is constant

› Could simplify even further by ignoring memory operations in X and Y 
vectors
- Mflop rate/element = 2 / (2* tf + tm)

Slide: James Demmel UCB



Validating the Model

› How well does the model predict actual performance? 
- Actual DGEMV: Most highly optimized code for the platform

› Model sufficient to compare across machines
› But under-predicting on most recent ones due to latency estimate
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Slide: James Demmel UCB



Naïve Matrix Multiply

{implements C = C + A*B}
for i = 1 to n

for j = 1 to n
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

Algorithm has 2*n3 = O(n3) Flops and operates on 
3*n2 words of memory

q potentially as large as 2*n3 / 3*n2 = O(n)

Slide: James Demmel UCB



Naïve Matrix Multiply

{implements C = C + A*B}
for i = 1 to n
{read row i of A into fast memory}
for j = 1 to n

{read C(i,j) into fast memory}
{read column j of B into fast memory}
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

Slide: James Demmel UCB



Naïve Matrix Multiply

Number of slow memory references on unblocked matrix multiply
m = n3 to read each column of B  n times

+ n2 to read each row of A once 
+ 2n2 to read and write each element of C once

= n3 + 3n2

So q = f / m = 2n3 / (n3 + 3n2)
» 2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B
Similar for any other order of 3 loops

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

Slide: James Demmel UCB



Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

Slide: James Demmel UCB



Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where           b=n / N is 
called the block size 

for i = 1 to N

for j = 1 to N
{read block C(i,j) into fast memory}
for k = 1 to N

{read block A(i,k) into fast memory}

{read block B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)

Slide: James Demmel UCB



Blocked (Tiled) Matrix Multiply

Recall:
m is amount memory traffic between slow and fast memory
matrix has nxn elements, and NxN blocks each of size bxb
f is number of floating point operations, 2n3 for this problem
q = f / m is our measure of algorithm efficiency in the memory system

So:

m =  N*n2 read each block of B  N3 times (N3 * b2 = N3 * (n/N)2 = N*n2)
+ N*n2 read each block of A  N3 times
+ 2n2 read and write each block of C once

=  (2N + 2) * n2

So computational intensity q = f / m = 2n3 / ((2N + 2) * n2)
» n / N = b  for large n

So we can improve performance by increasing the blocksize b 
Can be much faster than matrix-vector multiply (q=2)

Slide: James Demmel UCB



Using Analysis to Understand Machines

The blocked algorithm has computational intensity q » b
› The larger the block size, the more efficient our algorithm will be
› Limit:   All three blocks from A,B,C must fit in fast memory (cache), so we cannot 

make these blocks arbitrarily large 
› Assume your fast memory has size Mfast

3b2 £ Mfast,   so   q » b £ (Mfast/3)1/2 required
t_m/t_f KB

Ultra 2i 24.8 14.8
Ultra 3 14 4.7
Pentium 3 6.25 0.9
Pentium3M 10 2.4
Power3 8.75 1.8
Power4 15 5.4
Itanium1 36 31.1
Itanium2 5.5 0.7

• To build a machine to run matrix multiply at 
1/2 peak arithmetic speed of the machine, 
we need a fast memory of size 

Mfast ³ 3b2 » 3q2 = 3(tm/tf)2 

• This size is reasonable for L1 cache, but not 
for register sets

• Note: analysis assumes it is possible to 
schedule the instructions perfectly

Slide: James Demmel UCB



Limits to Optimizing Matrix Multiply

› The blocked algorithm changes the order in which values are  accumulated into 
each C[i,j] by applying commutativity and associativity
- Get slightly different answers from naïve code, because of roundoff - OK

› The previous analysis showed that the blocked algorithm has computational 
intensity:

q » b £ (Mfast/3)1/2

› There is a lower bound result that says we cannot do any better than this (using 
only associativity)

› Theorem (Hong & Kung, 1981): Any reorganization of this algorithm (that 
uses only associativity) is limited to q = O( (Mfast)1/2 )
- #words moved between fast and slow memory = Ω (n3 / (Mfast)1/2 )

Slide: James Demmel UCB



What if there are more than 2 levels of memory?

› Need to minimize communication between all levels
- Between L1 and L2 cache, cache and DRAM, DRAM and disk…

› The tiled algorithm requires finding a good block size
- Machine dependent

- Need to �block� b x b matrix multiply in inner most loop

- 1 level   of memory Þ 3 nested loops (naïve algorithm)

- 2 levels of memory Þ 6 nested loops

- 3 levels of memory Þ 9 nested loops …

› Cache Oblivious Algorithms offer an alternative
- Treat nxn matrix multiply as a set of smaller problems

- Eventually, these will fit in cache

- Will minimize # words moved between every level of memory hierarchy – at least 
asymptotically

Slide: James Demmel UCB



Summary

› Described a way to think about computation and memory – computational 
intensity

› Introduced the concept of blocking to increase computational intensity



Review Exercises

› Explain in your own words:
- Computational intensity

› Do a similar analysis computational intensity analysis for a different algorithm 
e.g. FFT
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An FPGA Delay Model
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A Detailed Delay Path Model for FPGAs

Eddie Hung1, Steven J. E. Wilton1, 

Haile Yu2, Thomas C. P. Chau2, Philip H. W. Leong2*

1 Department of ECE, University of British Columbia

2 Department of CSE, Chinese University of Hong Kong
›

* Now with School of Electrical and Information Engineering, University of 
Sydney

›Funded by NSERC of Canada and RGC of HKSAR

This work based on a paper at FPT09 [1]
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Overview

This model

Process
Technology
Parameters

Circuit
Parameters FPGA

Architecture
Parameters

Physical Delay Estimate

Compared to previous models: 
l Simpler, closed-form, equally accurate
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Motivation: FPGA Design

Important when designing FPGA architectures:

l Need methods to estimate their performance 
ahead of time

l Two different ways of investigating new architectures:
l Analytical Models (our approach)

l Experimental Techniques
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Motivation: FPGA Design

Existing FPGA design approach: 

l Iteratively change details and experimentally measure improvement using 
benchmarks

l Problems: 
l Slow and resource-hungry

l Lack of intuition and insight into why

Experiments

New
Architecture Benchmark

CAD (e.g. VPR)
Satisfactory?

Sweep next
variable

No

Performance models
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Motivation: Analytical Models

New paradigm emerging: Analytical Modelling
l Capturing the essence of programmable logic 

in a set of simple equations
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Motivation: Analytical Models

l Why analytical modelling?
l Faster

l Allow early exploration of radical architectures

l What makes a good model?
l Analytical – not rely on curve fitting

l Simple – more insight into architectural trade-offs

l Circuit Independent – capturing average behaviour
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Where this work fits in

Delay Model:

l Logical delay model
presented by 
Das et al. at FPL 2009 [2]

[Das et al.]

Tech-Mapping
model

Clustering
model

Netlist
Parameters

FPGA Architecture
Parameters

Depth in
LEs

Depth in
LCs
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Where this work fits in

Delay Model:

l Logical delay model
presented by 
Das et al. at FPL 2009 [2]

l This paper:
A model which 
relates logical delay
to physical delay

This paper:
Physical Delay model

Physical Delay

Process Technology
Parameters

Wirelength

[Das et al.]

Tech-Mapping
model

Clustering
model

Netlist
Parameters

FPGA Architecture
Parameters

Depth in
LEs

Depth in
LCs
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Motivation: Analytical Models

l Can the models from the experimental flow 
be re-used for the analytical flow?

l Requires routing/timing graphs

l Lack of delay model for logic cluster
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What makes deriving this model hard?

l Would like our model to be:
l Flexible, coping with range of modern architectures

l Accurate

l Closed-form

l Fast

l But complex interactions exist between FPGA architecture and circuit 
implementation:

l e.g. Buffer sizes change depending on loading
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Circuit Assumptions
and Delay Model



70

Circuit Assumptions

l Island-Style FPGA
l 2-D array of Logic Clusters surrounded by a 

Global Interconnect of routing tracks

l Delay model broken down into:
l Local Routing Delay:

l Logic Element Delay:

l Global Interconnect Delay:
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Logic Cluster: Tlocal and Tlogic

›Collection of logic elements accessed through a local routing network with a 
shared set of inputs
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Global Interconnect: Tglobal

›Composed of horizontal/vertical tracks and Connection/Switch Boxes

LC

SB

SB

CB

CB

CB SB

LC

SBCB

CB SB

CBCB

SB

Tglobal
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Delay Model: How it fits together

Expected number of LCs
on critical path

Expected number of LEs
on critical path

Function of the
expected wirelength

between LCs

Critical Path
Delay

( )logiclocalkglobalccrit T+Td+Td=T ××
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Circuit Assumptions: Logic Element

l Lookup table with D flip-flop and bypass mux
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Circuit Assumptions: Logic Element

LUT FF+MUX

RC Network View

D1 D2 D3 D3' D3'' D4 D5
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Circuit Assumptions: Local Routing

›Fully connected crossbar implemented using multiplexers

Local Routing

IPIN

Circuit View

RC Network View

D1 D2 D3
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Global Interconnect Delay

›Further divided into: 

LC

SB

SB

CB

CB

CB SB

SB

LC

SBCB

CB SB

CBCB

Cluster to 
Switch Box

Switch Box to 
Switch Box

Switch Box to 
Switch Box

Switch Box 
to Cluster
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Circuit Assumptions: Cluster-Switch

l Single-Driver Routing
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Circuit Assumptions: Cluster-Switch

RC Network View
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Global Interconnect Delay

l Similarly for                    and

l Combining them:

LC SB SB SB CB LC

( ) clusterswitchswitchswitchswitchclusterglobal T+TWLf+T=T --- ×
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Optimal Buffer Sizing

l RC values depends on buffer sizing
l Using equations: differentiate to find optimal size

RC Network View

invg,
lc C

C+'+CC=B
0.69

232221
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Model Validation
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Model Validation: Methodology

l Analytical Model

For all variables

Apply Model

For all variables

For all buffer sizes

Construct deck
Run HSPICE
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Model Validation: Tlocal

Cluster Size
N

Delay

x100 ps

5.0

4.5

4.0

3.5

3.0

2.5

2.0
10

8
6

4
2 2

3
4 5 6 7

Lookup Table Size
K
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Model Validation: Tlogic

Delay

Lookup Table Size, K

3

4

5

6

7

8

9

10
x100 ps

Simulated

Model

2 3 4 5 6 7
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Model Validation: Tglobal

Cluster Size
N

Wire Segment 
Length, L

Delay

0.8

1.2

1.6

2.0

2.4
2.2

1.8

1.4

1.0

8 7 6
5 4

3
2 1 2

4
6

4
8

10
12

ns
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Model Validation: Previous Work

l Consistent with previous methods
l But orders of magnitude faster

Tlocal (ps) for K=4 at 0.18um

Experimentally Derived
N Our Model Ahmed et al. Our HSPICE

2 253 221 267

4 286 301 298

6 321 332 326

8 352 331 349

10 361 337 362
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Model Applications

(1) Speeding up FPGA architecture design

(2) In conjunction with experimental techniques
l Generate delays for use in VPR architecture files

(3) Gain additional insight into FPGAs



89

Application: Experimental Techniques

l VPR does not have a parameterised delay model for Tlocal and Tlogic

l Physical delays currently specified per-architecture

l Can use our model to generate realistic delays

This Delay
Model

Architecture
File VPR

FPGA Architecture
Parameters
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Application: Gaining Insight

l Abstract away technology parameters
l Leaving behind a 'distilled' expression with architecture parameters only:

l Not possible using experimental techniques

l Interesting insight: 

N has about the same effect on delay as K

NKA+NK+K+NA+ATlocal 210 2»
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Conclusion

l Circuit-level description of FPGA presented
l Simple yet accurate delay model derived

l Future directions:
l Incorporate more recent architectural developments

l Investigate effects of process technology scaling

l Develop associated area model to explore tradeoffs
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