FPGA-based Machine Learning for FPGAbased Machine Learning for Electronic Measurement and Instrumentation

Philip Leong (梁恆惠) | Computer Engineering Laboratory School of Electrical and Information Engineering, The University of Sydney

Computer Engineering Laboratory

- > Focuses on how to use parallelism to solve demanding problems
 - Novel architectures, applications and design techniques using VLSI, FPGA and parallel computing technology
- > Research
 - Reconfigurable computing
 - Machine learning
 - Nanoscale interfaces

User-customisable integrated circuit

> Dedicated blocks: memory, transceivers and MAC, PLLs, DSPs, ARM cores

Motivation – ML for Instrumentation

- Instrumentation of the future can use FPGA-based ML to interpret and process data adaptively in real-time
 - > Offer new capabilities
 - > e.g. trigger oscilloscope or spectrum analyzer on an anomaly
 - > e.g. battery power, high data rates, supercomputer performance in small form factor
- > There are many applications that could benefit
 - > test equipment
 - > network monitors
 - > prognostics and health management

Throughput and Latency

Challenges in measurement and control are becoming feasible

- Significant improvements in ML algorithms but cannot keep up with sources e.g. hyperspectral imager or wireless transceiver
- Need extremely high throughput

Improvements in throughput and latency enable new applications!

- In control applications we need low latency e.g. triggering data collection in Large Hadron Collider
- > Need very low latency

- FPGAs offer an opportunity to provide ML algorithms with higher throughput and lower latency through
 - Exploration easily try different ideas to arrive at a good solution
 - Parallelism so we can arrive at an answer faster
 - Integration so interfaces are not a bottleneck
 - Customisation problem-specific designs to improve efficiency
- Describe our work on implementations of ML that use these ideas (and can be applied to instrumentation)

- > Exploration (Online kernel methods)
- > Parallelisation
- Integration
- > Customisation

Examples are KLMS and KRLS

THE UNIVERSITY OF

- Traditional ML algorithms are batch based
 - Make several passes through data
 - Requires storage of the input data
 - Not all data may be available initially
 - Not suitable for massive datasets

- > Our approach: online algorithms
 - Incremental, inexpensive state update based on new data
 - Single pass through the data
 - Can be high throughput, low latency

Mapping to a Feature Space

Input Space

Feature Space

- Choose high dimensional feature space (so easily separable)
- > Use kernel trick to avoid computing the mapping (fast)
- > Do regression/classification using

$$f(x_i) = \sum_{j=1}^N \alpha_j \kappa(x_i, v_j)$$

Kernel Methods

Vector - Flexible (Stratix 5) 8 127 4396 157 28000 141000 5.1x Pipeline - Throughput (Virtex 7) 8 16 207 314 3.18 940 296x Braided - Latency (Virtex 7) 8 200 13 127 7.87 4025.8 511x FASTFOOD - Capacity (Kintex Ultrascale) 1k 16k 1694 500 3388 580000 171x M - Input dimension N - Dictionary Size (or KRLS) J/Latency J/Latency Softward (capacity) Pipelining (> 70 Gbps)	Impl.	Μ	N	Latency (cycles)	Fmax (MHz)	Time (ns)	CPU (ns)	Speed Up
Pipeline - Throughput (Virtex 7)8162073143.18940296xBraided - Latency (Virtex 7)8200131277.874025.8511xFASTFOOD - Capacity (Kintex Ultrascale)1k16k16945003388580000171xM - Input dimension > N - Dictionary Size (or KRLS)1/Latency1/Latency \mathbb{N} $\mathbb{Pipeline}$ $\mathbb{Pipeline}$ $\mathbb{Pipeline}$ $\mathbb{Pipeline}$	Vector - Flexible (Stratix 5)	8	127	4396	157	28000	141000	5.1x
Braided - Latency (Virtex 7)8200131277.874025.8511xFASTFOOD - Capacity (Kintex Ultrascale)1k16k16945003388580000171x> M - Input dimension > N - Dictionary Size (or Sliding Window1/LatencyNORMA (< 100 ns) • Pipelining Fastfood (capacity) vector (flexibility)••	Pipeline - Throughput (Virtex 7)	8	16	207	314	3.18	940	296x
FASTFOOD - Capacity (Kintex Ultrascale) 1k 16k 1694 500 3388 580000 171x M - Input dimension N - Dictionary Size (or Sliding Window Size for KRLS) 1/Latency NORMA (< 100 ns) • Pipelining Fastfood (capacity) • Pipelining (> 70 Gbps)	Braided - Latency (Virtex 7)	8	200	13	127	7.87	4025.8	511x
 M – Input dimension N – Dictionary Size (or Sliding Window Size for KRLS) M – Input dimension NORMA (< 100 ns) Pipelining Fastfood (capacity) Vector (flexibility) 	FASTFOOD - Capacity (Kintex Ultrascale)	1k	16k	1694	500	3388	580000	171x
Throughput	 M – Input dimension 1/Latency N – Dictionary Size (or Sliding Window Size for KRLS) 				NORMA (< 100 ns) • Pipelining (> 70 Gbps) Vector (flexibility)			

- > Exploration
- > Parallelisation (pipelined KNLMS)
- Integration
- > Customisation

Obstacle to Pipelining

Dependency Problem

Removing Dependencies

Training is usually:
 for (hyperparameters)
 for (inputs)

```
learn_model()
```

- Alternative is to find L independent problems
 - E.g. monitor L different things

- Our approach: run L independent problems (different parameters) in the pipeline
 - Updates ready after L subproblems
 - Less data transfer

```
for (inputs)
for (hyperparameters)
learn_model()
```

• Similar approach for multiclass classification (train C(C-1)/2 binary classifiers)

High Throughput KNLMS

Performance

Core with input vector M=8 and dictionary size N=16 (KNLMS)

Implementation	Freq (MHz)	Time (ns)	Slowdown	
System Pipelined	250	4	1	
Non-pipelined	250	800	200	
CPU (C)	3,600	940	235	

 Can do online learning from 200 independent data streams at 70 Gbps (160 GFLOPS)

- > Exploration
- > Parallelisation
- > Integration (radio frequency machine learning)
- > Customisation

Radio Frequency Machine Learning

- Processing radio frequency signals remains a challenge
 - high bandwidth and low latency difficult to achieve
- Autoencoder to do anomaly detection

Autoencoder

Train so $\tilde{x} \times (\text{done in an unsupervised manner})$

- > Anomaly if distance between autoencoder output and input large
- > FPGA has sufficiently high performance to process each sample of waveform at 200 MHz!
 - This minimises latency and maximises throughput
 - Weights trained on uP and updated on FPGA without affecting inference

Software Defined Radio Architecture

Implemented on Ettus X310 platform

Performance (XC7K410T)

Typical SDR latency >> 1 ms

Module	П	Latency (cycles)	BRAM	DSP	FF	LUT	
Windower	1	0	0	0	1511	996	
FFT	1	8	0	48	4698	2796	
NN	1	17	4	1280	213436	13044	
L_2 -Norm	1	4	0	32	1482	873	
Thres	1	0	0	0	3	21	
Weight Update	258	257	0	0	21955	4528	
Inference (FFT+NN)	1	37	1068	1360	241522	45448	
Inference (NN)	1	29	1068	1312	236824	42652	
Total	N/A	N/A	1068	1360	263477	49976	
Total Util.	N/A	N/A	67%	88%	51%	19%	

Operation	Throughput	Latency
Inference(FFT+NN)	5ns	185ns
Inference(NN)	5ns	105ns
Weight Update	1290ns	1285ns

- > Exploration
- > Parallelisation
- Integration
- > Customisation (binarised neural networks)

Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., "FINN: A framework for fast, scalable binarized neural network inference," FPGA'17

(several joules of energy)

Binarized Neural Networks

- > The extreme case of quantization
 - Permit only two values: +1 and -1
 - Binary weights, binary activations
 - Trained from scratch, not truncated FP
- Courbariaux and Hubara et al. (NIPS 2016)
 - Competitive results on three smaller benchmarks
 - Open source training flow
 - Standard "deep learning" layers
 - Convolutions, max pooling, batch norm, fully connected...

	MNIST	SVHN	CIFAR- 10
Binary weights & activations	0.96%	2.53%	10.15%
FP weights & activations	0.94%	1.69%	7.62%
BNN accuracy loss	-0.2%	-0.84%	-2.53%

% classification error (lower is better)

Advantages of BNNs

Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG

- > Much smaller datapaths
 - Multiply becomes XNOR, addition becomes popcount
 - No DSPs needed, everything in LUTs
 - Lower cost per op = more ops every cycle
- > Much smaller weights
 - Large networks can fit entirely into onchip memory (OCM)
 - More bandwidth, less energy compared to off-chip

Precision	Peak TO	PS	On-chip weights			
1b	~66		~70 M	\wedge		
8b		L	~10 M 🖌		7	
16b	~1	2	~5 M	30x		
32b	~0.3		~2 M			

> fast inference with large BNNs

Comparison

		Accuracy	FPS	Power (chip)	Power (wall)	kFPS / Watt (chip)	kFPS / Watt (wall)	Precision
	MNIST, SFC-max	95.8%	12.3 M	7.3 W	21.2 W	1693	583	1
Ş	MNIST, LFC-max	98.4%	1.5 M	8.8 W	22.6 W	177	269	1
Ē	CIFAR-10, CNV-max	80.1%	21.9 k	3.6 W	11.7 W	6	2	1
	SVHN, CNV-max	94.9%	21.9 k	3.6 W	11.7 W	6	2	1
A.	MNIST, <u>Alemdar</u> et al.	97.8%	255.1 k	0.3 W	-	806	-	2
Š	CIFAR-10, TrueNorth	83.4%	1.2 k	0.2 W	-	6	-	1
rio	SVHN, TrueNorth	96.7%	2.5 k	0.3 W	-	10	-	1
•	Max a loss	accuracy s: ~3%	10 – 100 perfor	Dx bettei mance		CIFAR-10/S comparable	/HN energy e e to TrueNortl	efficiency h ASIC

- > Exploration (Online kernel methods)
- > Parallelisation
- Integration
- > Customisation

Open Source Materials

- > LSTM using HLS tutorial
 - <u>https://github.com/phwl/hlslstm</u>
- > Kernel methods code e.g. braiding
 - <u>https://github.com/da-steve101/chisel-pipelined-olk</u>
- > FINN can do trillions of binary operations per second
 - https://github.com/Xilinx/BNN-PYNQ

Conclusion

 Kernel methods optimised using different algorithms, mathematical techniques, computer architectures, arithmetic

> Parallelism

 Increased by removing dependencies to ensure all stages do work every cycle

Integration

 In radio frequency, this allows latency to be reduced by 4 orders of magnitude

> Customisation

- Increase parallelism by reducing precision
- Keep weights on-chip to devote more hardware to arithmetic

- FPGAs can greatly assist with the implementation of ICEMI's theme of "measurement and intelligent sensing"
 - > Learning & inference at 70 Gbps
 - Learning & inference with 100 ns latency
 - Image processing @ 12.3 Mfps
 - > Multimodal measurements
- Radio frequency anomaly detector
 - > We are using this to predict physical and media access layer protocols
 - Could also be used as a novel diagnostic instrument - monitor RF output of electronic equipment, detect anomalies

Thank you!

Philip Leong (philip.leong@sydney.edu.au) http://www.sydney.edu.au/people/philip.leong