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Computer Engineering Laboratory 

›  Focuses on how to use parallelism to solve demanding problems   
-  Novel architectures, applications and design techniques using VLSI, FPGA and 

parallel computing technology  

›  Applications 
-  Computational Finance 

-  Signal Processing 

-  Nanoscale Interfaces 
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Motivation (latency) 

›  Low latency trading looks to trade in transient situations where market 
equilibrium disturbed 
-  1ms reduction in latency can translate to $100M per year 

›  Latency also important: prevent blackouts due to cascading faults, turn off 
machine before it damages itself, etc 

How to beat other people to the money (latency) 

Information Week: Wall Street's Quest To Process 
Data At The Speed Of Light 



Motivation (latency) 
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Exablaze Low-Latency Products 

ExaLINK Fusion 48 SFP+ port layer 
2 switch for replicating data typical 5 
ns fanout, 95 ns aggregation, 110 ns 
layer 2 switch 
 
Xilinx Ultrascale FPGA, QDR SRAM, 
ARM processor 

ExaNIC X10 typical raw frame 
latency 60 bytes 780 ns 

Source: exablaze.com 

What we can’t do: ML with this 
type of latency 



Motivation (throughput) 

›  Ability to acquire data improving (networks, storage, ADCs, sensors, 
computers) 
-  e.g. hyperspectral satellite images, Big Data e.g. SIRCA has 3PB of historical 

trade data 

›  Significant improvements in ML algorithms 
-  Deep learning (model high-level abstractions in data) for leading image and voice 

recognition problems; support vector machines to avoid overfitting 
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What we can’t do: learning with 
this data rate 



EPIC Technology Needed 

›  To provide ML algorithms with higher throughput and lower latency we 
need 
-  Low Energy – so power doesn’t become a constraint, operate off batteries 

(satellite and mobile) 

-  Parallelism – so we can reduce latency and increase throughput 

-  Interface – so we don’t need to go off-chip which reduces speed and increases 
energy 

-  Customisable – so we can tailor entire design to get best efficiency 

› Using FPGAs, develop improved algorithms and system 
implementations for ML 
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Linear Techniques 

›  Linear techniques extensively studied 
›  Solution has form y = wTx + b  

-  Use training data x to get maximum likelihood estimate of w or a posterior 
distribution of w  

›  Pros 
-  Sound theoretical basis 

-  Computationally efficient 

› Cons 
-  Linear! 

›  There is an equivalent dual representation 
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e.g. Max Margin Hyperplane 

 



What do we do if given this problem? 

 

› Map the problem to a feature space 
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Mapping to a Feature Space 

› Choose high dimensional feature space (so easily separable) 
› BUT computing Φ is expensive!  



Kernel Trick 

›  Kernel is a similarity function  
-  defined by an implicit mapping φ, (original space to feature space) 

-  e.g. Linear kernel κ(x,x’)=<x,x’>  

-  e.g. Polynomial kernel κ(x,x’)=(1+<x,x’>)d for d=2: φ(x) = (x1
2, x2

2, √2x1x2) 
-  e.g. Gaussian kernel (universal approximator) 

-  Φ(x) infinite in dimension!  

› Modify linear ML techniques to kernel ones by replacing dot products 
with the kernel function (kernel trick) 
-  e.g. linear discriminant analysis, logistic regression, perceptron, SOM, K-means, 

PCA, ICA, LMS, RLS, … 
-  While we only describe prediction here, also applied to training equations 
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κ (x, x ') = φ(x)Tφ(x ') = φ(x),φ(x ')



Support Vector Machine 
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b 

b 

Never explicitly compute Φ(x), computing K(x,x’) is O(m) 
e.g. poly kernel Φ(x), dimension (d+m-1)!/d!(m-1)!  
For d=6, m=100 this is a vector of length 1.6e9 
 



Approach 

›  In Kernel-based learning algorithms, problem solving is now decoupled 
into: 
-  A general purpose learning algorithm often linear (well-funded, robustness, …) 

-  A problem specific kernel (we focus on time series but kernels exist for text, DNA 
sequences, NLP) 
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Online Kernel Methods 

›  Traditional ML algorithms are batch 
based 
-  Make several passes through data 

-  Requires storage of the input data 

-  Not all data may be available initially 

-  Not suitable for massive datasets 

› Our approach: online algorithms 
-  Incremental, inexpensive state 

update based on new data 

-  Single pass through the data 

-  Can be high throughput, low latency 

 

Examples are KLMS and KRLS 

Universal 
Approximator 

Σ
- 

+ 

Streaming 
inputs xi 

Prediction 

yi 

Modify 
weights 
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Kernel Online Algorithms 

›  Kernel Least Mean Squares 
(KLMS) 
-  O(N) 

-  Converges slowly (steepest descent) 

-  Takes a ‘step’ towards minimising the 
instantaneous error 

-  e.g. KNLMS, NORMA 

 

›  Kernel recursive least squares 
(KRLS) 
-  O(N2) 

-  Converges quickly (Newton 
Raphson) 

-  Directly calculates least squares 
solution based on previous training 
examples using Matrix Inversion 
Lemma (matrix-vector multiplication) 

-  e.g. SW-KRLS 

17	

Two extensively studied types of online kernel methods: 
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W-KRLS	

The pseudo code of the SW-KRLS 
algorithm	

SW-KRLS Algorithm 
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Computation complexity: O(N2).	



Key idea 

›  Microprocessor O(N) cycles 

 

   for (i = 0; i < N; i++) 

         C[i] = A[i] + B[i]; 

 

 

›  Vector processor O(1) cycle 

   VADD(C, A, B) 

 

 

 

›  Implemented as a custom KRLS 
vector processor using FPGA 
technology 
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Vector add C = A + B 



Instruction Set	

ALL i , j AND L INDEXES RANGE FROM 1 TO N	

Microcode (Opcode)	 Function	 Total Cycles	
NOP(000)	 No operation	 1	

BRANCH (0111)	 BRANCH	 4	

VADD (0001)	 Vector add	 14	
VSUB (0010)	 Vector subtract	 14	
VMUL (0011)	 Array multiply	 10	
VDIV (0100)	 Vector divide	 N+28	
VEXP (0110)	 Vector exponentiation	 N+21	
S2VE (1000)	 Clone a vector N times N+4	
PVADD (1001)	 N x Vector add	 N+13	
PVSUB (1010)	 N x Vector subtract	 N+13	
PVMUL (1011)	 N x Vector multiply	 N+9	
PVDOT (0101)	 N x Vector dot product	 N+9+10	
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SW-KRLS and other kernel methods implemented 
efficiently using this simple instruction set 



Datapath	
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ALU architecture	

Ø  ALU 1 - adder, multiplier, exp and divider 

Ø  ALU 2 .. ALU N - only adder and multiplier	
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Detailed Datapath 
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›  SW-KRLS N=64 
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Performance Summary 

Platform Power (W) Latency (uS) Energy (10^-5 J) 

Our processor 
(DE5 5SGXEA7N) 

 2 (27)  1 (12.6)  1 (34) 

DSP 
(TMS320C6678) 

1 (13)  355 (4476) 181 (6167) 

CPU 
(i5-2400@3.1GHz) 

 1 (13)  16 (201)  8 (269) 



Conclusion	

› Microcoded vector processor for the acceleration of kernel based machine 
learning algorithms. 

›  Architecture is optimised for dot product, matrix-vector multiplication and 
kernel evaluation. 

›  Features simplicity, programmability and compactness. 
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Obstacle to Pipelining 

Dependency Problem 

Universal 
Approximator 

Σ
- 

+ 

Streaming 
inputs xi 

Prediction 

yi 

Modify 
weights 

Cannot process 
xi until we update weights 
from {xi-1,yi-1} 
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KNLMS Regression 

›  Finds D (dictionary which is subset of input vectors), and α (weights) for 
function 

›  Is a stochastic gradient descent style kernel regression algorithm. Given a 
new input/output pair, {xn, yn}, weight update is: 

›  1. Evaluate κ between xn and each entry of Dn−1, creating kernel vector, k. 
›  2. If max(k) < µ0, add xn to the dictionary, producing Dn 
›  3. Update the weights using:  

› How can we chose κ, µ0, η and ϵ? We must do a parameter search. 
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αn =αn−1 +
η

ε + kTk
(yn − k

Tαn−1)k



Removing Dependencies 

›  Training is usually: 

for (hyperparameters) 

    for (inputs) 

        learn_model() 

›  Alternative is to find L independent 
problems 
-  E.g. monitor L different things 

 

 

› Our approach: run L independent 
problems (different parameters) in 
the pipeline 
-  Updates ready after L subproblems 

-  Less data transfer 

 

for (inputs) 

    for (hyperparameters) 

        learn_model() 
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•  Similar approach for multiclass classification (train C(C-1)/2 binary classifiers)   



High Throughput KNLMS 
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Scalability 

›  Area O(MN) 

› Memory O(MN) 

›  Latency O(log2N+log2M) 
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Implementation 

›  Break feedforward/feedback path and sythesised with Vivado HLS  

› RIFFA 2.2.0 used for PCIe interface 
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Performance 

›  Energy efficient, Parallelism (pipelining), Integrated with PCIe and Customised 
(problem changed to remove dependencies) 

›  Can do online learning from 200 independent data streams at 70 Gbps (160 
GFLOPS) 
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Core with input vector M=8 and dictionary size N=16 (KNLMS) 

Implementation Freq 
(MHz) 

Time 
(ns) 

Slowdown 

Float 314 3 1 
System 250 14 4 
Naive 97 7,829 2,462 
CPU (C) 3,600 940 296 
Pang et al (2013) 282 1,699 566 



Summary 

› Demonstrated feasibility of a fully-pipelined regression engine 
-  200-stage pipeline achieves much higher performance than previous designs 

-  160 GFLOPS (70x speedup to CPU and 660x faster than our previous 
microcoded KRLS processor) 

›  Also studied a fused, fixed-point floating point design details in paper 

›  First such processor which can keep up with line speeds  
-  Believe this is enabling technology for real-time ML applications 
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NORMA 

›  Finds D (dictionary which is subset of input vectors), and α (weights) for 
function 

› Minimise instantaneous risk of predictive error (Rinst,λ) by taking a step in 
direction of gradient 

 

› Can be used for classification, regression, novelty detection 

› Update for novelty detection  
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Naive Online regularised Risk Minimization Algorithm  

Add xt+1 to dictionary 



Datapath for NORMA 
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NORMA Update (Case 1) 
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NORMA Update (Case 2) 
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Properties of NORMA 

› NORMA is a sliding window algorithm 
-  If new dictionary entry added [d1,···dD] → [xt,d1,···dD−1]  

-  Weight update is just a decay αi → Ωαi  

-  Update cost is small compared to computing f(xt) 

›  Is this really true? 
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Idea 

› Recall carry select adder  
-  implement both cases in parallel and select output 
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Braiding 
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Braiding Datapath 
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Generalised to p cycles 
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Implementation 

›  Implemented in Chisel 

› On XC7VX485T- 2FFG1761C achieves ~133 MHz 

›  Area O(FDB2) (F=dimensionality of input vector), time complexity O(FD) 

›  Speedup 500x compared with single core CPU i7-4510U (8.10 fixed) 
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F=8, D= 16 32 64 128 200 
Frequency (MHz) 133 138 137 131 127 
DSPs (/2,800) 309 514 911 1,679 2,556 
Slices (/759,000) 4615 8194 14,663 29,113 46,443 
Latency (cycles) 10 11 12 12 13 
Speedup (×) 47 91 178 344 509 
Latency reduction (×) 4.69 8.30 14.9 28.7 39.2 



Comparison of Architectures 

› Core with input vector F=8 and dictionary size D=16 

Design Precision Freq  
MHz 

Latency 
Cycles 

T.put 
Cycles 

Latency 
nS 

T.put 
nS 

Vector 
KNLMS 

Single 282 479 479 1,699 
 

1,699 
 

Pipelined 
KNLMS 

Single 314 207 1 659 3.2 

Braided 
NORMA 

8.10 113 10 1 89 8.8 

Open source (GPLv2): github.com/da-steve101/chisel-pipelined-olk  
 



Summary 
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›  Braiding: rearrangement of a sliding window algorithm for hardware 
implementations  
-  NORMA used but other ML algorithms possible 

› Compared with pipelined KNLMS, 
-  20x lower latency at 1/3 of the throughput 

› Open source (GPLv2): github.com/da-steve101/chisel-pipelined-olk  
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Distributed KRLS 

› One problem with KRLS is how to get scalable parallelism 

›  Proposed a method, which uses KRLS (Engel et al. 2004) to create 
models on subsets of the data. 

›  These models can then be combined using KRLS again to create a single 
accurate model 

› We have shown an upper bound on the error introduced 
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Distributed KRLS 



Accuracy 

›  Accuracy comparison 
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Distributed KRLS Vs Cascade SVM 



Speedup 
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Distributed KRLS Vs Cascade SVM 

›  Average Speedup about 20x on a 16 node cluster 
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› Demonstrated high-performance applications in ML 

› Machines of the future will need to interpret and process data using ML 
-  FPGAs are a key enabling technology for energy-efficient, fast implementations 

-  A lot more to do! 

Conclusion 

1/Latency 

Throughput 

KNLMS 
Vector 

dKRLS 

NORMA 
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Australian Institute for Nanoscale  
Science and Technology (AINST) 

›  Type A, B and C Laboratories 

›  Temperature: ± 0.1 Degree (Type A) to ± 0.5 
Degree (Type C) 

›  Humidity: ± 5% (Type A) to ± 10% (Type C) 

›  Vibration: VCE (Type A) to VCB (Type C) 

›  EMI: 0.3mGp-p (Type A) to 3mGp-p (Type C) 
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“Pure and Bright” Photon Source 

›  Photons a vital resource for the implementation of quantum computing and 
key distribution 
-  Key enabling block are photon sources 

› Our approach: generate correlated photon pairs where one “heralds” 
existence of partner 
-  excellent spatial-temporal-spectral properties but µ << 1 

-  for n probability of successful photon-photon interaction scales as µn and 
becomes impractically small (record is n=8) 

›  This work: increase µ 
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Temporal multiplexing 

t1	   t2	   t3	   t4	   t1	   t2	   t3	   t4	   t1	  

#me	  

t1	  t2	  t3	  t4	   t1	  t2	   t3	   t4	  
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Challenges with Temporal Multiplexing 

1.  Precisely synchronizing photons clocks 

2.  Managing their arrival time to the accuracy of several picoseconds 

3.  Controlling their polarization  

4.  Ultra-low loss components so this is achieved while maintaining 
photons’ indistinguishability (in frequency, temporal and polarization 
degrees of freedom) 

 

Obstacles since temporal multiplexing proposed by Mower (2011) 

60 J. Mower Phys. Rev .A 84, 052326 (2011)  



FPGA	
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•  g2(0) is a measure of level of 
multi-photon noise 



Are our photons indistinguishable?  
Hong-Ou-Mandel interference 
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Convergence 
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