Integration of Nanoscale Structures with Electronics

Philip Leong,

The University of Sydney http://www.ee.usyd.edu.au/people/philip.leong/talks.html

Computer Engineering Laboratory

- > Focuses on how to use parallelism to solve demanding problems
 - Novel architectures, applications and design techniques using VLSI, FPGA and parallel computing technology
- > Research
 - Reconfigurable computing
 - Nanoscale interfaces
 - Machine learning
- > Lab
 - 4 postdoctoral researchers
 - 8 PhD, 2 Masters students

- Project aims to develop capabilities in the integration of nanotechnology with electronic integrated circuits through three subprojects
 - 1. Photonics electrical interface to photonic signal processing chip
 - 2. LowT analog transistor array for characterizing low-temperature devices
 - 3. Sensor graphene based sensor
- > Collaborations Ben Eggleton, Michael Biercuk, Stefano Palomba
 - One Postdoc (Mostafa Rahimi Azghadi)
 - Endeavour Fellow (Yee Hui Lee)
 - PhD students (Andri Mahendra, Cong Ngyuen Dao, Xiang Zhang)
 - Undergraduates (Ed Brackenreg)

Photonics

- > Efficient generation of single-photons is holding back quantum photonics
- > Actually we don't want single-photons, we want multi-photons

- Probability of photon-photon interaction decreases exponentially with number of single photons
- > Previous work: generation of single photons
- > Aim generate synchronised photon pairs with electronic heralding signal

 For single photon pairs, can detect one and delay the other so it always appears at t1

> If photons appear within a certain window can generate pairs

- Detect occurrence of a top and bottom photon and delay appropriately
- Increase probability pairs are generated

Efficiency of relative temporal multiplexing

- M is the number of time bins per window
- > S is the number of photon sources
- The better resolution (M) and more photon sources (S), the higher the enhancement
 - Unfortunately, losses are introduced

(1) Pump laser at 100 ns (2) Period reduced to 25 ns (3) Two nanowires generate photon pairs; (4) AWG separate photon pairs (5) Heralding photons detected by SSPD

(6) FPGA generates appropriate signals

Results

- > Hong-Ou-Mandel quantum interference
- > Red is 4-fold counts after subtracting noise
- > Visibility > 50% demonstrates non-classical effect

- > Demonstrated we can generate indistinguishable photon pairs
- > Enhancement increases linearly with number of photon sources
- All the individual components have been demonstrated for an efficient single photon generation chip based on these techniques
 - Would be an important building block for quantum photonic systems

Low Temperature Electronics

- Demand on low temperature electronic circuits
- No transistor model for circuit evaluation and circuit design at cryogenic temperatures

Motivation

Issues:

- Freeze-out of carriers (due to incomplete ionization of the dopants)
- Kink effect and hysteresis effect

Characterize and develop transistor models (CMOS) for low temperature circuit design.

- Test chips were fabricated in 0.35 um AMS CMOS, BiCMOS
 - Bare transistors (PMOS, NMOS, SiGe BJT)
 - Transistor Arrays
 - Diodes, digital gates, resistors, capacitors
 - o Op-Amp, ADC, DAC, Mixer, VCO ...

Test chips

Experimental setup

- A cryogenic probe station (LakeShore CRX-4K) and a dilution refrigerator (Leiden CF450) were used.
- A semiconductor analyzer (Keysight B1500A) was used to measure I-V characteristics.

CMOS parameter extractions & Modelling

Threshold Voltage:

Enhanced MOSFET threshold voltage [2]:

$$V_{th0} = |\phi_F| - \phi_{gate} - \frac{Q'_o}{C'_{ox}} + \gamma \sqrt{2|\phi_F|} + \Delta V_G$$

with field-assisted ionization:

$$\Delta V_G = \frac{\varepsilon_{Si} T_{ox}}{4q} \beta^2 \left(\phi_{AF0} \frac{T}{T_0} - \phi_{AF} \right)^2$$

CMOS parameter extractions & Modelling

Threshold voltage:

For short channel devices:

$$V_{th} = V_{th0} + \Delta V th \times f_{SC}(T)$$
$$f_{SC}(T) = \left(1 + sgn(\phi_F(T))\frac{\phi_F(T)}{\phi_F(T_c)}\right)\delta_{Vth}$$

$$\Delta V th = \Delta V_{LD} - \Delta V_{SC} - \Delta V_{DIBL}$$

MOSFET parameter extractions & Modelling

Channel and Series Resistance:

Series resistance is assumed as [3]

 $R_{sd} = R_{sd0} + R_{sdL}$

Total channel resistance is

 $R_{tot} = R_{ch0}L + R_{sd0} + R_{sdL}$

Using a set of same width devices, different length, device resistance can be extracted as

$$R_{ch0} \approx \frac{R_{tot,L_1} - R_{tot,L_2}}{L_1 - L_2}, \quad R_{sd0} \approx R_{tot,L_1} - R_{ch0}L_1.$$

Mobility (μ_g) and its attenuation factor (θ) are extracted from the coefficients of the best fit Rch0

$$R_{ch0} = \frac{1 + (\theta V_{gst})^{n-1}}{\mu_g C_{ox} W \theta^{n-2} V_{gst}^{n-1}}$$

CMOS parameter extractions & Modelling

Total channel Resistance

CMOS parameter extractions & Modelling

TABLE I.MOSFET PARAMETERS

T (K)	5	40	60	77	100	200	300
n	3	3	2.75	2.5	2.1	2	2
NMOS							
$\theta (V^{-1})$	1.48	1.2	0.96	0.72	0.28	0.06	0.04
$\mu_g \ (cm^2/Vs)$	5068	4502	3868	3291	2089	708	376
PMOS							
$\theta (V^{-1})$	1.58	1.13	1.11	0.99	0.63	0.25	0.13
$\mu_g \ (cm^2/Vs)$	498	568	653	638	499	220	123

CMOS I-V Characteristics

Id-Vg model

CMOS I-V Characteristics

Id-Vd Model:

A simple SPICE model (VerilogA) is developed and incorporated into Cadence Spectre simulator

Error in Current Matching Model

Current matching model:

$$\sigma_{\left(\frac{\Delta I_d}{I_d}\right)}^2 = (1 - G_d R_{sd})^2 \sigma_{\frac{\Delta \mu}{\mu}}^2 + \left(\frac{g_m}{I_d}\right)^2 \sigma_{V_{tl}}^2 + G_d^2 \sigma_{\Delta R_{sd}}^2 + 2G_d^2 \rho_{(\Delta R_{ch}, \Delta R_{sd})} \sigma_{\Delta R_{ch}} \sigma_{\Delta R_{sd}}$$

CMOS Current Mismatch

Current matching model:

$$\sigma_{\left(\frac{\Delta I_d}{I_d}\right)}^2 = (1 - G_d R_{sd})^2 \sigma_{\frac{\Delta \mu}{\mu}}^2 + \left(\frac{g_m}{I_d}\right)^2 \sigma_{V_{tt}}^2 + G_d^2 \sigma_{\Delta R_{sd}}^2 + 2G_d^2 \rho_{(\Delta R_{ch}, \Delta R_{sd})} \sigma_{\Delta R_{ch}} \sigma_{\Delta R_{sd}}$$

Summary

- > Have developed and verified
 - first wide-temperature range bulk CMOS transistor model
 - first bulk CMOS transistor current matching model

[1] Hornibrook, J. M., et al. "Cryogenic Control Architecture for Large-Scale Quantum Computing." *Physical Review Applied* 3.2 (2015): 024010.

[2] Dao, Nguyen Cong, et al. "An enhanced MOSFET threshold voltage model for the 6–300K temperature range." *Microelectronics Reliability*, vol. 69, pp. 36-39.

[3] Nguyen Cong Dao, Abdallah El Kass, Craig T. Jin and Philip H.W. Leong, "Impact of Series Resistance on Bulk CMOS Current Matching over The 5– 300 K Temperature Range," submitted to IEEE Electron Device Letters.

Sensors

Motivation

> Sensor with in-built processing

Surface Plasmon Resonance

Surface Plasmon Resonance as a Sensor

The Surface Plasmon Resonance Technique

When SPR occurs at the conductor, a dark band will be detected, indicating the SPR frequency.

Courtesy Google Images

Surface Plasmon Resonance Biosensor

Nanoscale changes (such as the binding of different molecules to the surface) alters the SPR frequency

Graphene

The first 2D material (no bandgap but doping can introduce one)

Das Sarma et al. Reviews of Modern Physics, 2011. 83(2)

Geim & Novoselov, Nature Materials, 2007. 6(3)

Graphene SPR

THE UNIVERSITY OF

SPP in micron scale graphene, resonant frequency far IR or THz band.

The THz band, far IR to near microwave

Nanoscale graphene may enable a shift in frequency

Non-linear optic effect, 4-wave mixing shown in nanoscale graphene Cox & de Abajo Nature Communications, 2014. **5**(5725).

Unlike metal nanostructures, graphene can be highly conductive, generates longlasting plasmons and appears to be able to produce a tunable SPR after fabrication.

Graphene Nanoribbons

Graphene nanoribbon (GNR) •Width: < 10 nm

•Aspect ratio: L/W (40 -> 1,000)

Defects

Doping

Chemical

 \circ Electrostatic

Single-layer graphene nanoribbons have small width (1D structure), changes electronic properties.

Armchair

Zigzag

Random

Qiu et al. Angewandte Chemie-International Edition, 2016. 55(34)

Graphene Nanoribbons

GNR-based transistor-like devices

gate voltage changes Fermi energy levels (affecting electronic and photonic properties).

Fang et al. ACS nano, 2013. 7(3)

Current state of the art in SPR:

Metal nanostructure

THE UNIVERSITY OF

Advantage: • λ_R in visible or near IR

Disadvantages:High ohmic lossesShort plasmon lifetimeNot tunable post fabrication

Possible development in SPR:

Graphene nanoribbon

Advantage: •Highly conductive •Long lasting plasmon •Electronically tunable

Disadvantage: •λ_R in far IR/THz

The Project Goals

1. Fabricate GNRs (< 5nm)

Archanjo *et al.* Applied Physics Letters, 2014. **104**(19)

2. Determine GNR morphology (theory only for armchair edging)

Nemes-Incz et al. Applied Surface Science, 2014. 291.

3. Incorporate GNRs into Active SPR Device

4. Determine device characteristics – test against model. Have we achieved a new and worthwhile technology? $\lambda_R = 350 \sqrt{W \cdot \frac{(1 + \varepsilon_S)}{E_-}}$

The Project Fabrication

Fabrication possibilities 1 – Bottom up Cover in SiO₂ **Construct Cu nanowires** Polish to expose 4 nm wide Cu track CVD growth of GNR on Cu tracks

The Project Fabrication

The Project Fabrication

Fabrication possibilities 3 – In Solution

Yagmurcukardes *et al.* Applied Physics Reviews, 2016. **3**(4)

The Project - Characterization

GNR morphology – STM and TERS

17.3 nm

4.6 nm

Ribbon widths. Looking for < 5 nm, smooth clean edges

Nemes-Incz et al. Applied Surface Science, 2014. 291.

Edge morphology. Observe consistency (or random) and type.

The Project - Characterization

GNR morphology – STM and TERS

Physical and chemical defect status. Oxidation? Multidomain? Gaps?

Araujo et al. Materials Today, 2012. 15(3)

Active gated SPR device

Motivation

> Sensor with in-built processing

Memristor as Synapse in Spiking Neural Networks

Human Brain:

10¹⁴ Synapses and 10¹⁰ Neurons

- 20 Watts of power (10 Hz)!
- 15 centimetres long!
- Non-volatile learning memory!

http://commons.wikimedia.org/wiki/File:Humanbrain.SVG

An artificial Brain-scale SNN:

10¹⁴ Learning Synapses in VLSI

- 60 Kilo Watts of power
- 5 Kilo meters long!!
- Volatile learning memory!!

Memristor as Synapse in Spiking Neural Networks

Memristive synapse:

10¹⁰ Memristive synapses

- Non-volatile memory!
- A few square centimetres of area
- Lower power consumption than VLSI
- Compatible with synaptic plasticity dynamics such as STDP

Forming a SNN with Memristive Synapses

Forming a hybrid CMOS-memristor SNN

Hybrid CMOS-Neuron SNN: Neurons: CMOS Synapses: Memristors

Memristor-Mos implementation by Jo et al., Nano letters, 2010

Memristor-Mos implementation by Eshraghian et al., IEEE TVLSI, 2011

Forming a hybrid CMOS-memristor SNN

A typical memristor behaviour

Our recent hybrid CMOS-Memristor Spiking Neural Network, IEEE Transactions on Biomedical Circuits and Systems, 2016

Forming a hybrid CMOS-memristor SNN

A network of CMOS neurons and memristive synapses

Our recent hybrid CMOS-Memristor Spiking Neural Network, IEEE Transactions on Biomedical Circuits and Systems, 2016

Replicating Biological Experiments

- Experimental data obtained from mice hippocampus.
- Our circuit mimics triplet spike timing dependent plasticity (TSTDP) and spike-rate dependent plasticity

- > Developing sensors with integrated processing
 - Surface plasmon resonance in graphene optimisation of width and edge morphology
 - Tunable, low power, sensitive and selective sensor which can measure thousands of metabolic analytes with a single reading
- Spiking neural network with memrestive synapses and graphene-based inputs
- > In the future, integrate sensing and powerful processing on a chip

References

- > Azghadi, M.R. et. al.,., "A hybrid CMOS-memristor neuromorphic synapse," IEEE TBCAS, In press.
- > Archanjo, B.S., et al., Graphene nanoribbon superlattices fabricated via He ion lithography. APL, 2014. 104(19).
- > Bao, Q. and K.P. Loh, *Graphene photonics, plasmonics, and broadband optoelectronic devices.* ACS nano, 2012. **6**(5): p. 3677.
- Campos, L.C., et al., Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene. Nano Letters, 2009. 9(7): p. 2600-2604.
- > Das Sarma, S., et al., *Electronic transport in two-dimensional graphene.* Rev. of Modern Physics, 2011. 83(2): p. 407-470.
- > Geim, A.K. and K.S. Novoselov, *The rise of graphene*. Nature Materials, 2007. **6**(3): p. 183-191.
- Fang, Z., et al., Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS nano, 2013. 7(3): p. 2388.
- > Grigorenko, A.N., M. Polini, and K.S. Novoselov, *Graphene plasmonics*. Nature Photonics, 2012. 6(11): p. 749-758.
- > Guo, B., et al., *Graphene Doping: A Review.* Insciences Journal, 2011. 1(2): p. 80-89.
- > Tapaszto, L., et al., *Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography.* Nature Nanotechnology, 2008. **3**(7): p. 397-401.
- > Yagmurcukardes, M., et al., Nanoribbons: From fundamentals to state-of-the-art applications. App. Phy. Reviews, 2016. 3(4).

Zhou, Y.B., et al., Precise milling of nano-gap chains in graphene with a focused helium ion beam. Nanotechnology, 2016.
27(32).

Conclusion

- Project aims to develop capabilities in the integration of nanotechnology with electronic integrated circuits through three subprojects
 - 1. Photonics electrical interface to photonic signal processing chip
 - 2. LowT analog transistor array for characterizing low-temperature devices
 - 3. Sensor graphene based sensor
- Made progress in all three areas look forward to future AINST collaborations to extend our work

Spare slides

