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Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems 
- Novel architectures, applications and design techniques using VLSI, FPGA and 

parallel computing technology 

› Research
- Reconfigurable computing

- Machine learning

- Nanoscale interfaces
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What is an FPGA?

› Dedicated blocks: memory, transceivers and MAC, PLLs, DSPs, ARM cores
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Motivation – ML for Instrumentation

› Instrumentation of the future can use FPGA-based ML to interpret and process 
data adaptively in real-time
› Offer new capabilities 

› e.g. trigger oscilloscope or spectrum analyzer on an anomaly

› e.g. battery power, high data rates, supercomputer performance in small form factor

› There are many applications that could benefit 

› test equipment

› network monitors

› prognostics and health management
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Throughput and Latency

› Significant improvements in ML 
algorithms but cannot keep up with 
sources e.g. hyperspectral imager or 
wireless transceiver

› Need extremely high throughput

› In control applications we need low 
latency e.g. triggering data collection in 
Large Hadron Collider

› Need very low latency
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Challenges in measurement and control are becoming feasible

Improvements in throughput and 
latency enable new applications!



Motivation for using FPGAs

› FPGAs offer an opportunity to provide ML algorithms with higher 
throughput and lower latency through
- Exploration– easily try different ideas to arrive at a good solution

- Parallelism – so we can arrive at an answer faster

- Integration – so interfaces are not a bottleneck

- Customisation – problem-specific designs to improve efficiency

› Describe our work on implementations of ML that use these ideas 
(and can be applied to instrumentation)
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› Exploration (Online kernel methods)
› Parallelisation
› Integration
› Customisation

EPIC



Online Kernel Methods

› Traditional ML algorithms are batch 
based
- Make several passes through data

- Requires storage of the input data

- Not all data may be available initially

- Not suitable for massive datasets

› Our approach: online algorithms
- Incremental, inexpensive state 

update based on new data

- Single pass through the data

- Can be high throughput, low latency

Examples are KLMS and KRLS
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Mapping to a Feature Space

› Choose high dimensional feature space (so easily separable)
› Use kernel trick to avoid computing the mapping (fast)
› Do regression/classification using
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Kernel Methods

› M – Input dimension 
› N – Dictionary Size (or Sliding Window 

Size for KRLS) 

Impl. M N Latency 
(cycles)

Fmax
(MHz)

Time 
(ns)

CPU
(ns)

Speed
Up  

Vector - Flexible
(Stratix 5)

8 127 4396 157 28000 141000 5.1x

Pipeline - Throughput
(Virtex 7)

8 16 207 314 3.18 940 296x

Braided - Latency
(Virtex 7)

8 200 13 127 7.87 4025.8 511x

FASTFOOD - Capacity
(Kintex Ultrascale)

1k 16k 1694 500 3388 580000 171x

1/Latency

Throughput

Pipelining 
(> 70 Gbps)

Vector (flexibility)

NORMA (< 100 ns)

Fastfood (capacity)



› Exploration
› Parallelisation (pipelined KNLMS)
› Integration
› Customisation

EPIC



Obstacle to Pipelining

Dependency Problem

Universal
Approximator

Σ
-

+

Streaming 
inputs xi

Prediction

yi

Modify 
weights

Cannot process
xi until we update weights 
from {xi-1,yi-1}
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Removing Dependencies

› Training is usually:
for (hyperparameters)

for (inputs)
learn_model()

› Alternative is to find L independent 
problems
- E.g. monitor L different things

› Our approach: run L independent 
problems (different parameters) in 
the pipeline
- Updates ready after L subproblems

- Less data transfer

for (inputs)
for (hyperparameters)

learn_model()
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• Similar approach for multiclass classification (train C(C-1)/2 binary classifiers)  



High Throughput KNLMS
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Performance

› Can do online learning from 200 independent data streams at 70 Gbps
(160 GFLOPS)
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Core with input vector M=8 and dictionary size N=16 (KNLMS)

Implementation Freq
(MHz)

Time
(ns)

Slowdown

System Pipelined 250 4 1
Non-pipelined 250 800 200
CPU (C) 3,600 940 235



› Exploration
› Parallelisation
› Integration (radio frequency machine learning)
› Customisation

EPIC



Radio Frequency Machine Learning

› Processing radio frequency 
signals remains a challenge 
- high bandwidth and low latency 

difficult to achieve 

› Autoencoder to do anomaly 
detection
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Autoencoder
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Train so  x  x  (done in an unsupervised manner)
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Autoencoder learns “normal” representation

› Anomaly if distance between autoencoder output and input large
› FPGA has sufficiently high performance to process each sample of 

waveform at 200 MHz!
- This minimises latency and maximises throughput

- Weights trained on uP and updated on FPGA without affecting inference
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Software Defined Radio Architecture
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Implemented on Ettus X310 platform

Radio Core Autoencoder
(Optional FFT)

Crossbar

Ingress/Egress Interface

Hardware Driver

H
os

t 
PC

FP
G
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Autoencoder
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Autoencoder
Parameters (W, b)

Anomaly/Normal (can 
be used by FPGA or PC)



Example
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Performance (XC7K410T)
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Typical SDR latency >> 1 ms



› Exploration
› Parallelisation
› Integration
› Customisation (binarised neural networks)

EPIC



Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., “FINN: A framework for fast, scalable binarized neural 
network inference,” FPGA’17



Binarized Neural Networks

› The extreme case of quantization
- Permit only two values: +1 and -1

- Binary weights, binary activations

- Trained from scratch, not truncated FP

› Courbariaux and Hubara et al. (NIPS 
2016)
- Competitive results on three smaller 

benchmarks

- Open source training flow

- Standard “deep learning” layers

- Convolutions, max pooling, batch norm, fully 
connected…
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MNIST SVHN CIFAR-
10

Binary weights & 
activations

0.96% 2.53% 10.15%

FP weights &
activations

0.94% 1.69% 7.62%

BNN accuracy 
loss 

-0.2% -0.84% -2.53%

% classification error (lower is better)



Advantages of BNNs

› Much smaller datapaths
- Multiply becomes XNOR, addition 

becomes popcount

- No DSPs needed, everything in LUTs

- Lower cost per op = more ops every 
cycle

› Much smaller weights
- Large networks can fit entirely into on-

chip memory (OCM)

- More bandwidth, less energy 
compared to off-chip

› fast inference with large BNNs 
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Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG
On-chip
weights
~70 M

~10 M

~5 M

~2 M

Precision

1b

8b

16b

32b

30x

Peak TOPS 

~66

~4

~1

~0.3

200x



Comparison
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› Exploration (Online kernel methods)
› Parallelisation
› Integration
› Customisation

EPIC



Open Source Materials

› LSTM using HLS tutorial 
› https://github.com/phwl/hlslstm

› Kernel methods code e.g. braiding
› https://github.com/da-steve101/chisel-pipelined-olk

› FINN - can do trillions of binary operations per second
› https://github.com/Xilinx/BNN-PYNQ
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Conclusion

› Exploration
› Kernel methods optimised using different 

algorithms, mathematical techniques, 
computer architectures, arithmetic

› Parallelism
› Increased by removing dependencies to 

ensure all stages do work every cycle

› Integration
› In radio frequency, this allows latency to be 

reduced by 4 orders of magnitude

› Customisation
› Increase parallelism by reducing precision 

› Keep weights on-chip to devote more 
hardware to arithmetic

› FPGAs can greatly assist with the 
implementation of ICEMI’s theme of 
“measurement and intelligent sensing” 
› Learning & inference at 70 Gbps

› Learning & inference with 100 ns 
latency

› Image processing @ 12.3 Mfps

› Multimodal measurements

› Radio frequency anomaly detector
› We are using this to predict physical and 

media access layer protocols

› Could also be used as a novel 
diagnostic instrument - monitor RF 
output of electronic equipment, detect 
anomalies

30



Thank you!

Philip Leong (philip.leong@sydney.edu.au)
http://www.sydney.edu.au/people/philip.leong


