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- Computer Engineering Laboratory

» Focuses on how to use parallelism to solve demanding problems

- Novel architectures, applications and design techniques using VLSI, FPGA and
parallel computing technology

> Research
- Reconfigurable computing
- Machine learning

- Nanoscale interfaces
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What is an FPGA?

User-customisable integrated circuit

» Dedicated blocks: memory, transceivers and MAC, PLLs, DSPs, ARM cores

Configurable Xilinx FPGAs
logic blocks

Dedicated
blocks

Input and
output blocks

Routing 5

* Clocking
Resources
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Source: Xilinx
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Motivation — ML for Instrumentation

» Instrumentation of the future can use FPGA-based ML to interpret and process
data adaptively in real-time

» Offer new capabilities

» e.qg. trigger oscilloscope or spectrum analyzer on an anomaly

» e.g. battery power, high data rates, supercomputer performance in small form factor
» There are many applications that could benefit

» test equipment

» network monitors

» prognostics and health management
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Challenges in measurement and control are becoming feasible

» Significant improvements in ML » In control applications we need low
algorithms but cannot keep up with latency e.g. triggering data collection in
sources e.g. hyperspectral imager or Large Hadron Collider
wireless transceiver

> Need very low latency
> Need extremely high throughput
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Improvements in throughput and
latency enable new applications!
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Motivation for using FPGAs

» FPGAs offer an opportunity to provide ML algorithms with higher
throughput and lower latency through

Exploration— easily try different ideas to arrive at a good solution

Parallelism — so we can arrive at an answer faster

Integration — so interfaces are not a bottleneck

Customisation — problem-specific designs to improve efficiency

> Describe our work on implementations of ML that use these ideas
(and can be applied to instrumentation)
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» Exploration (Online kernel methods)
> Parallelisation
» Integration

» Customisation
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Online Kernel Methods

Examples are KLMS and KRLS

» Traditional ML algorithms are batch » Our approach: online algorithms

based - Incremental, inexpensive state

- Make several passes through data update based on new data
- Requires storage of the input data - Single pass through the data
- Not all data may be available initially - Can be high throughput, low latency

Not suitable for massive datasets

Universal

Streaming > Prediction

inputs x Approximator
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Mapping to a Feature Space

k(x,x") = exp (_||x2—03;’||2> ¢ @ ©
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Input Space Feature Space

» Choose high dimensional feature space (so easily separable)
» Use kernel trick to avoid computing the mapping (fast)

. W . . N
» Do regression/classification using Fln = > agetenvy)

J=1
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Kernel Methods

CPU

(ns)
Vector - Flexible 8 127 4396 157 28000 141000 5.1x
(Stratix 5)
Pipeline - Throughput 8 16 207 314 3.18 940 296X
(Virtex 7)
Braided - Latency 8 200 13 127 7.87 4025.8 511x
(Virtex 7)
FASTFOOD - Capacity 1k 16k 1694 500 3388 580000 171x
(Kintex Ultrascale) A
> M = Input dimension 1/Latency NORM.A (<100 n§) o
> N — Dictionary Size (or Sliding Window * Pipelining

Size for KRLS) Fastfood (capacity) (> 70 Gbps)

, Vector (flexibility)
(]

>
Throughput
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Dependency Problem

Cannot process

X; until we update weights

from {X;.1,y;.1}

Streaming —
inputs x;

Universel
Approximator

Modify

8 weigrts

Obstacle to Pipelining

—> Prediction

12
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Removing Dependencies

» Training is usually: » Our approach: run L independent
for (hyperparameters) fhrce)li)lﬁ)rgﬁn(:ﬁferent parameters) in

for (inputs) - Updates ready after L subproblems

learn_model() - Less data transfer

» Alternative is to find L independent

problems
. . . for (inputs)
- E.g. monitor L different things

for (hyperparameters)

learn_model()

« Similar approach for multiclass classification (train C(C-1)/2 binary classifiers)

13
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- High Throughput KNLMS
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Performance

Core with input vector M=8 and dictionary size N=16 (KNLMS)

Implementation | Freq Time
(M Hz) (ns)

System Pipelined
Non-pipelined 250 800 200

CPU (C) 3,600 940 235

» Can do online learning from 200 independent data streams at 70 Gbps
(160 GFLOPS)

15
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» Processing radio frequency
signals remains a challenge

- high bandwidth and low latency
difficult to achieve

» Autoencoder to do anomaly
detection

Radio Frequency Machine Learning

17
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Autoencoder

Train so x x (done in an unsupervised manner)

Xo X
X4 3'(1
X,

18
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- Autoencoder learns “normal” representation

» Anomaly if distance between autoencoder output and input large

» FPGA has sufficiently high performance to process each sample of
waveform at 200 MHZz!

- This minimises latency and maximises throughput

- Weights trained on uP and updated on FPGA without affecting inference

{ Memory Mapped Interface

- for Weight Update .
address - .
e 200 Weights
16 bit . Y,
e
S s N e N
R
o®
D0
I * o E | oo % |
AXI-Stream Interface 3%?,"\\ C;) \6"‘% FFT N N ook B A = AO" | AXI-Stream Interface
> > > > "0 : >
Q| © IQ zZ :
~ lQData | 2 a Autoencoder : &J
(16 bit Real, 16 bit Imag) — QA c
‘ ; | =
Inference
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Software Defined Radio Architecture

Implemented on Ettus X310 platform

Autoencoder

training Autoencoder
Parameters (W, b)

Hardware Driver

PC

FPGA Host

Ingress/Egress Interface

Crossbar

Anomaly/INormal (can
be used by FPGA or PC)

I/Q samples

Autoencoder

Radio Core (Optional FFT)

20
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Performance (XC7K410T)

Typical SDR latency >> 1 ms

Module I Latency BRAM DSP FF LUT
(cycles)

Windower | 0 0 0 1511 996
FFT 1 8 0 48 4698 2796
NN 1 17 4 1280 213436 13044
L2-Norm 1 4 0 32 1482 873
Thres 1 0 0 0 3 21
Weight Update 258 257 0 0 21955 4528
Inference (FFT+NN) 37 1068 1360 241522 45448
Inference (NN) 1 29 1068 1312 236824 42652
Total N/A N/A 1068 1360 263477 49976
Total Utl. N/A N/A 67% 88%  51% 19%

Operation ] Throughput  Latency

Inference(FFT+NN) | 5ns 185ns

Inference(NN) Sns 105ns

Weight Update 1290ns 1285ns

22
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» Customisation (binarised neural networks)
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Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., “FINN: A framework for fast, scalable binarized neural
network inference,” FPGA17

tens of megabytes of floating point weight data
(from ftraining)

55 )
\ dense dense
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|mage to be
classified

billions of floating point multiply-accumulate ops

(several joules of energy)
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Binarized Neural Networks

oz nm) - EEE
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_ MNIST | SVHN | CIFAR-
» Courbariaux and Hubara et al. (NIPS 10

» The extreme case of quantization

- Permit only two values: +1 and -1

- Binary weights, binary activations

annnh ot
R R TR Kl Y
SNUN YN

- Trained from scratch, not truncated FP

2016) Binary weights & 0.96%  2.53%  10.15%
- Competitive results on three smaller SEENCTE
benchmarks FP weights & 0.94% 1.69% 7.62%
activations
- Open source training flow BNNaccuracy ~ -02%  -0.84% -2.53%
- Standard “deep learning” layers loss
- Convolutions, max pooling, batch norm, fully % classification error (lower is better)

connected...
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Advantages of BNNs

Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG

Peak TOPS On-chip
weights

- Multiply becomes XNOR, addition ~70 M
becomes popcount ab P

- No DSPs needed, everything in LUTs 16b ~5 M

- Lower cost per op = more ops every 32b ~0.3 ~2M

cycle

> Much smaller datapaths

» Much smaller weights » fast inference with large BNNs

- Large networks can fit entirely into on-
chip memory (OCM)

- More bandwidth, less energy
compared to off-chip

26
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Comparison

Accuracy FPS Power kFPS /Watt kFPS / Watt Precision

(chip) (\"EL
MNIST, SFC-max

MNIST, LFC-max
CIFAR-10, CNV-max
SVHN, CNV-max

P N . U R N . N

CIFAR-10, TrueNorth
SVHN, TrueNorth

Max accuracy 10 — 100x better CIFAR-10/SVHN energy efficiency
loss: ~3% performance comparable to TrueNorth ASIC

27
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» Exploration (Online kernel methods)
> Parallelisation
» Integration

» Customisation
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Open Source Materials

» LSTM using HLS tutorial
» https://github.com/phwl/hlslstm

» Kernel methods code e.g. braiding

» https://github.com/da-steve101/chisel-pipelined-olk

> FINN - can do trillions of binary operations per second
» https://github.com/Xilinx/BNN-PYNQ

29
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Conclusion

Exploration

» Kernel methods optimised using different
algorithms, mathematical techniques,
computer architectures, arithmetic

Parallelism

» Increased by removing dependencies to
ensure all stages do work every cycle

Integration

» In radio frequency, this allows latency to be
reduced by 4 orders of magnitude

Customisation
» Increase parallelism by reducing precision

> Keep weights on-chip to devote more
hardware to arithmetic

> FPGAs can greatly assist with the
implementation of ICEMI’s theme of
“measurement and intelligent sensing”

» Learning & inference at 70 Gbps

» Learning & inference with 100 ns
latency

> Image processing @ 12.3 Mfps
> Multimodal measurements
> Radio frequency anomaly detector

» We are using this to predict physical and
media access layer protocols

» Could also be used as a novel
diagnostic instrument - monitor RF
output of electronic equipment, detect
anomalies

30



Thank you!

Philip Leong (philip.leong@sydney.edu.au)
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