
Architectures for the FPGA
Implementation of Online Kernel Methods

Philip Leong | Computer Engineering Laboratory
School of Electrical and Information Engineering,

The University of Sydney

Computer Engineering Laboratory

›  Focuses on how to use parallelism to solve demanding problems
-  Novel architectures, applications and design techniques using VLSI, FPGA and

parallel computing technology

›  Applications
-  Computational Finance

-  Signal Processing

-  Nanoscale Interfaces

2

› Motivation
› Kernel methods

-  Vector processor
-  Pipelined

-  Braided
-  Distributed

› Conclusion

Overview

Motivation (latency)

›  Low latency trading looks to trade in transient situations where market
equilibrium disturbed
-  1ms reduction in latency can translate to $100M per year

›  Latency also important: prevent blackouts due to cascading faults, turn off
machine before it damages itself, etc

How to beat other people to the money (latency)

Information Week: Wall Street's Quest To Process
Data At The Speed Of Light

Motivation (latency)

5

Exablaze Low-Latency Products

ExaLINK Fusion 48 SFP+ port layer
2 switch for replicating data typical 5
ns fanout, 95 ns aggregation, 110 ns
layer 2 switch

Xilinx Ultrascale FPGA, QDR SRAM,
ARM processor

ExaNIC X10 typical raw frame
latency 60 bytes 780 ns

Source: exablaze.com

What we can’t do: ML with this
type of latency

Motivation (throughput)

›  Ability to acquire data improving (networks, storage, ADCs, sensors,
computers)
-  e.g. hyperspectral satellite images, Big Data e.g. SIRCA has 3PB of historical

trade data

›  Significant improvements in ML algorithms
-  Deep learning (model high-level abstractions in data) for leading image and voice

recognition problems; support vector machines to avoid overfitting

6

What we can’t do: learning with
this data rate

EPIC Technology Needed

›  To provide ML algorithms with higher throughput and lower latency we
need
-  Low Energy – so power doesn’t become a constraint, operate off batteries

(satellite and mobile)

-  Parallelism – so we can reduce latency and increase throughput

-  Interface – so we don’t need to go off-chip which reduces speed and increases
energy

-  Customisable – so we can tailor entire design to get best efficiency

› Using FPGAs, develop improved algorithms and system
implementations for ML

7

› Motivation
› Kernel methods

-  Vector processor
-  Pipelined

-  Braided
-  Distributed

› Conclusion

Overview

Linear Techniques

›  Linear techniques extensively studied
›  Solution has form y = wTx + b

-  Use training data x to get maximum likelihood estimate of w or a posterior
distribution of w

›  Pros
-  Sound theoretical basis

-  Computationally efficient

› Cons
-  Linear!

›  There is an equivalent dual representation

9

e.g. Max Margin Hyperplane

What do we do if given this problem?

› Map the problem to a feature space

11

Mapping to a Feature Space

› Choose high dimensional feature space (so easily separable)
› BUT computing Φ is expensive!

Kernel Trick

›  Kernel is a similarity function
-  defined by an implicit mapping φ, (original space to feature space)

-  e.g. Linear kernel κ(x,x’)=<x,x’>

-  e.g. Polynomial kernel κ(x,x’)=(1+<x,x’>)d for d=2: φ(x) = (x1
2, x2

2, √2x1x2)
-  e.g. Gaussian kernel (universal approximator)

-  Φ(x) infinite in dimension!

› Modify linear ML techniques to kernel ones by replacing dot products
with the kernel function (kernel trick)
-  e.g. linear discriminant analysis, logistic regression, perceptron, SOM, K-means,

PCA, ICA, LMS, RLS, …
-  While we only describe prediction here, also applied to training equations

13

κ (x, x ') = φ(x)Tφ(x ') = φ(x),φ(x ')

Support Vector Machine

14

b

b

Never explicitly compute Φ(x), computing K(x,x’) is O(m)
e.g. poly kernel Φ(x), dimension (d+m-1)!/d!(m-1)!
For d=6, m=100 this is a vector of length 1.6e9

Approach

›  In Kernel-based learning algorithms, problem solving is now decoupled
into:
-  A general purpose learning algorithm often linear (well-funded, robustness, …)

-  A problem specific kernel (we focus on time series but kernels exist for text, DNA
sequences, NLP)

15

Online Kernel Methods

›  Traditional ML algorithms are batch
based
-  Make several passes through data

-  Requires storage of the input data

-  Not all data may be available initially

-  Not suitable for massive datasets

› Our approach: online algorithms
-  Incremental, inexpensive state

update based on new data

-  Single pass through the data

-  Can be high throughput, low latency

Examples are KLMS and KRLS

Universal
Approximator

Σ
-

+

Streaming
inputs xi

Prediction

yi

Modify
weights

16

Kernel Online Algorithms

›  Kernel Least Mean Squares
(KLMS)
-  O(N)

-  Converges slowly (steepest descent)

-  Takes a ‘step’ towards minimising the
instantaneous error

-  e.g. KNLMS, NORMA

›  Kernel recursive least squares
(KRLS)
-  O(N2)

-  Converges quickly (Newton
Raphson)

-  Directly calculates least squares
solution based on previous training
examples using Matrix Inversion
Lemma (matrix-vector multiplication)

-  e.g. SW-KRLS

17	

Two extensively studied types of online kernel methods:

› Motivation
› Kernel methods

-  Vector processor
-  Pipelined

-  Braided
-  Distributed

› Conclusion

Overview

W-KRLS	

The pseudo code of the SW-KRLS
algorithm	

SW-KRLS Algorithm

19	

Computation complexity: O(N2).	

Key idea

›  Microprocessor O(N) cycles

 for (i = 0; i < N; i++)

 C[i] = A[i] + B[i];

›  Vector processor O(1) cycle

 VADD(C, A, B)

›  Implemented as a custom KRLS
vector processor using FPGA
technology

20	

Vector add C = A + B

Instruction Set	

ALL i , j AND L INDEXES RANGE FROM 1 TO N	

Microcode (Opcode)	 Function	 Total Cycles	
NOP(000)	 No operation	 1	

BRANCH (0111)	 BRANCH	 4	

VADD (0001)	 Vector add	 14	
VSUB (0010)	 Vector subtract	 14	
VMUL (0011)	 Array multiply	 10	
VDIV (0100)	 Vector divide	 N+28	
VEXP (0110)	 Vector exponentiation	 N+21	
S2VE (1000)	 Clone a vector N times N+4	
PVADD (1001)	 N x Vector add	 N+13	
PVSUB (1010)	 N x Vector subtract	 N+13	
PVMUL (1011)	 N x Vector multiply	 N+9	
PVDOT (0101)	 N x Vector dot product	 N+9+10	

21	

SW-KRLS and other kernel methods implemented
efficiently using this simple instruction set

Datapath	

C

Data
Control

Unit

Vector
Memory ALU

VM1

VM2

VM N

C

C

A

B

A

B

A

B

ALU1	

ALU2	

ALU N	

22	

ALU architecture	

Ø  ALU 1 - adder, multiplier, exp and divider

Ø  ALU 2 .. ALU N - only adder and multiplier	

23	

Adder/
Subtractor

VADD/VSUB
QA
QB

 QB

QA

EXP
VEXP

Divider
VDIV QA

QB

QA

Single Precision Multiplier

ALU 1 (Only one Heterogeneous lane)

VMUL

adder/
Subtractor

VADD/VSUB
QA
QB

ALU 2~N (N-1 Homogeneous lane)

QB
QA

Single Precision Multiplier
VMUL

Detailed Datapath

24	

NOP
OP

BZ

Vector A
ADDR

Vector B
ADDR Microcode

ADDR
16

BADDRR

Program
Counter

Microcode
Memory 16

16

16

10

WR

4

Data
Alignment Unit

Vector Memory ALU

N

VDATA

CS

VADDR

16

ALU 0 Vector Memory 0

 ALU 1 Vector Memory 1

ALU N Vector Memory n

›  SW-KRLS N=64

25

Performance Summary

Platform Power (W) Latency (uS) Energy (10^-5 J)

Our processor
(DE5 5SGXEA7N)

 2 (27) 1 (12.6) 1 (34)

DSP
(TMS320C6678)

1 (13) 355 (4476) 181 (6167)

CPU
(i5-2400@3.1GHz)

 1 (13) 16 (201) 8 (269)

Conclusion	

› Microcoded vector processor for the acceleration of kernel based machine
learning algorithms.

›  Architecture is optimised for dot product, matrix-vector multiplication and
kernel evaluation.

›  Features simplicity, programmability and compactness.

26	

› Motivation
› Kernel methods

-  Vector processor
-  Pipelined

-  Braided
-  Distributed

› Conclusion

Overview

Obstacle to Pipelining

Dependency Problem

Universal
Approximator

Σ
-

+

Streaming
inputs xi

Prediction

yi

Modify
weights

Cannot process
xi until we update weights
from {xi-1,yi-1}

28

KNLMS Regression

›  Finds D (dictionary which is subset of input vectors), and α (weights) for
function

›  Is a stochastic gradient descent style kernel regression algorithm. Given a
new input/output pair, {xn, yn}, weight update is:

›  1. Evaluate κ between xn and each entry of Dn−1, creating kernel vector, k.
›  2. If max(k) < µ0, add xn to the dictionary, producing Dn
›  3. Update the weights using:

› How can we chose κ, µ0, η and ϵ? We must do a parameter search.

29

αn =αn−1 +
η

ε + kTk
(yn − k

Tαn−1)k

Removing Dependencies

›  Training is usually:

for (hyperparameters)

 for (inputs)

 learn_model()

›  Alternative is to find L independent
problems
-  E.g. monitor L different things

› Our approach: run L independent
problems (different parameters) in
the pipeline
-  Updates ready after L subproblems

-  Less data transfer

for (inputs)

 for (hyperparameters)

 learn_model()

30

•  Similar approach for multiclass classification (train C(C-1)/2 binary classifiers)

High Throughput KNLMS

31

Scalability

›  Area O(MN)

› Memory O(MN)

›  Latency O(log2N+log2M)

32

Implementation

›  Break feedforward/feedback path and sythesised with Vivado HLS

› RIFFA 2.2.0 used for PCIe interface

33

Performance

›  Energy efficient, Parallelism (pipelining), Integrated with PCIe and Customised
(problem changed to remove dependencies)

›  Can do online learning from 200 independent data streams at 70 Gbps (160
GFLOPS)

34

Core with input vector M=8 and dictionary size N=16 (KNLMS)

Implementation Freq
(MHz)

Time
(ns)

Slowdown

Float 314 3 1
System 250 14 4
Naive 97 7,829 2,462
CPU (C) 3,600 940 296
Pang et al (2013) 282 1,699 566

Summary

› Demonstrated feasibility of a fully-pipelined regression engine
-  200-stage pipeline achieves much higher performance than previous designs

-  160 GFLOPS (70x speedup to CPU and 660x faster than our previous
microcoded KRLS processor)

›  Also studied a fused, fixed-point floating point design details in paper

›  First such processor which can keep up with line speeds
-  Believe this is enabling technology for real-time ML applications

35

› Motivation
› Kernel methods

-  Pipelined
-  Vector processor

-  Braided
-  Distributed

› Conclusion

Overview

NORMA

›  Finds D (dictionary which is subset of input vectors), and α (weights) for
function

› Minimise instantaneous risk of predictive error (Rinst,λ) by taking a step in
direction of gradient

› Can be used for classification, regression, novelty detection

› Update for novelty detection

37

Naive Online regularised Risk Minimization Algorithm

Add xt+1 to dictionary

Datapath for NORMA

38

NORMA Update (Case 1)

39

NORMA Update (Case 2)

40

Properties of NORMA

› NORMA is a sliding window algorithm
-  If new dictionary entry added [d1,···dD] → [xt,d1,···dD−1]

-  Weight update is just a decay αi → Ωαi

-  Update cost is small compared to computing f(xt)

›  Is this really true?

41

Idea

› Recall carry select adder
-  implement both cases in parallel and select output

42

Braiding

43

Braiding Datapath

44

Generalised to p cycles

45

Implementation

›  Implemented in Chisel

› On XC7VX485T- 2FFG1761C achieves ~133 MHz

›  Area O(FDB2) (F=dimensionality of input vector), time complexity O(FD)

›  Speedup 500x compared with single core CPU i7-4510U (8.10 fixed)

46

F=8, D= 16 32 64 128 200
Frequency (MHz) 133 138 137 131 127
DSPs (/2,800) 309 514 911 1,679 2,556
Slices (/759,000) 4615 8194 14,663 29,113 46,443
Latency (cycles) 10 11 12 12 13
Speedup (×) 47 91 178 344 509
Latency reduction (×) 4.69 8.30 14.9 28.7 39.2

Comparison of Architectures

› Core with input vector F=8 and dictionary size D=16

Design Precision Freq
MHz

Latency
Cycles

T.put
Cycles

Latency
nS

T.put
nS

Vector
KNLMS

Single 282 479 479 1,699

1,699

Pipelined
KNLMS

Single 314 207 1 659 3.2

Braided
NORMA

8.10 113 10 1 89 8.8

Open source (GPLv2): github.com/da-steve101/chisel-pipelined-olk

Summary

48

›  Braiding: rearrangement of a sliding window algorithm for hardware
implementations
-  NORMA used but other ML algorithms possible

› Compared with pipelined KNLMS,
-  20x lower latency at 1/3 of the throughput

› Open source (GPLv2): github.com/da-steve101/chisel-pipelined-olk

› Motivation
› Kernel methods

-  Pipelined
-  Vector processor

-  Braided
-  Distributed

› Conclusion

Overview

Distributed KRLS

› One problem with KRLS is how to get scalable parallelism

›  Proposed a method, which uses KRLS (Engel et al. 2004) to create
models on subsets of the data.

›  These models can then be combined using KRLS again to create a single
accurate model

› We have shown an upper bound on the error introduced

50

Distributed KRLS

Accuracy

›  Accuracy comparison

51

Distributed KRLS Vs Cascade SVM

Speedup

52

Distributed KRLS Vs Cascade SVM

›  Average Speedup about 20x on a 16 node cluster

› Motivation
› Kernel methods

-  Pipelined
-  Vector processor

-  Braided
-  Distributed

› Conclusion

Overview

› Demonstrated high-performance applications in ML

› Machines of the future will need to interpret and process data using ML
-  FPGAs are a key enabling technology for energy-efficient, fast implementations

-  A lot more to do!

Conclusion

1/Latency

Throughput

KNLMS
Vector

dKRLS

NORMA

References

›  Stephen Tridgell, Duncan J.M. Moss, Nicholas J. Fraser, and Philip H.W.
Leong. Braiding: a scheme for resolving hazards in NORMA. In Proc.
International Conference on Field Programmable Technology (FPT), page to
appear, 2015.

›  Nicholas J. Fraser, Duncan J.M. Moss, JunKyu Lee, Stephen Tridgell, Craig T.
Jin, and Philip H.W. Leong. A fully pipelined kernel normalised least mean
squares processor for accelerated parameter optimisation. In Proc.
International Conference on Field Programmable Logic and Applications
(FPL), page to appear, 2015.

›  Nicholas J. Fraser, Duncan J.M. Moss, Nicolas Epain, and Philip H.W. Leong.
Distributed kernel learning using kernel recursive least squares. In Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5500–5504, 2015.

›  Yeyong Pang, Shaojun Wang, Yu Peng, Nick Fraser, and Philip H.W. Leong. A
low latency kernel recursive least squares processor using FPGA technology.
In Proc. International Conference on Field Programmable Technology (FPT),
pages 144–151, 2013.

Thank you!

Philip Leong (philip.leong@sydney.edu.au)
http://www.ee.usyd.edu.au/~phwl

Australian Institute for Nanoscale
Science and Technology (AINST)

›  Type A, B and C Laboratories

›  Temperature: ± 0.1 Degree (Type A) to ± 0.5
Degree (Type C)

›  Humidity: ± 5% (Type A) to ± 10% (Type C)

›  Vibration: VCE (Type A) to VCB (Type C)

›  EMI: 0.3mGp-p (Type A) to 3mGp-p (Type C)

57

“Pure and Bright” Photon Source

›  Photons a vital resource for the implementation of quantum computing and
key distribution
-  Key enabling block are photon sources

› Our approach: generate correlated photon pairs where one “heralds”
existence of partner
-  excellent spatial-temporal-spectral properties but µ << 1

-  for n probability of successful photon-photon interaction scales as µn and
becomes impractically small (record is n=8)

›  This work: increase µ

58

Temporal multiplexing

t1	 t2	 t3	 t4	 t1	 t2	 t3	 t4	 t1	

#me	

t1	 t2	 t3	 t4	 t1	 t2	 t3	 t4	

59

Challenges with Temporal Multiplexing

1.  Precisely synchronizing photons clocks

2.  Managing their arrival time to the accuracy of several picoseconds

3.  Controlling their polarization

4.  Ultra-low loss components so this is achieved while maintaining
photons’ indistinguishability (in frequency, temporal and polarization
degrees of freedom)

Obstacles since temporal multiplexing proposed by Mower (2011)

60 J. Mower Phys. Rev .A 84, 052326 (2011)

FPGA	

0 500 1000 1500 2000 2500
0.0

0.1

0.2

0.3

0.4

0.5
 NO MUX
 Fitting curve (NO MUX)

g2
 (0

) r
es

ul
t

Heralded single photon rate (Hz)
0 500 1000 1500 2000 2500

0.0

0.1

0.2

0.3

0.4

0.5
 NO MUX
 MUX
 Fitting curve (NO MUX)
 Fitting curve (MUX)

g2
 (0

) r
es

ul
t

Heralded single photon rate (Hz)

Are our photons single?
g2(0) measurement

•  g2(0) is a measure of level of
multi-photon noise

Are our photons indistinguishable?
Hong-Ou-Mandel interference

c1	

c2	
h2	

h1	

4−photon coincidence

Preliminary results

-60 -40 -20 0 20 40 60

0

10

20

30

40

50

60

4-
 fo

ld
 c

oi
nc

id
en

ce
 /

ho
ur

Delay

 4-fold measurement result
 Fitting curve (4-fold)

Visibility =90%

60

50

40

30

20

10

0
60 40 20 0 -60 -40 -20

Delay (ps)

4-fold coincidence
(per hour)

Convergence

64

