Architectures for the FPGA Implementation of Online Kernel Methods

Philip Leong | Computer Engineering Laboratory School of Electrical and Information Engineering, The University of Sydney

Computer Engineering Laboratory

- > Focuses on how to use parallelism to solve demanding problems
 - Novel architectures, applications and design techniques using VLSI, FPGA and parallel computing technology
- > Applications
 - Computational Finance
 - Signal Processing
 - Nanoscale Interfaces

Overview

- Motivation
- > Kernel methods
 - Vector processor
 - Pipelined
 - Braided
 - Distributed
- Conclusion

How to beat other people to the money (latency)

- Low latency trading looks to trade in transient situations where market equilibrium disturbed
 - 1ms reduction in latency can translate to \$100M per year

 Latency also important: prevent blackouts due to cascading faults, turn off machine before it damages itself, etc

> Information Week: Wall Street's Quest To Process Data At The Speed Of Light

Motivation (latency)

Exablaze Low-Latency Products

ExaLINK Fusion 48 SFP+ port layer 2 switch for replicating data typical 5 ns fanout, 95 ns aggregation, 110 ns layer 2 switch

Xilinx Ultrascale FPGA, QDR SRAM, ARM processor

ExaNIC X10 typical raw frame latency 60 bytes 780 ns

What we can't do: ML with this type of latency

Source: exablaze.com

- Ability to acquire data improving (networks, storage, ADCs, sensors, computers)
 - e.g. hyperspectral satellite images, Big Data e.g. SIRCA has 3PB of historical trade data
- > Significant improvements in ML algorithms
 - Deep learning (model high-level abstractions in data) for leading image and voice recognition problems; support vector machines to avoid overfitting

What we can't do: learning with this data rate

- To provide ML algorithms with higher throughput and lower latency we need
 - Low Energy so power doesn't become a constraint, operate off batteries (satellite and mobile)
 - **P**arallelism so we can reduce latency and increase throughput
 - Interface so we don't need to go off-chip which reduces speed and increases energy
 - **C**ustomisable so we can tailor entire design to get best efficiency

 Using FPGAs, develop improved algorithms and system implementations for ML

Overview

> Motivation

> Kernel methods

- Vector processor
- Pipelined
- Braided
- Distributed
- > Conclusion

Linear Techniques

- > Linear techniques extensively studied
 - > Solution has form $y = w^T x + b$
 - Use training data x to get maximum likelihood estimate of w or a posterior distribution of w
- > Pros
 - Sound theoretical basis
 - Computationally efficient
- Cons
 - Linear!
- > There is an equivalent dual representation

$$f(x) = \langle w, x \rangle + b = \sum o_i y_i \langle x_i, x \rangle + b$$

e.g. Max Margin Hyperplane

What do we do if given this problem?

> Map the problem to a **feature space**

Mapping to a Feature Space

Input Space

Feature Space

- Choose high dimensional feature space (so easily separable)
- > BUT computing Φ is expensive!

Kernel Trick

- > Kernel is a similarity function
 - defined by an implicit mapping ϕ , (original space to feature space)

$$\kappa(x,x') = \phi(x)^T \phi(x') = \left\langle \phi(x), \phi(x') \right\rangle$$

- e.g. Linear kernel κ(x,x')=<x,x'>
- e.g. Polynomial kernel $\kappa(x,x')=(1+\langle x,x'\rangle)^d$ for d=2: $\phi(x) = (x_1^2, x_2^2, \sqrt{2x_1x_2})$
- e.g. Gaussian kernel (universal approximator) $k(x, x') = \exp\left(-\frac{\|x x'\|^2}{2\sigma^2}\right)$
 - $\Phi(x)$ infinite in dimension!
- Modify linear ML techniques to kernel ones by replacing dot products with the kernel function (kernel trick)
 - e.g. linear discriminant analysis, logistic regression, perceptron, SOM, K-means, PCA, ICA, LMS, RLS, …
 - While we only describe prediction here, also applied to training equations

Support Vector Machine

• The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i(\mathbf{x}_i^T \mathbf{x}) + \mathbf{b}$$

$$\hat{y} = \operatorname{sign}\left[\sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + b\right]$$

$$K(\mathbf{x}, \mathbf{x}') = \boldsymbol{\varphi}(\mathbf{x})^T \boldsymbol{\varphi}(\mathbf{x}')$$

 $\mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})$

Never explicitly compute $\Phi(x)$, computing K(x,x') is O(m) e.g. poly kernel $\Phi(x)$, dimension (d+m-1)!/d!(m-1)! For d=6, m=100 this is a vector of length 1.6e9

- In Kernel-based learning algorithms, problem solving is now decoupled into:
 - A general purpose learning algorithm often linear (well-funded, robustness, ...)
 - A problem specific kernel (we focus on time series but kernels exist for text, DNA sequences, NLP)

Examples are KLMS and KRLS

THE UNIVERSITY OF

- Traditional ML algorithms are batch based
 - Make several passes through data
 - Requires storage of the input data
 - Not all data may be available initially
 - Not suitable for massive datasets

- > Our approach: online algorithms
 - Incremental, inexpensive state update based on new data
 - Single pass through the data
 - Can be high throughput, low latency

Kernel Online Algorithms

Two extensively studied types of online kernel methods:

- Kernel Least Mean Squares (KLMS)
 - O(N)
 - Converges slowly (steepest descent)
 - Takes a 'step' towards minimising the instantaneous error
 - e.g. KNLMS, NORMA

- Kernel recursive least squares (KRLS)
 - O(N²)
 - Converges quickly (Newton Raphson)
 - Directly calculates least squares solution based on previous training examples using Matrix Inversion Lemma (matrix-vector multiplication)
 - e.g. SW-KRLS

Overview

- > Motivation
- > Kernel methods
 - Vector processor
 - Pipelined
 - Braided
 - Distributed
- > Conclusion

SW-KRLS Algorithm

The pseudo code of the SW-KRLS algorithm

Initialize $K_0 = (1+c)I$ and $K_0^{-1} = I/(1+c)$. for n=1,2.. do Get \tilde{K}_n from K_{n-1} with Eq.(1) Calculate \tilde{K}_{n-1}^{-1} with Eq.(2) Get K_n with Eq.(3) Calculate K_n^{-1} with Eq.(4) Get the updated solution $\alpha_n = K_n^{-1}Y_n$ end for

Computation complexity: O(N²).

$$\tilde{K}_{n} = \begin{bmatrix} K_{n-1} & k_{n}(x_{n}) \\ k_{n}(x_{n})^{T} & k_{m} + c \end{bmatrix}$$
(1)

$$\hat{\mathbf{K}}_{n}^{-1} = \begin{bmatrix} \mathbf{K}_{n-1}^{-1} (\mathbf{I} + \mathbf{b} \mathbf{b}^{T} \mathbf{K}_{n-1}^{-1T} g) & -\mathbf{K}_{n-1}^{-1} \mathbf{b} g \\ -(\mathbf{K}_{n-1}^{-1} \mathbf{b})^{T} g & g \end{bmatrix}$$
(2)

where
$$b = k_{n-1}(x_n) \quad d = k_{nn} + c \quad g = (d - b^T K_{n-1}^{-1} b)^{-1}$$

$$K_n = \begin{bmatrix} k_{n-N,n-N} + c & p^T \\ p & \tilde{K}_{n-1} \end{bmatrix}$$
(3)

where $p = [k(x_{n-N}, x_{n-N+1}), ..., k(x_{n-N}, x_{n-1})]^T$

$$K_n^{-1} = G - \frac{ff^T}{e}$$
where $\tilde{K}_n^{-1} = \begin{bmatrix} e & f^T \\ f & G \end{bmatrix}$
(4)

Vector add C = A + B

> Microprocessor O(N) cycles

for (i = 0; i < N; i++) C[i] = A[i] + B[i]; > Vector processor O(1) cycle

VADD(C, A, B)

 Implemented as a custom KRLS vector processor using FPGA technology

Instruction Set

ALL i , J AND L INDEXES RANGE FROM 1 TO N

Microcode (Opcode)	Function	Total Cycles
NOP(000)	No operation	1
BRANCH (0111)	BRANCH	4
VADD (0001)	Vector add	14
VSUB (0010)	Vector subtract	14
VMUL (0011)	Array multiply	10
VDIV (0100)	Vector divide	N+28
VEXP (0110)	Vector exponentiation	N+21
S2VE (1000)	Clone a vector N times	N+4
PVADD (1001)	N x Vector add	N+13
PVSUB (1010)	N x Vector subtract	N+13
PVMUL (1011)	N x Vector multiply	N+9
PVDOT (0101)	N x Vector dot product	N+9+10

SW-KRLS and other kernel methods implemented efficiently using this simple instruction set

ALU 1 - adder, multiplier, exp and divider

Detailed Datapath

Performance Summary

> SW-KRLS N=64

Platform	Power (W)	Latency (uS)	Energy (10^-5 J)
Our processor (DE5 5SGXEA7N)	2 (27)	1 (12.6)	1 (34)
DSP (TMS320C6678)	1 (13)	355 (4476)	181 (6167)
CPU (i5-2400@3.1GHz)	1 (13)	16 (201)	8 (269)

- Microcoded vector processor for the acceleration of kernel based machine learning algorithms.
- Architecture is optimised for dot product, matrix-vector multiplication and kernel evaluation.
- > Features simplicity, programmability and compactness.

Overview

- > Motivation
- > Kernel methods
 - Vector processor
 - Pipelined
 - Braided
 - Distributed
- > Conclusion

Obstacle to Pipelining

Dependency Problem

- > Finds D (dictionary which is subset of input vectors), and α (weights) for function $f(x) = \sum_{i=1}^{D} \alpha_i \kappa(x, d_i)$
- Is a stochastic gradient descent style kernel regression algorithm. Given a new input/output pair, {x_n, y_n}, weight update is:
- > 1. Evaluate κ between x_n and each entry of D_{n-1} , creating kernel vector, k.
- > 2. If max(k) < μ_0 , add x_n to the dictionary, producing D_n
- > 3. Update the weights using:

$$\alpha_n = \alpha_{n-1} + \frac{\eta}{\varepsilon + k^T k} (y_n - k^T \alpha_{n-1}) k$$

) How can we chose κ, μ_0 , η and ε? We must do a parameter search.

Removing Dependencies

- Training is usually:
 for (hyperparameters)
 for (inputs)
 learn_model()
- Alternative is to find L independent problems
 - E.g. monitor L different things

- Our approach: run L independent problems (different parameters) in the pipeline
 - Updates ready after L subproblems
 - Less data transfer

```
for (inputs)
for (hyperparameters)
learn_model()
```

• Similar approach for multiclass classification (train C(C-1)/2 binary classifiers)

High Throughput KNLMS

- > Area O(MN)
- Memory O(MN)
- Latency O(log₂N+log₂M)

	+ (11)	× (7)	/ (30)	exp (20)	< (4)
Operation	2MN + 2N	MN+ 4N+1	1	N	N-1
Latency	$\frac{\log_2 N +}{\log_2 M + 3}$	5	1	1	$\log_2 N$

- > Break feedforward/feedback path and sythesised with Vivado HLS
- > RIFFA 2.2.0 used for PCIe interface

Performance

Core with input vector M=8 and dictionary size N=16 (KNLMS)

Implementation	Freq (MHz)	Time (ns)	Slowdown	
Float	314	3	1	
System	250	14	4	
Naive	97	7,829	2,462	
CPU (C)	3,600	940	296	
Pang et al (2013)	282	1,699	566	

- Energy efficient, Parallelism (pipelining), Integrated with PCIe and Customised (problem changed to remove dependencies)
- Can do online learning from 200 independent data streams at 70 Gbps (160 GFLOPS)

- > Demonstrated feasibility of a fully-pipelined regression engine
 - 200-stage pipeline achieves much higher performance than previous designs
 - 160 GFLOPS (70x speedup to CPU and 660x faster than our previous microcoded KRLS processor)
- > Also studied a fused, fixed-point floating point design details in paper
- > First such processor which can keep up with line speeds
 - Believe this is enabling technology for real-time ML applications

Overview

- > Motivation
- > Kernel methods
 - Pipelined
 - Vector processor
 - Braided
 - Distributed
- > Conclusion

NORMA

Naive Online regularised Risk Minimization Algorithm

- > Finds D (dictionary which is subset of input vectors), and α (weights) for function $f(x) = \sum_{i=1}^{D} \alpha_i \kappa(x, d_i)$
- Minimise instantaneous risk of predictive error (R_{inst,λ}) by taking a step in direction of gradient

$$f_{t+1} = f_t - \eta_t \partial_f R_{inst,\lambda}[f, x_{t+1}, y_{t+1}]\Big|_{f=f_t}$$

> Can be used for classification, regression, novelty detection

> Update for novelty detection

$$(\alpha_i, \alpha_t, \rho) = \begin{cases} (\Omega \alpha_i, 0, \rho + \eta \nu) \text{ if } f(x_t) \geq \rho & \text{Add } x_{t+1} \text{ to dictionary} \\ (\Omega \alpha_i, \eta, \rho - \eta(1 - \nu)) & \text{otherwise} \end{cases}$$

Datapath for NORMA

NORMA Update (Case 1)

$$\alpha_{i}, \alpha_{t}, \rho) = \begin{cases} (\Omega \alpha_{i}, 0, \rho + \eta \nu) \text{ if } f(x_{t}) \geq \rho & \text{Add } \mathbf{x}_{t+1} \text{ to dictionary} \\ (\Omega \alpha_{i}, \eta, \rho - \eta(1 - \nu)) \text{ otherwise} \end{cases}$$
New Example
$$\overbrace{\mathbf{x}_{t+1}} & \overbrace{\mathbf{x}_{t+1}} & \overbrace{\mathbf{x}_{t+$$

NORMA Update (Case 2)

$$(\alpha_{i}, \alpha_{t}, \rho) = \begin{cases} (\Omega \alpha_{i}, 0, \rho + \eta \nu) \text{ if } f(x_{t}) \geq \rho & \text{Add } x_{t+1} \text{ to dictionary} \\ (\Omega \alpha_{i}, \eta, \rho - \eta(1 - \nu)) \text{ otherwise} \end{cases}$$
New Example
$$(d_{1} + \kappa(\cdot, \cdot) + \kappa(\cdot,$$

Properties of NORMA

- > NORMA is a sliding window algorithm
 - If new dictionary entry added $[d_1, \cdots d_D] \rightarrow [x_t, d_1, \cdots d_{D-1}]$
 - Weight update is just a decay $\alpha_i \rightarrow \Omega \alpha_i$
 - Update cost is small compared to computing f(x_t)
- Is this really true?

- > Recall carry select adder
 - implement both cases in parallel and select output

Braiding

$$f(x_{t+1}) = \sum_{i=1}^{D} \alpha_i \kappa(x_{t+1}, d_i)$$

Use the previous dictionary for x_t denoted \hat{d}_i

$$f(x_{t+1}) = \sum_{i=1}^{D-1} \Omega \hat{\alpha}_i \kappa(x_{t+1}, \hat{d}_i) + \text{something}$$

if x_t is added then this term $= \alpha_{x_t} \kappa(x_{t+1}, x_t)$ if x_t is not added then this term $= \Omega \alpha_D \hat{\kappa}(x_{t+1}, \hat{d_D})$

Braiding Datapath

Generalised to p cycles

$$\begin{split} f_t(x_{t+1}) &= \sum_{i=1}^{D-p} \Omega^p \hat{\alpha}_i \kappa(x_{t+1}, \hat{d}_i) \\ & = \begin{cases} + \begin{cases} 0 \text{ if } x_{t+1-p} \text{ is not added} \\ \Omega^{p-1} \alpha_{x_{t+1-p}} \kappa(x_{t+1}, x_{t+1-p}) \text{ otherwise} \\ + \begin{cases} 0 \text{ if } x_{t+2-p} \text{ is not added} \\ \Omega^{p-2} \alpha_{x_{t+2-p}} \kappa(x_{t+1}, x_{t+2-p}) \text{ otherwise} \\ \vdots \\ + \begin{cases} 0 \text{ if } x_t \text{ is not added} \\ \alpha_{x_t} \kappa(x_{t+1}, x_t) \text{ otherwise} \end{cases} \\ & + \sum_{i=D-p+1}^{D-q} \Omega^p \hat{\alpha}_i \kappa(x_{t+1}, \hat{d}_i) \end{split}$$

$$m_{i} = \kappa(d_{i}, x_{j})$$
(k cycles)
$$f_{t}(x_{t+1}) =$$

$$\sum_{i=1}^{D} \alpha_{i}m_{i} \text{ (s cycles)}$$

$$\alpha(f_{t}(x_{t+1}))$$
(1 cycle)

Pipeline (p cycles)

THE UNIVERSITY OF SYDNEY

- Implemented in Chisel
- > On XC7VX485T- 2FFG1761C achieves ~133 MHz
- > Area O(FDB²) (F=dimensionality of input vector), time complexity O(FD)
- Speedup 500x compared with single core CPU i7-4510U (8.10 fixed)

F=8, D=	16	32	64	128	200
Frequency (MHz)	133	138	137	131	127
DSPs (/2,800)	309	514	911	1,679	2,556
Slices (/759,000)	4615	8194	14,663	29,113	46,443
Latency (cycles)	10	11	12	12	13
Speedup (×)	47	91	178	344	509
Latency reduction (×)	4.69	8.30	14.9	28.7	39.2

Comparison of Architectures

Core with input vector F=8 and dictionary size D=16

Design	Precision	Freq MHz	Latency Cycles	T.put Cycles	Latency nS	T.put nS
Vector KNLMS	Single	282	479	479	1,699	1,699
Pipelined KNLMS	Single	314	207	1	659	3.2
Braided NORMA	8.10	113	10	1	89	8.8

Open source (GPLv2): github.com/da-steve101/chisel-pipelined-olk

- Braiding: rearrangement of a sliding window algorithm for hardware implementations
 - NORMA used but other ML algorithms possible
- Compared with pipelined KNLMS,
 - 20x lower latency at 1/3 of the throughput

> Open source (GPLv2): github.com/da-steve101/chisel-pipelined-olk

Overview

- > Motivation
- > Kernel methods
 - Pipelined
 - Vector processor
 - Braided
 - Distributed
- > Conclusion

Distributed KRLS

- > One problem with KRLS is how to get scalable parallelism
- Proposed a method, which uses KRLS (Engel et al. 2004) to create models on subsets of the data.
- These models can then be combined using KRLS again to create a single accurate model
 - > We have shown an upper bound on the error introduced

Accuracy

Distributed KRLS Vs Cascade SVM

Accuracy comparison

Distributed KRLS Vs Cascade SVM

> Average Speedup about 20x on a 16 node cluster

Overview

- > Motivation
- > Kernel methods
 - Pipelined
 - Vector processor
 - Braided
 - Distributed
- Conclusion

Conclusion

Demonstrated high-performance applications in ML

- > Machines of the future will need to interpret and process data using ML
 - FPGAs are a key enabling technology for energy-efficient, fast implementations
 - A lot more to do!

- Stephen Tridgell, Duncan J.M. Moss, Nicholas J. Fraser, and Philip H.W. Leong. Braiding: a scheme for resolving hazards in NORMA. In *Proc. International Conference on Field Programmable Technology (FPT)*, page to appear, 2015.
- Nicholas J. Fraser, Duncan J.M. Moss, JunKyu Lee, Stephen Tridgell, Craig T. Jin, and Philip H.W. Leong. A fully pipelined kernel normalised least mean squares processor for accelerated parameter optimisation. In *Proc. International Conference on Field Programmable Logic and Applications (FPL)*, page to appear, 2015.
- Nicholas J. Fraser, Duncan J.M. Moss, Nicolas Epain, and Philip H.W. Leong. Distributed kernel learning using kernel recursive least squares. In *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 5500–5504, 2015.
- Yeyong Pang, Shaojun Wang, Yu Peng, Nick Fraser, and Philip H.W. Leong. A low latency kernel recursive least squares processor using FPGA technology. In *Proc. International Conference on Field Programmable Technology (FPT)*, pages 144–151, 2013.

Thank you!

Philip Leong (philip.leong@sydney.edu.au) http://www.ee.usyd.edu.au/~phwl

Australian Institute for Nanoscale Science and Technology (AINST)

> Type A, B and C Laboratories

- Temperature: ± 0.1 Degree (Type A) to ± 0.5 Degree (Type C)
- Humidity: ± 5% (Type A) to ± 10% (Type C)
- > Vibration: VCE (Type A) to VCB (Type C)
- > EMI: 0.3mGp-p (Type A) to 3mGp-p (Type C)

"Pure and Bright" Photon Source

- Photons a vital resource for the implementation of quantum computing and key distribution
 - Key enabling block are photon sources
- Our approach: generate correlated photon pairs where one "heralds" existence of partner
 - excellent spatial-temporal-spectral properties but $\mu << 1$
 - for *n* probability of successful photon-photon interaction scales as μ^n and becomes impractically small (record is n=8)
- > This work: increase μ

Temporal multiplexing

- 1. Precisely synchronizing photons clocks
- 2. Managing their arrival time to the accuracy of several picoseconds
- 3. Controlling their polarization
- 4. Ultra-low loss components so this is achieved while maintaining photons' indistinguishability (in frequency, temporal and polarization degrees of freedom)

Obstacles since temporal multiplexing proposed by Mower (2011)

Are our photons single? g²(0) measurement

g²(0) is a measure of level of multi-photon noise

THE UNIVERSITY OF

Are our photons indistinguishable? Hong-Ou-Mandel interference

Convergence

RICHARD et al.: ONLINE PREDICTION OF TIME SERIES DATA WITH KERNELS

Fig. 2. Learning curves for KAP, KNLMS, SSP, NORMA and KRLS obtained by averaging over 200 experiments.