Architectures for the FPGA
Implementation of Online Kernel Methods

Philip Leong | Computer Engineering Laboratory
School of Electrical and Information Engineering,
The University of Sydney

THE UNIVERSITY OF

< SYDNEY Computer Engineering Laboratory

» Focuses on how to use parallelism to solve demanding problems

- Novel architectures, applications and design techniques using VLSI, FPGA and
parallel computing technology

» Applications
- Computational Finance
- Signal Processing

- Nanoscale Interfaces

Overview

> Motivation

> Kernel methods

Vector processor

Pipelined
Braided
Distributed

» Conclusion

THE UNIVERSITY OF

SYDNEY

Motivation (latency)

How to beat other people to the money (latency)

» Low latency trading looks to trade in transient situations where market
equilibrium disturbed

- 1ms reduction in latency can translate to $100M per year

Market

Trader Exchange
Data |

Trader

» Latency also important: prevent blackouts due to cascading faults, turn off
machine before it damages itself, etc

Information Week: Wall Street's Quest To Process
Data At The Speed Of Light

THE UNIVERSITY OF

SYDNEY

Exablaze Low-Latency Products

ExaLINK Fusion 48 SFP+ port layer
2 switch for replicating data typical 5
ns fanout, 95 ns aggregation, 110 ns
layer 2 switch

Xilinx Ultrascale FPGA, QDR SRAM,
ARM processor

Motivation (latency)

ExaNIC X10 typical raw frame
latency 60 bytes 780 ns

What we can’t do: ML with this
type of latency

Source: exablaze.com

THE UNIVERSITY OF

SYDNEY Motivation (throughput)

» Ability to acquire data improving (networks, storage, ADCs, sensors,

computers)
- e.g. hyperspectral satellite images, Big Data e.g. SIRCA has 3PB of historical
trade data

» Significant improvements in ML algorithms

- Deep learning (model high-level abstractions in data) for leading image and voice
recognition problems; support vector machines to avoid overfitting

0.4pm Components of spectrum

1.4pm . o

1.9 pm Vegetation :

25pm ¢

g Background soil
ot ' m’;::::::?slum the +
: 0 eormornetiontin| SRR What we can’t do: learning with
§ i A * Alteration mineral .
s ; this data rate
- .. 0

Manmade material

>
e Wavelength (pm) ol

THE UNIVERSITY OF

SYDNEY

EPIC Technology Needed

» To provide ML algorithms with higher throughput and lower latency we
need

- Low Energy — so power doesn’t become a constraint, operate off batteries
(satellite and mobile)

- Parallelism — so we can reduce latency and increase throughput

- Interface — so we don’t need to go off-chip which reduces speed and increases
energy

- Customisable — so we can tailor entire design to get best efficiency

» Using FPGASs, develop improved algorithms and system
implementations for ML

Overview

)

> Kernel methods

THE UNIVERSITY OF

SYDNEY

THE UNIVERSITY OF

SYDNEY

Linear Techniques

» Linear techniques extensively studied
» Solution has formy =w'x + b

- Use training data x to get maximum likelihood estimate of w or a posterior
distribution of w

> Pros
- Sound theoretical basis
- Computationally efficient
» Cons
- Linear!

» There is an equivalent dual representation

f(x)=(wx)+b="> oplxix) +b

e.g. Max Margin Hyperplane

(Vapnik and Chervonenkis, 1964)

.1
min 5lvl

subject to y;(w-x; +b) > 1,7 € [1,m)].

w9 SYDNEY

What do we do if given this problem?

» Map the problem to a feature space

11

% THE UNIVERSITY OF

SYDNEY

Mapping to a Feature Space

Input Space Feature Space

» Choose high dimensional feature space (so easily separable)
» BUT computing @ is expensive!

THE UNIVERSITY OF

SYDNEY

Kernel Trick

» Kernel is a similarity function
- defined by an implicit mapping ¢, (original space to feature space)
K(x,x") = ¢(x)" p(x") = (p(x),p(x"))
- e.g. Linear kernel k(x,x")=<xx">
- e.g. Polynomial kernel k(x,x)=(1+<xx">)d for d=2: ¢(X) = (X412, X,2, V2X{X,)

— |2
- e.g. Gaussian kernel (universal approximator) k(x,x") = exp <_ ||x2 J;H)
g

- d(x) infinite in dimension!

» Modify linear ML techniques to kernel ones by replacing dot products
with the kernel function (kernel trick)

- e.g. linear discriminant analysis, logistic regression, perceptron, SOM, K-means,
PCA, ICA, LMS, RLS, ...

- While we only describe prediction here, also applied to training equations

13

THE UNIVERSITY OF

SYDNEY

- Support Vector Machine

\/

. X = ¢(x)
e The decision boundary:

wWix+w, = zdi.)’i(xiTx)+ b K(X, X') = (p(x)T(p(X')

ieSV

e Classification decision: /
= sien| 36,5, D) FB |

ieSV

Never explicitly compute ®(x), computing K(x,x’) is O(m)
e.g. poly kernel ®(x), dimension (d+m-1)!/d!(m-1)!
For d=6, m=100 this is a vector of length 1.6e9

14

THE UNIVERSITY OF

SYDNEY Approach

» In Kernel-based learning algorithms, problem solving is now decoupled
into:
- A general purpose learning algorithm often linear (well-funded, robustness, ...)

- A problem specific kernel (we focus on time series but kernels exist for text, DNA
sequences, NLP)

Simple (linear) learning
Complex Pattern algorithm
Recognition Tas I

Specific Kernel function

15

THE UNIVERSITY OF

SYDNEY

Online Kernel Methods

Examples are KLMS and KRLS

» Traditional ML algorithms are batch » Our approach: online algorithms

based - Incremental, inexpensive state

- Make several passes through data update based on new data
- Requires storage of the input data - Single pass through the data
- Not all data may be available initially - Can be high throughput, low latency

Not suitable for massive datasets

Universal

Streaming > Prediction

inputs x, Approximator

+

Modify 5
N weights)
Yi

16

THE UNIVERSITY OF

SYDNEY

Kernel Online Algorithms

Two extensively studied types of online kernel methods:

» Kernel Least Mean Squares » Kernel recursive least squares
(KLMS) (KRLS)
- O(N) - O(N?)

Converges slowly (steepest descent) Converges quickly (Newton

Raphson)

Takes a ‘step’ towards minimising the

instantaneous error Directly calculates least squares

e.g. KNLMS, NORMA solution base_d on previous trglnlng
examples using Matrix Inversion
Lemma (matrix-vector multiplication)

e.g. SW-KRLS

Overview

Vector processor

THE UNIVERSITY OF

SYDNEY

THE UNIVERSITY OF

SYDNEY

*

The pseudo code of the SW-KRLS
algorithm

Initialize K, =(1+¢)and K;'=I/(1+¢).

for n=1.2.. do
Get K, from K, withEq.(1)
Calculate IZ';_II with Eq.(2)
Get K, with Eq.(3)
Calculate X' with Eq.(4)
Get the updated solution @, = K'Y,
end for

Computation complexity: O(N2).

SW-KRLS Algorithm

. K k (x
K = n-1 n(n) (1)
kn(xn)T k +c

-l [K;ll(l +bb"K; Tg) -K,!bg
" —(K;1:b)g g (2)

where b=Fk ,(x,) d=k,+c g=(d-bKb)"

W h ere p = [k(xn—N > xn—.-V-I)> R k(xn—.v\«'v xn—l)]T

L
Ko=6-—"- (4)

where g-i_| € fr
n f G

THE UNIVERSITY OF

SYDNEY

Vectoradd C=A+B

» Microprocessor O(N) cycles » Vector processor O(1) cycle

for (i=0;i < N; i++) VADD(C, A, B)
Cli] = Ali] + BI[i[;

» Implemented as a custom KRLS
vector processor using FPGA
technology

20

THE UNIVERSITY OF

== SYDNEY Instruction Set

ALL i, jAND L INDEXES RANGE FROM 1 TO N

Microcode (Opcode) m Total Cycles

NOP(000) No operation 1
BRANCH (0111) BRANCH 4
VADD (0001) Vector add 14
VSUB (0010) Vector subtract 14
VMUL (0011) Array multiply 10
VDIV (0100) Vector divide N+28
VEXP (0110) Vector exponentiation N+21
S2VE (1000) Clone a vector N times N+4
PVADD (1001) N x Vector add N+13
PVSUB (1010) N x Vector subtract N+13
PVMUL (1011) N x Vector multiply N+9
PVDOT (0101) N x Vector dot product N+9+10

SW-KRLS and other kernel methods implemented
efficiently using this simple instruction set

21

THE UNIVERSITY OF

==y SYDNEY

: Datapath

Vector
C
/I
C
7~ Data
Control
Unit
C
/I

22

THE UNIVERSITY OF

SYDNEY

ALU architecture

» ALU 1 - adder, multiplier, exp and divider
> ALU 2 .. ALU N - only adder and multiplier

—> A
3B . Adder/ EIVADDNSUB QA) xp ElVEXP @E_) e VADD/VSUB
——L>| Subtractor ——>| Subtractor El

QA QA VDIV
VMUL 22

0B b1 > g | Divider b~
>

23

THE UNIVERSITY OF

SYDNEY

Detailed Datapath

I N
NOP Q- ===- I : Mo
op I Vector Memory | I AN
v oo | l_z_A_L_U____}_, Ty
i I Lz % N
Vector A 1| Vector Memory 0 1 ’ 1| ALUO | A
ADDR I L s i
1 7 » : |
/l :.. e = I: ————— | B ———— =a]
16 I] A # : |
Vector B :i Vector Memory 1| ! ;1 ALU1 : //
L 1 1
BADD/RR R Microcode AD,DR J:_ ______ L 4 'Ir_ !
7 ADDR , 7 DT T ST !
16 Program ya o Microcode 16 I ~ 5 1
BZ Counter / e Memory I I 7 | . Data .
16 CS 1 " (1 Alignment Unit
ya [
7 " I I :
VDATA | I | I
— e Lo e |
1
I 1 2 3 il
VADDR ! 7 Hl
7(_4: Vector Memory n : , .Il ALUN -:+I
! 11
! (e I :1[_________ yos |
QR 1 I | R
N _ 1 1 Pid
=T = 1 7
L '

24

THE UNIVERSITY OF

SYDNEY

Performance Summary

» SW-KRLS N=64

m Power (W) Latency (uS) Energy (107-5 J)

Our processor 2 (27) 1 (12.6) 1(34)
(DE5 5SGXEAT7N)

DSP 1(13) 355 (4476) 181 (6167)
(TMS320C6678)

CPU 1(13) 16 (201) 8 (269)

(i5-2400@3.1GHz)

25

THE UNIVERSITY OF

SYDNEY

Conclusion

» Microcoded vector processor for the acceleration of kernel based machine
learning algorithms.

» Architecture is optimised for dot product, matrix-vector multiplication and
kernel evaluation.

» Features simplicity, programmability and compactness.

26

Overview

Pipelined

THE UNIVERSITY OF

SYDNEY

THE UNIVERSITY OF

SYDNEY

Obstacle to Pipelining

Dependency Problem

Cannot process
X; until we update weights
from {x;.1,¥;.1}

LJniversel

. —> Prediction
Approximetor

Streaming —
inputs X;

+

Modify 3
S weights vl -

28

KNLMS Regression

» Finds D (dictionary which is subset of input vectors), and a (weights) for

function D
f(x) = Zam(az,di)
i=1

» Is a stochastic gradient descent style kernel regression algorithm. Given a
new input/output pair, {x,, y,}, weight update is:

» 1. Evaluate k between x,, and each entry of D, _,, creating kernel vector, k.

» 2. If max(k) < y,, add x,, to the dictionary, producing D,
» 3. Update the weights using:

n T
a = +———— ~-k'a)k
n n-1 €+ka (yn n—l)

» How can we chose K, Jy, N and €? We must do a parameter search.

29

THE UNIVERSITY OF

SYDNEY

Removing Dependencies

» Training is usually: » Our approach: run L independent
problems (different parameters) in

for (hyperparameters) the pipeline

for (inputs) - Updates ready after L subproblems

learn_model() - Less data transfer

» Alternative is to find L independent
problems

- E.g. monitor L different things for (inputs)
for (hyperparameters)

learn_model()

« Similar approach for multiclass classification (train C(C-1)/2 binary classifiers)

30

Example S\
O

Parameters

THE UNIVERSITY OF

==y SYDNEY

: High Throughput KNLMS

i = max(|k|)

K(x, %;) = e Ix-%ill -, ;
Vie{l,...‘N} D,_{[1—1.X] 1< Jug

D;_, otherwise

Model (in) :'l.'.'-".'.'.'.'.'.'.'.'_'.'.'.'.'.'.' Model (out)
oo\ Sl ~
odn s]
a Kernel
Training - = Modules .
\ T Prediction
Yy ! '
C 1
] - : : i
oY\ | i I [RERREREEE S o (aUpdate) |
C Tl ... »
8 .. .

31

% THE UNIVERSITY OF

SYDNEY

Scalability

» Area O(MN)
> Memory O(MN)
» Latency O(log,N+log,M)

+ (11) X (7) / (30) | exp (20) < (4)
Operation M N+
2MN + 2N AN + 1 1 N N -1
Latency logo N+
log, M + 3 5 1 1 log, N

32

THE UNIVERSITY OF

SYDNEY

Implementation

» Break feedforward/feedback path and sythesised with Vivado HLS
» RIFFA 2.2.0 used for PCle interface

PCle J
FIFO |- Serial to‘] ! ! T
Parallel .J KNLMS
Host Param. :| ¢ e |
— Memoryq
FSM [
D,a
g Memory | ® r

FPGA card

33

THE UNIVERSITY OF

SYDNEY

Performance

Core with input vector M=8 and dictionary size N=16 (KNLMS)

Implementation | Freq Time
(MHz) (ns)

Float

System 250 14 4
Naive 97 7,829 2,462
CPU (C) 3,600 940 296
Pang et al (2013) 282 1,699 566

» Energy efficient, Parallelism (pipelining), Integrated with PCle and Customised
(problem changed to remove dependencies)

» Can do online learning from 200 independent data streams at 70 Gbps (160
GFLOPS)

34

THE UNIVERSITY OF

SYDNEY

Summary

» Demonstrated feasibility of a fully-pipelined regression engine

- 200-stage pipeline achieves much higher performance than previous designs

- 160 GFLOPS (70x speedup to CPU and 660x faster than our previous
microcoded KRLS processor)

» Also studied a fused, fixed-point floating point design details in paper

» First such processor which can keep up with line speeds

- Believe this is enabling technology for real-time ML applications

35

Overview

Braided

THE UNIVERSITY OF

SYDNEY

Naive Online regularised Risk Minimization Algorithm

» Finds D (dictiona

is subset of input vectors), and a (weights) for

functio

» Minimise instantaneous risk of predictive error (R ,) by taking a step in
direction of gradient

ft—l—l = ft — ’T]tafRinst,A[fa Tt41, yt+1] f=f
=Jt

» Can be used for classification, regression, novelty detection
» Update for novelty detection
(aia at, ,0) — {

(Qa;,0,p +nv) if f(x¢) > p Add x,,, to dictionary
(Qaj,n, p—n(1 — v)) otherwise

37

w9 SYDNEY

Datapath for NORMA

New Example

D
X Weights f(z) = Z a;k(z,d;)
; } ~ = =

d —| k() — *a

d2 —P K‘,(-,-) —Ppp| XD

2. = f(x)

Dictionary
AN

38

NORMA Update (Case 1)

() (Qa;j,0,p + nv) if f(x¢) > p Add x,, to dictionary
Qj, Oty P) = .
np (Qaj,m, p—n(1 — v)) otherwise

New Example

Xt+1 Weights
l —
(Xt P h:(-,) — kOt
di —» k() ¥ *Qoa

> = f(xe+1)

Dictionary
AN

dp_1H—» h:(-,) — xQap_1

=) SYDNEY NORMA Update (Case 2)

() (Qa;j,0,p + nv) if f(x¢) > p Add x,, to dictionary
Qj, Oty P) = .
np (Qaj,m, p—n(1 — v)) otherwise

New Example

Weights

e _¢ —

di —» k() > Qo

do —»{ k() > xQao

> = f(xe+1)

Dictionary
AN

dp —» (-, ") » Qo p

40

THE UNIVERSITY OF

SYDNEY

Properties of NORMA

» NORMA is a sliding window algorithm

- If new dictionary entry added [d,,"--dp] — [X,,d4,""-dp_4]

- Weight update is just a decay o, — Qaq,

- Update cost is small compared to computing f(x,)

> Is this really true?

Cannot process
X; until we update weights
from {X._,Y;.1}

Streaming — IR Prediction
inputs X, {\pproximator

41

THE UNIVERSITY OF

==y SYDNEY

*

» Recall carry select adder

- implement both cases in parallel and select output

A3/B3 A1/B1

0 (Cin)

42

Braiding

D
f(xt+1) =) ai"‘?(Xt+1, di)
i=1

Use the previous dictionary for x; denoted d;
D—1 A

f(xt+1) = >, Q&ik(x¢y1,d;)+something
i=1

if x; is added then this term = ax, k(X¢+1, X¢)
if x; is not added then this term = Qa/pr(x¢11, dAD)

43

THE UNIVERSITY OF

SYDNEY

D-1

Z d\i’{'(xH—la 8/) QADK;(XH_]_, dAD)
i=1

Braiding Datapath

.

Y

Q

¥\

+

v

/

|

Mux [«

!

\4 ’/ft 1(xt) < p

fe(Xes1)

New Term

Partial Sum
Old Term

New Term Old Term

44

THE UNIVERSITY OF

SYDNEY

(fO if Xt4+1—p is not added

>QP_1axt+1_pn(xt+1,xt+1_p) otherwise
0 if xt42—p is not added

) .
q < \QP Qxyp_, K(Xe41, Xe42—p) Otherwise

0 if x¢ is not added
Qix, (Xt 41, X¢) otherwise
D—q

+ > QPGik(xes1,d;)
i=D—p+1

Generalised to p cycles

Pipeline (p cycles)

m; = k(d;, x;)
(k cycles)
I

ft(Xt+1) =

D
> aijmj (s cycles)

i=1
v
[a(fe(xe41)) }

(1 cycle)
> |
[
> |

45

THE UNIVERSITY OF

SYDNEY

Implementation

» Implemented in Chisel

» On XC7VX485T- 2FFG1761C achieves ~133 MHz

» Area O(FDB?) (F=dimensionality of input vector), time complexity O(FD)
» Speedup 500x compared with single core CPU i7-4510U (8.10 fixed)

Frequency (MHz) 133 138

DSPs (/2,800) 309 514 911 1,679 2,556
Slices (/759,000) 4615 8194 14,663 29,113 46,443
Latency (cycles) 10 11 12 12 13
Speedup (x) 47 91 178 344 509

Latency reduction (x) 4.69 8.30 14.9 28.7 39.2

46

THE UNIVERSITY OF

SYDNEY

Comparison of Architectures

» Core with input vector F=8 and dictionary size D=16

Latency | T.put | Latency | T.put
Cycles Cycles nS nS

Vector Single 1,699 1,699
KNLMS
Pipelined Single 314 207 1 659 3.2
KNLMS
Braided 8.10 113 10 1 89 8.8
NORMA

Open source (GPLv2): github.com/da-steve101/chisel-pipelined-olk

THE UNIVERSITY OF

SYDNEY

Summary

» Braiding: rearrangement of a sliding window algorithm for hardware
implementations

- NORMA used but other ML algorithms possible
» Compared with pipelined KNLMS,
- 20x lower latency at 1/3 of the throughput

» Open source (GPLv2): github.com/da-steve101/chisel-pipelined-olk

48

Overview

Distributed

THE UNIVERSITY OF

SYDNEY

Distributed KRLS

Distributed KRLS

» One problem with KRLS is how to get scalable parallelism

» Proposed a method, which uses KRLS (Engel et al. 2004) to create
models on subsets of the data.

» These models can then be combined using KRLS again to create a single
accurate model

> We have shown an upper bound on the error introduced
/ KRLS 5

1,91

X1|| Y1 \

Xo| [Vo= KR LS |22

Dy,ay
X Y\ KRLS

D,a

KRLS —

50

THE UNIVERSITY OF

SYDNEY

Distributed KRLS Vs Cascade SVM

» Accuracy comparison

257

MSE

0.5}

0.1

L5}

x 107 MG Test Error
.- CSVM
-+ DistKRLS
- — =4
'
I/
v
R
!,_-——-"! F--F- -F- - ... 3 ,!-
1 8 64 256 1024

Number of Splits

Number of SVs/DVs

70000

10000 ¢

1000 ¢

100

Accuracy

MG Model Size
—+— CSVM
+ - DistKRLS
1 8 64 256 1024
Number of Splits

51

THE UNIVERSITY OF

SYDNEY

Distributed KRLS Vs Cascade SVM

» Average Speedup about 20x on a 16 node cluster

25000

2500 |

Time(s)

Mackey—Glass Tra1n1ng Time

125}

N . CSVM
N ~+ DistkRLS |
\.
\
o
. B
=
e
$ - *
1 8 64 256 1024

Number of Splits

7500

1250 ¢

Time(s)

50¢

10

Madelon Training Time

250t

— CSVM
- DistKRLS |

1 8 64 256 1024
Number of Splits

52

Overview

»y Conclusion

THE UNIVERSITY OF

SYDNEY

THE UNIVERSITY OF

SYDNEY

Conclusion

» Demonstrated high-performance applications in ML

M

NORMA
1/Latency .
KNLMS
Vector *
. dKRLS
s
Throughput

» Machines of the future will need to interpret and process data using ML
- FPGAs are a key enabling technology for energy-efficient, fast implementations

- Alot more to do!

THE UNIVERSITY OF

SYDNEY

References

» Stephen Tridgell, Duncan J.M. Moss, Nicholas J. Fraser, and Philip H.W.
Leong. Braiding: a scheme for resolving hazards in NORMA. In Proc.

International Conference on Field Programmable Technology (FPT), page to
appear, 2015.

» Nicholas J. Fraser, Duncan J.M. Moss, JunKyu Lee, Stephen Tridgell, Craig T.
Jin, and Philip H.W. Leong. A fully pipelined kernel normalised least mean
squares processor for accelerated parameter optimisation. In Proc.
International Conference on Field Programmable Logic and Applications
(FPL), page to appear, 2015.

» Nicholas J. Fraser, Duncan J.M. Moss, Nicolas Epain, and Philip H.W. Leong.
Distributed kernel learning using kernel recursive least squares. In Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5500-5504, 2015.

» Yeyong Pang, Shaojun Wang, Yu Peng, Nick Fraser, and Philip H.W. Leong. A
low latency kernel recursive least squares processor using FPGA technology.
In Proc. International Conference on Field Programmable Technology (FPT),
pages 144-151, 2013.

Thank you!

Philip Leong (philip.leong@sydney.edu.au)

THE UNIVERSITY OF

SYDNEY http://www.ee.usyd.edu.au/~phwl

THE UNIVERSITY OF

SYDNEY Australian Institute for Nanoscale
Science and Technology (AINST)

v

Type A, B and C Laboratories

v

Temperature: £ 0.1 Degree (Type A)to £ 0.5
Degree (Type C)

Humidity: £ 5% (Type A) to £ 10% (Type C)
Vibration: VCE (Type A) to VCB (Type C)
EMI: 0.3mGp-p (Type A) to 3mGp-p (Type C)

v

v

v

57

THE UNIVERSITY OF

SYDNEY

“Pure and Bright” Photon Source

» Photons a vital resource for the implementation of quantum computing and
key distribution

- Key enabling block are photon sources

» Our approach: generate correlated photon pairs where one “heralds”
existence of partner

- excellent spatial-temporal-spectral properties but y << 71

- for n probability of successful photon-photon interaction scales as y” and
becomes impractically small (record is n=8)

» This work: increase u

58

THE UNIVERSITY OF

=5 SYDNEY Temporal multiplexing

/ /
/ /
/ T ,
/ €< /
4 - e 7
. / * * e * . /
' '
.0 O ’ A '0 / .o. .o. .0 o4 ' /
. / . /
. / . ,
.' M 0 : \ .0 / s ' N .. { | ’
‘ s
' 4 T
/ /
o N - e - - - — O ’
- '. / I
/ 7
o / ,
time / /

59

Challenges with Temporal Multiplexing

Precisely synchronizing photons clocks
Managing their arrival time to the accuracy of several picoseconds

Controlling their polarization

s N~

Ultra-low loss components so this is achieved while maintaining
photons’ indistinguishability (in frequency, temporal and polarization
degrees of freedom)

Obstacles since temporal multiplexing proposed by Mower (2011)

J. Mower Phys. Rev .A 84, 052326 (2011) 60

THE UNIVERSITY OF

SYDNEY

[
| FPGA(Field Programmable Gate Array)
| 4x10MHz Output(Switch)
| Phase1
Q1

| 000
Counter .

Q3 Ll - 50ns 011
Phased B 250 110

LUT(Look up Table)

LRSSy, ISR LI I IInae.

Output photon
® o

11
Penod 100ns

W KN K W

AWG Switch1 25 Switch2 99" Switch3

Period 100ns

Are our photons single?

SYDNEY

*

g4(0) measurement

H NO MUX
05 ® MUX
. ! - - = Fitting curve (NO MUX)
E’, - - - Fitting curve (MUX)
0.4} ‘ g
// - E
E= [E' §)
-
(/2] 03 B //
|] e
S : t
=0.2} 1 -
N 4 - 4
o | , R
’ i -
0.1 B //ﬁ ! “
4 . -
4
[e
0.0

0 500 1000 1500 2000 2500
Heralded single photon rate (Hz)

« g%(0) is a measure of level of
multi-photon noise

N Are our photons indistinguishable?

Hong-Ou-Mandel interference

4—photon coincidence

60 ¢ 4-fold measurement result
- - - Fitting curve (4-fold)
50
2 3
40 -{-o_ | | o 4 Ll-F--
4-fold coincidence -

(per hour) 30

Preliminary results 20 |l
10 . L Visibility =90%

0
-60 40 -20 6 20 40 60

Delay (ps)

THE UNIVERSITY OF

SYDNEY

Convergence

RICHARD et al.: ONLINE PREDICTION OF TIME SERIES DATA WITH KERNELS

10 T T T T T

—— KNLMS

SSp NORMA
i KAPp=2

mean-square €rror

10 F

KAP,_3 — KRLS

0 500 1000 . 1500 2000 2500 3000
1teration

Fig. 2. Learning curves for KAP, KNLMS, SSP, NORMA and KRLS obtained by averaging over 200 experiments.

64

