Reconfigurable Computing 可重构计算

Introduction

The entire system operates in a configuration described as the "Fixed-Plus-Variable" Structure Computer such that the same elements used for the special computer may be reorganized for other problem applications.

– Gerald Estrin (UCLA) 1962

Philip Leong 梁恆惠 (philip.leong@sydney.edu.au) School of Electrical and Information Engineering

http://phwl.org/talks

Permission to use figures have been gained where possible. Please contact me if you believe anything within infringes on copyright.

Course Details

Course Objectives

> Prerequisites

- Computer programming in C
- Basic digital systems (combinatorial circuits, sequential circuits, finite state machines, data paths)
- Experience using a hardware description language (Verilog or VHDL)

> Objectives

- An introduction to the field of reconfigurable computing
- Advance digital design skills by developing a reconfigurable computing application
- An introduction to research methodology

Topics

Lecture Schedule

- 1. Introduction (简介)
- 2. FPGA architecture (FPGA结构)
- 3. Trends and Exploration (趋势与探索)
- 4. Parallelism(并行性)
- 5. Precision (精度)
- 6. Interface(接口)
- 7. Customisation (定制)
- 8. Case studies (案例)

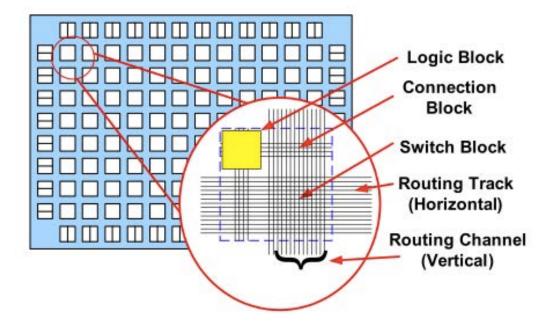
- > Reconfigurable Computing
 - EPIC approach (EPIC方法)
 - Computer architecture (计算机体系结构)
 - Computer arithmetic (计算机算术)
 - VLSI design (大规模集成电路设计)
 - Trends in semiconductor technology (半导体技术的趋势)
- > Case studies
 - Examples from research

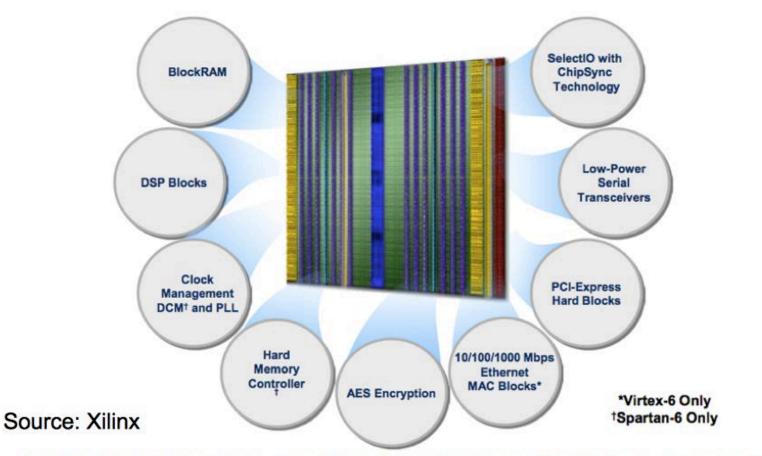
- A major part of this course are the labs concerning FPGA implementation of machine learning (long short-term memory neural network, 长短时记忆神经网络)
 - Lab1 Familiarisation & Testbench
 - Lab2 Parallelism
 - Lab3 Precision
 - Lab4 Exploration
 - Lab5 Interface I
 - Lab6 Interface II
- > Report
 - Write a 4 page paper describing your design

Introduction to Reconfigurable Computing

- > FPGAs
- > Reconfigurable computing
- > Applications

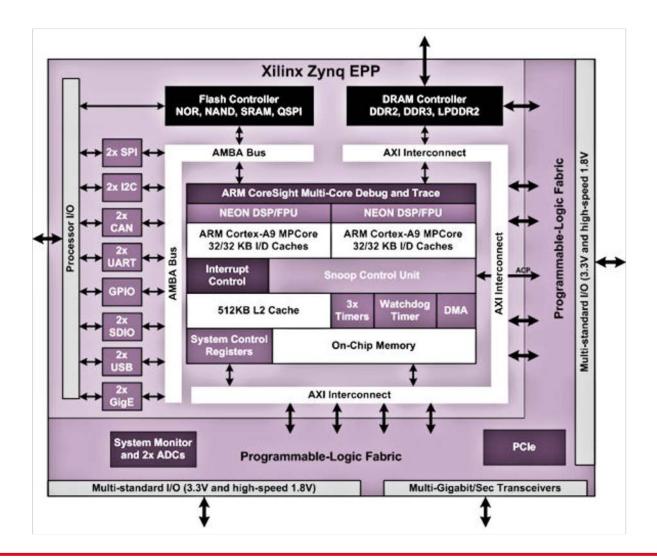
Integrated Circuits


Most electronics rely on application-specific ICs (ASICs) for perf, cost and P


FPGA

- > A generalised integrated circuit
 - Logic blocks for digital operations
 - Programmable interconnect for routing
- Arbitrary digital circuits can be implemented
- Functionality downloaded to FPGA memory (in seconds)

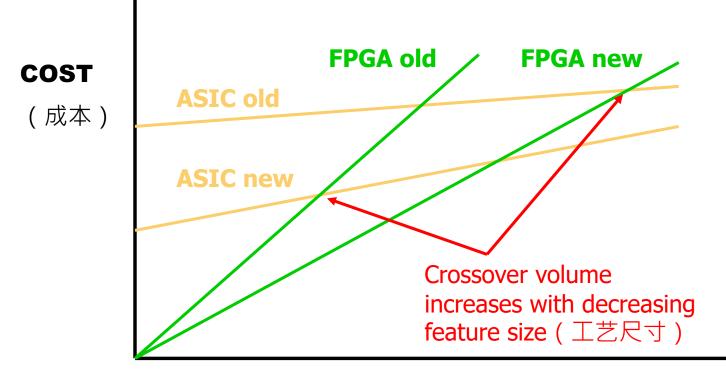
FPGA Embedded Blocks



Hard IP blocks for widely-used functions: faster, more efficient, lower power Careful choice: every user must pay for these functions, whether used or not

Zynq (ARM+ Reconfigurable Fabric)

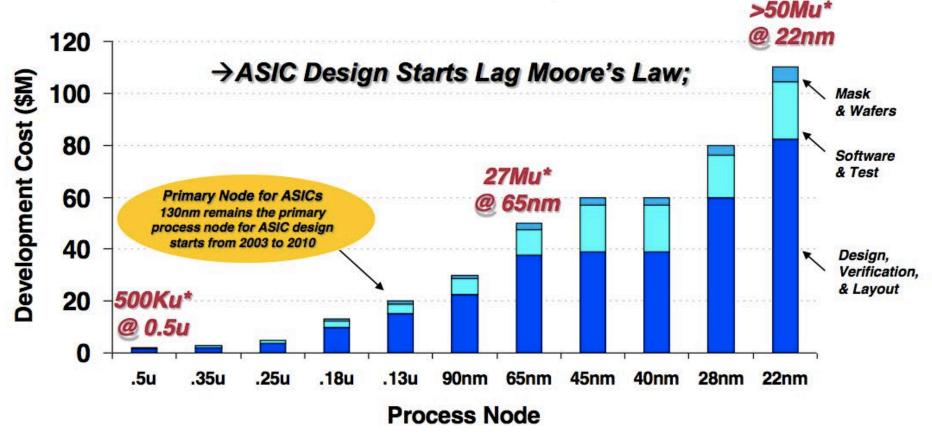
FPGA Families


Xilinx 7-series FPGAs, 28nm

I/O Pins	500	500	1,200
Configuration AES	Yes	Yes	Yes
Analog Mixed Signal (AMS)/XADC	Yes	Yes	Yes
PCI Express® Interface	x4 Gen2	x8 Gen2	x8 Gen3
Memory Interface (DDR3)	1,066Mb/s	1,866Mb/s	1,866Mb/s
Total Transceiver Bandwidth (full duplex)	211Gb/s	800Gb/s	2,784Gb/s
Transceiver Speed	6.6Gb/s	12.5Gb/s	28.05Gb/s
Transceiver Count	16	32	96
DSP Performance (symmetric FIR)	930GMACs	2,845GMACs	5,335GMACs
DSP Slices	740	1,920	3,600

Source: Xilinx

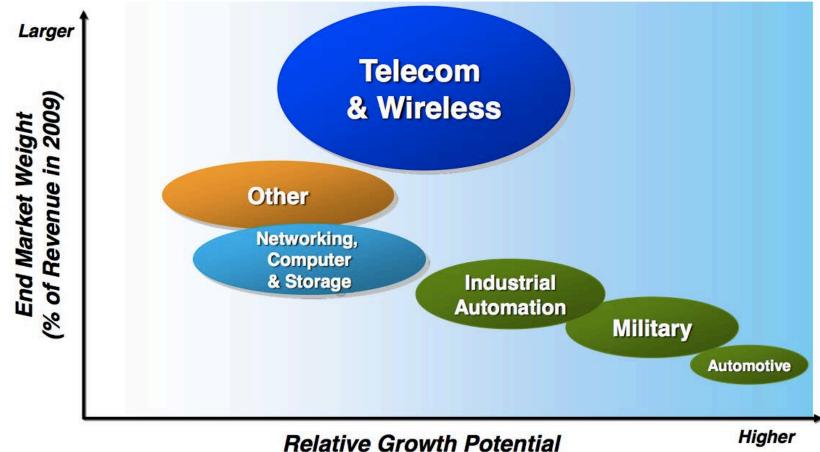
ASIC vs FPGA Cost



VOLUME(规模)

ASIC Development Costs

Return on Investment Analysis



Very Few High Volume Applications Justify ASIC / ASSP Development

Source: Altera

Application Domains

(3 to 5 Year Horizon)

Typical High Performance Commercial Applications

Application

THE UNIVERSITY OF

Optical Transport OTU Transponder

Summer?	
Summer	l
Canana and	
Constant P	^

40GbE/100GbE Switch

Radar

Requirements

- >350 MHz performance
- 28 Gbps transceivers
- 10GBASE-KR backplane support
- High-performance on-chip memory
- High-performance and flexible memory controller
- Hard system-level IP for bandwidth
- High precision DSP

Solution

Process: 28HP

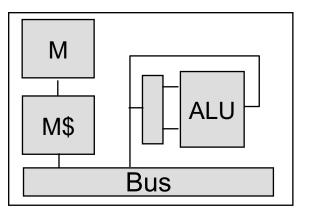
- >350 MHz performance
- Lowest power in its class
- Up to 1.1M LEs on a monolithic die

ALERA

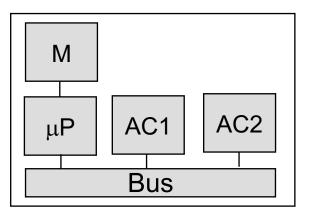
Stratix V

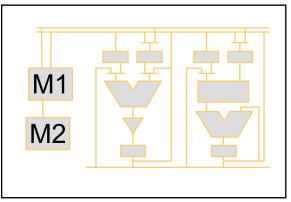
Transceiver: 14.1 Gbps/28 Gbps

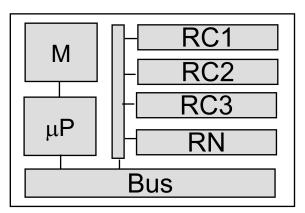
Product Architecture:


- Soft memory controller supports 800MHz DDR3 DIMM
- 2,560 M20K memory blocks
- 54x54 variable precision DSP

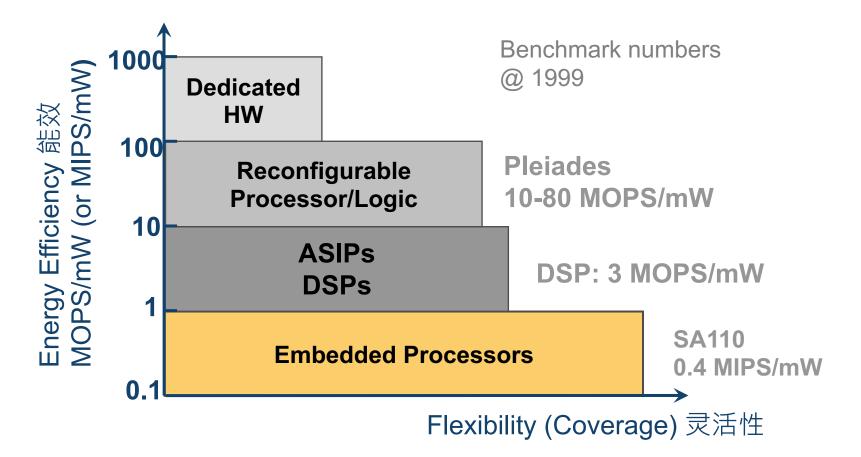
System IP:


- PCIe Gen3 x8, 40 GbE/100 GbE, Interlaken


Architectural Choices

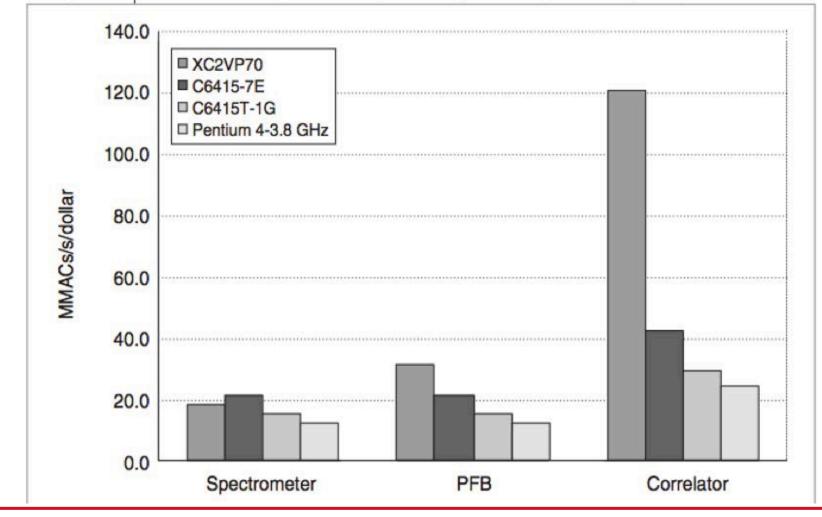

General-purpose processor

Dedicated accelarators


Application-specific processor

Reconfigurable processor

Flexibility vs Energy



Approximately three orders of magnitude in inefficiency from general-purpose to dedicated!

FPGA vs DSP and CPU Cost Comparison

Berkeley BEE2 cost comparison (FPGA, DSP1, DSP2, uP)

Tools

- Traditionally designed using ASIC development tools
 - VHDL/Verilog very low level
 - Chisel is a recent tool which is higher level
- Recent advances
 - Vivado HLS
 - OpenCL
- Extensive module generators and libraries e.g. filters, fft, floating-point, maths coprocessors, soft processors, network controllers, memory controllers, I/O controllers ...
- > Still an active research topic

	Hand-coded VHDL	Vivado HLS C
Design Time (weeks)	12	1
Latency (ms)	37	21
Memory (RAMB18E1)	134 (16%)	10 (1%)
Memory (RAMB36E1)	273 (65%)	138 (33%)
Registers	29686 (9%)	14263 (4%)
LUTs	28152 (18%)	24257 (16%)

Resource utilization example: hand coded versus Vivado HLS.

Comparison of FPGAs with uP and ASIC

- Compared with uP and DSP
 - higher speed, lower power, smaller variance in execution time
 - Longer development times, higher cost per unit
- Compared with ASICs
 - Lower initial cost
- > Rides Moore's Law, development costs amortised (分摊) over users
 - Faster time to market, lower risk
 - Can be customised to problem in ways not possible with ASICs

Reconfigurable Computing

Reconfigurable Computing

> Application of FPGA devices to computing problems

FPGA Design

- > Good reconfigurable designs are EPIC
 - Exploration
 - Parallelism
 - Precision
 - Integration
 - Customisation

Exploration

> All equally bad

- Making a brilliant design of the wrong algorithm
- Making a poor design choice the right algorithm
- Making a really fast core without adequate interface
- > Need to make sure we understand
 - Algorithm
 - Previous work, "An afternoon in the library can save a year in the lab."
 - System-level issues

- Do what would take many cycles on uP in fewer cycles (instruction level parallelism)
- Do many independent tasks/threads/processes in parallel (multiprocessor)
- Tradeoff latency with throughput by doing things in stages (pipelining,流水线)


Parallelism (Reality)

Unfortunately this is the reality (but FPGAs allow better control of this)

- > Microprocessor: data passed sequentially to computing unit
- > FPGA & ASIC: spatial composition of parallel computing units (multiple muls, pipelining)
- > E.g. 4-tap FIR filter, FPGA 1 output per cycle, uP takes multiple cycles
- > Lower power and higher speed

- > Microprocessors are really good at single and double precision
- > Often overkill for many applications
- > Can use reduced precision which is efficient on FPGAs
- Can used mixed precision where high accuracy is achieved using mainly lowprecision operations
- There are also different algorithms which have different cost, performance and accuracy tradeoffs e.g. CORDIC vs polynomial approximation for sin()
- > Reduced precision -> reduced area so more spatial parallelism can be realised

Integration

- > Networking, chip IO and computation on same device
- Reduction of buffering can help latency
- Single chip operation massive interconnect within chip exploited
- Multiple (small) memories within FPGA offer enormous memory bandwidth

161 ti	0 216 I/O	66 t	0 528 VO
Peripherals	Memory Controller with ECC	Memory Controller with ECC	PCle
L1 Cache	Contex-As	Variable Precision DSP Block	Up to 6 x 10 Up to 30 x 6

Customisation

- More specific functions can be implemented more efficiently
- Too expensive to design ASIC to perform very specialised function
- FPGAs can be heavily customised due to their programmability i.e. only do one thing efficiently
 - Tradeoffs between speed and accuracy can be exploited, on uP, only get single or double; char, short or long
 - General operators can be replaced with specific ones
- E.g. Chip which only encrypts for a specific password

Applications

- > Vehicle Control Module uses Virtex-II devices
 - gearbox, differential, traction control, launch control and telemetry
- > High speed real-time control and DSP application

-

CERN Large Hadron Collider

Superconducting

magnets

ALICE

ATLAS

SPS

Compact Muon Solenoid (紧密介子绕线圈) 10¹⁵ collisions per second - Few interesting events ~ 100 Higgs events per year LEP tunnel 1.5Tb/s real-time DSP problem LHC-B - More than 500 Virtex and Spartan FPGAs used in real-time trigger

- Square Kilometre Array (SKA) will be one of the largest and most ambitious international science projects ever devised (€1.5 billion).
- CSIRO Developing Australian SKA Pathfinder (ASKAP), a \$150M next- generation radio telescope using FPGA technology for the data collection & processing

 Applications suited to acceleration

THE UNIVERSITY OF

- seismic processing astrophysics FFT
- adaptive optics (transforming to frequency domain and removing telescope image noise)
- biotech applications such as BLAST, Smith Waterman and HMM
- computational finance

- Functions well suited to FPGA acceleration
 - searching & sorting
 - signal processing (audio/video/image manipulation)
 - encryption (加密)
 - error correction
 - coding/decoding
 - packet processing
 - random-number generation for Monte Carlo simulations

- uPs are the most flexible technology but performance (speed and power) is relatively low
- > FPGAs provide
 - Easy interfacing with hardware (tighter coupling than GPUs)
 - Parallelism
 - Have become large enough to implement DSP and ML algorithms
 - Very interesting research area: architectures, tools, applications
- ASICs becoming only be suitable for highest volume, highest performance applications, FPGAs will do the rest
- Many of the highest performance accelerators, particularly for real-time problems, are FPGA-based