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» Focuses on how to use parallelism to solve demanding problems

- Novel architectures, applications and design techniques using VLSI, FPGA and
parallel computing technology

» Applications
- Computational Finance
- Signal Processing

- Nanoscale Interfaces
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Motivation (latency)

How to beat other people to the money (latency)

» Low latency trading looks to trade in transient situations where market
equilibrium disturbed

- 1ms reduction in latency can translate to $100M per year

Market

Trader Exchange
Data |

Trader

» Latency also important: prevent blackouts due to cascading faults, turn off
machine before it damages itself, etc

Information Week: Wall Street's Quest To Process
Data At The Speed Of Light
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Exablaze Low-Latency Products

ExaLINK Fusion 48 SFP+ port layer
2 switch for replicating data typical 5
ns fanout, 95 ns aggregation, 110 ns
layer 2 switch

Xilinx Ultrascale FPGA, QDR SRAM,
ARM processor

Motivation (latency)

ExaNIC X10 typical raw frame
latency 60 bytes 780 ns

What we can’t do: ML with this
type of latency

Source: exablaze.com
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» Ability to acquire data improving (networks, storage, ADCs, sensors,

computers)
- e.g. hyperspectral satellite images, Big Data e.g. SIRCA has 3PB of historical
trade data

» Significant improvements in ML algorithms

- Deep learning (model high-level abstractions in data) for leading image and voice
recognition problems; support vector machines to avoid overfitting
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EPIC Technology Needed

» To provide ML algorithms with higher throughput and lower latency we
need

- Low Energy — so power doesn’t become a constraint, operate off batteries
(satellite and mobile)

- Parallelism — so we can reduce latency and increase throughput

- Interface — so we don’t need to go off-chip which reduces speed and increases
energy

- Customisable — so we can tailor entire design to get best efficiency

» Using FPGASs, develop improved algorithms and system
implementations for ML
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Linear Techniques

» Linear techniques extensively studied
» Solution has formy =w'x + b

- Use training data x to get maximum likelihood estimate of w or a posterior
distribution of w

> Pros
- Sound theoretical basis
- Computationally efficient
» Cons
- Linear!

» There is an equivalent dual representation

f(x)=(wx)+b="> oplxix) +b




e.g. Max Margin Hyperplane

(Vapnik and Chervonenkis, 1964)

.1
min 5lvl

subject to y;(w-x; +b) > 1,7 € [1,m)].
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What do we do if given this problem?

» Map the problem to a feature space

11
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Mapping to a Feature Space

Input Space Feature Space

» Choose high dimensional feature space (so easily separable)
» BUT computing @ is expensive!
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Kernel Trick

» Kernel is a similarity function
- defined by an implicit mapping ¢, (original space to feature space)
K(x,x") = ¢(x)" p(x") = (p(x),p(x"))
- e.g. Linear kernel k(x,x")=<xx">
- e.g. Polynomial kernel k(x,x)=(1+<xx">)d for d=2: ¢(X) = (X412, X,2, V2X{X,)

— |2
- e.g. Gaussian kernel (universal approximator) k(x,x") = exp <_ ||x2 J;H )
g

- d(x) infinite in dimension!

» Modify linear ML techniques to kernel ones by replacing dot products
with the kernel function (kernel trick)

- e.g. linear discriminant analysis, logistic regression, perceptron, SOM, K-means,
PCA, ICA, LMS, RLS, ...

- While we only describe prediction here, also applied to training equations

13
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- Support Vector Machine

\/

. X = ¢(x)
e The decision boundary:

wWix+w, = zdi.)’i(xiTx)+ b K(X, X') = (p(x)T(p(X')

ieSV

e Classification decision: /
= sien| 36,5, D) FB |

ieSV

Never explicitly compute ®(x), computing K(x,x’) is O(m)
e.g. poly kernel ®(x), dimension (d+m-1)!/d!(m-1)!
For d=6, m=100 this is a vector of length 1.6e9

14
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» In Kernel-based learning algorithms, problem solving is now decoupled
into:
- A general purpose learning algorithm often linear (well-funded, robustness, ...)

- A problem specific kernel (we focus on time series but kernels exist for text, DNA
sequences, NLP)

Simple (linear) learning
Complex Pattern algorithm
Recognition Tas I

Specific Kernel function

15
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Online Kernel Methods

Examples are KLMS and KRLS

» Traditional ML algorithms are batch » Our approach: online algorithms

based - Incremental, inexpensive state

- Make several passes through data update based on new data
- Requires storage of the input data - Single pass through the data
- Not all data may be available initially - Can be high throughput, low latency

Not suitable for massive datasets

Universal

Streaming > Prediction

inputs x, Approximator

+

Modify 5
N weights )
Yi

16
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Kernel Online Algorithms

Two extensively studied types of online kernel methods:

» Kernel Least Mean Squares » Kernel recursive least squares
(KLMS) (KRLS)
- O(N) - O(N?)

Converges slowly (steepest descent) Converges quickly (Newton

Raphson)

Takes a ‘step’ towards minimising the

instantaneous error Directly calculates least squares

e.g. KNLMS, NORMA solution base_d on previous trglnlng
examples using Matrix Inversion
Lemma (matrix-vector multiplication)

e.g. SW-KRLS
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The pseudo code of the SW-KRLS
algorithm

Initialize K, =(1+¢)and K;'=I/(1+¢).

for n=1.2.. do
Get K, from K, withEq.(1)
Calculate IZ';_II with Eq.(2)
Get K, with Eq.(3)
Calculate X' with Eq.(4)
Get the updated solution @, = K'Y,
end for

Computation complexity: O(N2).

SW-KRLS Algorithm

. K k (x
K = n-1 n( n) (1)
kn(xn)T k +c

-l [K;ll(l +bb"K; Tg) -K,!bg
" —(K;1:b)g g (2)

where b=Fk ,(x,) d=k,+c g=(d-bKb)"

W h ere p = [k(xn—N > xn—.-V-I )> R k(xn—.v\«'v xn—l )]T

L
Ko=6-—"- (4)

where g-i_| € fr
n f G




THE UNIVERSITY OF

SYDNEY

Vectoradd C=A+B

» Microprocessor O(N) cycles » Vector processor O(1) cycle

for (i=0;i < N; i++) VADD(C, A, B)
Cli] = Ali] + BI[i[;

» Implemented as a custom KRLS
vector processor using FPGA
technology

20
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ALL i, jAND L INDEXES RANGE FROM 1 TO N

Microcode (Opcode) m Total Cycles

NOP(000) No operation 1
BRANCH (0111) BRANCH 4
VADD (0001) Vector add 14
VSUB (0010) Vector subtract 14
VMUL (0011) Array multiply 10
VDIV (0100) Vector divide N+28
VEXP (0110) Vector exponentiation N+21
S2VE (1000) Clone a vector N times N+4
PVADD (1001) N x Vector add N+13
PVSUB (1010) N x Vector subtract N+13
PVMUL (1011) N x Vector multiply N+9
PVDOT (0101) N x Vector dot product N+9+10

SW-KRLS and other kernel methods implemented
efficiently using this simple instruction set

21
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: Datapath

Vector
C
/I
C
7~ Data
Control
Unit
C
/I

22



THE UNIVERSITY OF

SYDNEY

ALU architecture

» ALU 1 - adder, multiplier, exp and divider
> ALU 2 .. ALU N - only adder and multiplier

—> A
3B . Adder/ EIVADDNSUB QA ) xp ElVEXP @E_) e VADD/VSUB
——L>| Subtractor ——>| Subtractor El

QA QA VDIV
VMUL 22

0B b1 > g | Divider b~
>

23



THE UNIVERSITY OF

SYDNEY

Detailed Datapath

I N
NOP Q- ===- I : Mo
op I Vector Memory | I AN
v oo | l_z_A_L_U____}\_, Ty
i I Lz % N
Vector A 1| Vector Memory 0 1 ’ 1| ALUO | A
ADDR I L s i
1 7 » : |
/l :.. e = I: ————— | B ———— =a ]
16 I ] A # : |
Vector B :i Vector Memory 1| ! ;1 ALU1 : //
L 1 1
BADD/RR R Microcode AD,DR J:_ ______ L 4 'Ir_ !
7 ADDR , 7 DT T ST !
16 Program ya o Microcode 16 I ~ 5 1
BZ Counter / e Memory I I 7 | . Data .
16 CS 1 " ( 1 Alignment Unit
ya [
7 " I I :
VDATA | I | I
— e Lo e |
1
I 1 2 3 il
VADDR ! 7 Hl
7(_4: Vector Memory n : , .Il ALUN -:+I
! 11
! (e I :1[ _________ yos |
QR 1 I | R
N _ 1 1 Pid
=T = 1 7
L '
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Performance Summary

» SW-KRLS N=64

m Power (W) Latency (uS) Energy (107-5 J)

Our processor 2 (27) 1 (12.6) 1(34)
(DE5 5SGXEAT7N)

DSP 1(13) 355 (4476) 181 (6167)
(TMS320C6678)

CPU 1(13) 16 (201) 8 (269)

(i5-2400@3.1GHz)

25
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Conclusion

» Microcoded vector processor for the acceleration of kernel based machine
learning algorithms.

» Architecture is optimised for dot product, matrix-vector multiplication and
kernel evaluation.

» Features simplicity, programmability and compactness.

26
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Obstacle to Pipelining

Dependency Problem

Cannot process
X; until we update weights
from {x;.1,¥;.1}

LJniversel

. —> Prediction
Approximetor

Streaming —
inputs X;

+

Modify 3
S weights vl -

28



KNLMS Regression

» Finds D (dictionary which is subset of input vectors), and a (weights) for

function D
f(x) = Zam(az,di)
i=1

» Is a stochastic gradient descent style kernel regression algorithm. Given a
new input/output pair, {x,, y,}, weight update is:

» 1. Evaluate k between x,, and each entry of D, _,, creating kernel vector, k.

» 2. If max(k) < y,, add x,, to the dictionary, producing D,
» 3. Update the weights using:

n T
a =  +———— ~-k'a )k
n n-1 €+ka (yn n—l)

» How can we chose K, Jy, N and €? We must do a parameter search.

29
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Removing Dependencies

» Training is usually: » Our approach: run L independent
problems (different parameters) in

for (hyperparameters) the pipeline

for (inputs) - Updates ready after L subproblems

learn_model() - Less data transfer

» Alternative is to find L independent
problems

- E.g. monitor L different things for (inputs)
for (hyperparameters)

learn_model()

« Similar approach for multiclass classification (train C(C-1)/2 binary classifiers)

30
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: High Throughput KNLMS

i = max(|k|)

K(x, %;) = e Ix-%ill -, ;
Vie{l,...‘N} D,_{[ 1—1.X] 1< Jug

D;_, otherwise

Model (in) :'l.'.'-".'.'.'.'.'.'.'.'_'.'.'.'.'.'.' Model (out)
oo\ Sl ~
odn s ]
a Kernel
Training - = Modules .
\ T Prediction
Yy ! '
C 1
] - : : i
oY\ | i I [RERREREEE S o (aUpdate) |
C Tl ............................................................................................................................................................. »
8 .............................................................................................................................................................. .
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Scalability

» Area O(MN)
> Memory O(MN)
» Latency O(log,N+log,M)

+ (11) X (7) / (30) | exp (20) < (4)
Operation M N+
2MN + 2N AN + 1 1 N N -1
Latency logo N+
log, M + 3 5 1 1 log, N

32
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Implementation

» Break feedforward/feedback path and sythesised with Vivado HLS
» RIFFA 2.2.0 used for PCle interface

PCle J
FIFO |- Serial to‘] ! ! T
Parallel .J KNLMS
Host Param. :| ¢ e |
— Memoryq
FSM [
D,a
g Memory | ® r

FPGA card

33
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Performance

Core with input vector M=8 and dictionary size N=16 (KNLMS)

Implementation | Freq Time
(MHz) (ns)

Float

System 250 14 4
Naive 97 7,829 2,462
CPU (C) 3,600 940 296
Pang et al (2013) 282 1,699 566

» Energy efficient, Parallelism (pipelining), Integrated with PCle and Customised
(problem changed to remove dependencies)

» Can do online learning from 200 independent data streams at 70 Gbps (160
GFLOPS)

34
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Summary

» Demonstrated feasibility of a fully-pipelined regression engine

- 200-stage pipeline achieves much higher performance than previous designs

- 160 GFLOPS (70x speedup to CPU and 660x faster than our previous
microcoded KRLS processor)

» Also studied a fused, fixed-point floating point design details in paper

» First such processor which can keep up with line speeds

- Believe this is enabling technology for real-time ML applications

35
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Naive Online regularised Risk Minimization Algorithm

» Finds D (dictiona

is subset of input vectors), and a (weights) for

functio

» Minimise instantaneous risk of predictive error (R ,) by taking a step in
direction of gradient

ft—l—l = ft — ’T]tafRinst,A[fa Tt41, yt+1] f=f
=Jt

» Can be used for classification, regression, novelty detection
» Update for novelty detection
(aia at, ,0) — {

(Qa;,0,p +nv) if f(x¢) > p Add x,,, to dictionary
(Qaj,n, p—n(1 — v)) otherwise

37
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Datapath for NORMA

New Example

D
X Weights f(z) = Z a;k(z,d;)
; } ~ = =

d —| k() — *a

d2 —P K‘,(-,-) —Ppp| XD

2. = f(x)

Dictionary
AN

38



NORMA Update (Case 1)

( ) (Qa;j,0,p + nv) if f(x¢) > p Add x,, to dictionary
Qj, Oty P) = .
np (Qaj,m, p—n(1 — v)) otherwise

New Example

Xt+1 Weights
l —
( Xt P h:(-, ) — kOt
di —» k() ¥ *Qoa

> = f(xe+1)

Dictionary
AN

dp_1H—» h:(-, ) — xQap_1




=) SYDNEY NORMA Update (Case 2)

( ) (Qa;j,0,p + nv) if f(x¢) > p Add x,, to dictionary
Qj, Oty P) = .
np (Qaj,m, p—n(1 — v)) otherwise

New Example

Weights

e _¢ —

di —» k() > Qo

do —»{ k() > xQao

> = f(xe+1)

Dictionary
AN

dp —» (-, ") » Qo p

40
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Properties of NORMA

» NORMA is a sliding window algorithm

- If new dictionary entry added [d,,"--dp] — [X,,d4,""-dp_4]

- Weight update is just a decay o, — Qaq,

- Update cost is small compared to computing f(x,)

> Is this really true?

Cannot process
X; until we update weights
from {X._,Y;.1}

Streaming — IR Prediction
inputs X, {\pproximator

41
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*

» Recall carry select adder

- implement both cases in parallel and select output

A3/B3 A1/B1

0 (Cin)

42



Braiding

D
f(xt+1) =) ai"‘?(Xt+1, di)
i=1

Use the previous dictionary for x; denoted d;
D—1 A

f(xt+1) = >, Q&ik(x¢y1,d;)+something
i=1

if x; is added then this term = ax, k(X¢+1, X¢)
if x; is not added then this term = Qa/pr(x¢11, dAD)

43
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D-1

Z d\i’{'(xH—la 8/) QADK;(XH_]_, dAD)
i=1

Braiding Datapath

.

Y

Q

¥\

+

v

/

_|_

Mux [«

!

\4 ’/ft 1(xt) < p

fe(Xes1)

New Term

Partial Sum
Old Term

New Term Old Term

44
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( fO if Xt4+1—p is not added

>QP_1axt+1_pn(xt+1,xt+1_p) otherwise
0 if xt42—p is not added

) .
q < \QP Qxyp_, K(Xe41, Xe42—p) Otherwise

0 if x¢ is not added
Qix, (Xt 41, X¢) otherwise
D—q

+ > QPGik(xes1,d;)
i=D—p+1

Generalised to p cycles

Pipeline (p cycles)

m; = k(d;, x;)
(k cycles)
I

ft(Xt+1) =

D
> aijmj (s cycles)

i=1
v
[ a(fe(xe41)) }

(1 cycle)
> |
[
> |

45
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Implementation

» Implemented in Chisel

» On XC7VX485T- 2FFG1761C achieves ~133 MHz

» Area O(FDB?) (F=dimensionality of input vector), time complexity O(FD)
» Speedup 500x compared with single core CPU i7-4510U (8.10 fixed)

Frequency (MHz) 133 138

DSPs (/2,800) 309 514 911 1,679 2,556
Slices (/759,000) 4615 8194 14,663 29,113 46,443
Latency (cycles) 10 11 12 12 13
Speedup (x) 47 91 178 344 509

Latency reduction (x) 4.69 8.30 14.9 28.7 39.2

46
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Comparison of Architectures

» Core with input vector F=8 and dictionary size D=16

Latency | T.put | Latency | T.put
Cycles Cycles nS nS

Vector Single 1,699 1,699
KNLMS
Pipelined Single 314 207 1 659 3.2
KNLMS
Braided 8.10 113 10 1 89 8.8
NORMA

Open source (GPLv2): github.com/da-steve101/chisel-pipelined-olk
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Summary

» Braiding: rearrangement of a sliding window algorithm for hardware
implementations

- NORMA used but other ML algorithms possible
» Compared with pipelined KNLMS,
- 20x lower latency at 1/3 of the throughput

» Open source (GPLv2): github.com/da-steve101/chisel-pipelined-olk

48
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Distributed KRLS

Distributed KRLS

» One problem with KRLS is how to get scalable parallelism

» Proposed a method, which uses KRLS (Engel et al. 2004) to create
models on subsets of the data.

» These models can then be combined using KRLS again to create a single
accurate model

> We have shown an upper bound on the error introduced
/ KRLS 5

1,91

X1|| Y1 \

Xo| [ Vo= KR LS |22

Dy,ay
X Y\ KRLS

D,a

KRLS —

50
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Distributed KRLS Vs Cascade SVM

» Accuracy comparison

257

MSE

0.5}

0.1

L5}

x 107 MG Test Error
.- CSVM
-+ DistKRLS
- — =4
'
I/
v
R
!,_-——-"! ..... F--F- -F- - ... 3 ,!-
1 8 64 256 1024

Number of Splits

Number of SVs/DVs

70000

10000 ¢

1000 ¢

100

Accuracy

MG Model Size
—+— CSVM
+ - DistKRLS
1 8 64 256 1024
Number of Splits
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Distributed KRLS Vs Cascade SVM

» Average Speedup about 20x on a 16 node cluster

25000

2500 |

Time(s)

Mackey—Glass Tra1n1ng Time

125}

N . CSVM
N ~+ DistkRLS |
\.
\
o
. B
=
e
$ - *
1 8 64 256 1024

Number of Splits

7500

1250 ¢

Time(s)

50¢

10

Madelon Training Time

250t

—  CSVM
- DistKRLS |

1 8 64 256 1024
Number of Splits
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Conclusion

» Demonstrated high-performance applications in ML

M

NORMA
1/Latency .
KNLMS
Vector *
. dKRLS
s
Throughput

» Machines of the future will need to interpret and process data using ML
- FPGAs are a key enabling technology for energy-efficient, fast implementations

- Alot more to do!
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v

Type A, B and C Laboratories

v

Temperature: £ 0.1 Degree (Type A)to £ 0.5
Degree (Type C)

Humidity: £ 5% (Type A) to £ 10% (Type C)
Vibration: VCE (Type A) to VCB (Type C)
EMI: 0.3mGp-p (Type A) to 3mGp-p (Type C)

v

v

v
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“Pure and Bright” Photon Source

» Photons a vital resource for the implementation of quantum computing and
key distribution

- Key enabling block are photon sources

» Our approach: generate correlated photon pairs where one “heralds”
existence of partner

- excellent spatial-temporal-spectral properties but y << 71

- for n probability of successful photon-photon interaction scales as y” and
becomes impractically small (record is n=8)

» This work: increase u
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Challenges with Temporal Multiplexing

Precisely synchronizing photons clocks
Managing their arrival time to the accuracy of several picoseconds

Controlling their polarization

s N~

Ultra-low loss components so this is achieved while maintaining
photons’ indistinguishability (in frequency, temporal and polarization
degrees of freedom)

Obstacles since temporal multiplexing proposed by Mower (2011)

J. Mower Phys. Rev .A 84, 052326 (2011) 60
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[
| FPGA(Field Programmable Gate Array)
| 4x10MHz Output(Switch)
| Phase1
Q1

| 000
Counter .

Q3 Ll - 50ns 011
Phased B 250 110

LUT(Look up Table)
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Output photon
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Are our photons single?

SYDNEY

*

g4(0) measurement

H NO MUX
05 ® MUX
. ! - - = Fitting curve (NO MUX)
E’, - - - Fitting curve (MUX)
0.4} ‘ g
// - E
E= [ E' § )
-
(/2] 03 B //
| ] e
S : t
=0.2} 1 -
N 4 - 4
o | , R
’ i -
0.1 B //ﬁ ! “
4 . -
4
[ e
0.0

0 500 1000 1500 2000 2500
Heralded single photon rate (Hz)

« g%(0) is a measure of level of
multi-photon noise




N Are our photons indistinguishable?

Hong-Ou-Mandel interference

4—photon coincidence

60 ¢ 4-fold measurement result
- - - Fitting curve (4-fold)
50
2 3
40 -{-o_ | | o 4 Ll-F--
4-fold coincidence -

(per hour) 30

Preliminary results 20 |l
10 . L Visibility =90%

0
-60 40 -20 6 20 40 60

Delay (ps)
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Convergence

RICHARD et al.: ONLINE PREDICTION OF TIME SERIES DATA WITH KERNELS

10 T T T T T

—— KNLMS

SSp NORMA
i KAPp=2

mean-square €rror

10 F

KAP,_3 — KRLS

0 500 1000 . 1500 2000 2500 3000
1teration

Fig. 2. Learning curves for KAP, KNLMS, SSP, NORMA and KRLS obtained by averaging over 200 experiments.

64



