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Australia

Population: ~25M (2017)
Europe: ~743M (2018)
Shanghai: ~24M (2018)

Population density: 3.20 people per km2 (Shanghai 2059)



Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems  
- Novel architectures, applications and design techniques using VLSI, FPGA and parallel 

computing technology 

› Research
- Reconfigurable computing

- Machine learning

- Signal processing

› Collaborations
- Xilinx, Intel, Exablaze

- Defence and DSTG

- clustertech.com
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Overview

› Multipliers (and adders) play a key role in the implementation of DNNs
› This talk

- Two speed multiplier with different critical paths for zero and non-zero recodings

- PIR-DSP block to support a range of precisions

- AddNet which uses k-levels of shifted values as multipliers

- A fully pipelined DNN implementation with ternary coefficients

› These slides are available at https://phwl.github.io/talks

https://phwl.github.io/talks
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Unsigned Multiplication
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› Shift-and-Add Algorithm

Example: Multiply 118d by 99d

Multiplicand   
Multiplier

Step1) Initialize

Step2) Find partial products

Step3) Sum up the shifted 
partial products

118d
99d

1062d
1062 d
11682d

Two’s Complement 
Method

Step1) Initialize

Step2) Find partial 
products

Step3) Sum up the 
shifted partial 
products

118d = 01110110b
99d = 01100011b

01110110b

Convert 2’s-Comp back to decimal:
0010 1101 1010 0010 = 11682d

00000000      b
00000000        b

01110110          b
01110110            b

00000000              b
010110110100010  b

01110110  b
00000000    b

Source: Shawn Nicholl, Xilinx



Signed Multiplication

› How can we handle signed multiplication? 
› Could 

- multiply absolute values

- separately calculate the sign 

- negate if necessary

› But …
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Signed Multiplication using Booth Recoding

› Booth Recoding
- Reduce the number of partial products by recoding the multiplier operand

- Works for signed numbers
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Example: Multiply -118 by -99

Recall, 99 = 0110 0011b

-99 = 1001 1101b

Radix-2 
Booth 
Recoding

0101 1110-99 =

An An-1
Partial 
Product

0 0 0
0 1 +B
1 0 -B
1 1 0

Low-order Bit
Last Bit Shifted Out

Source: Shawn Nicholl, Xilinx



Example of Booth Radix-2 Recoding

› -99=(-27+25-22+21-20)
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Multiply -118 by -99

Radix-2 Booth

Step1) Initialize

Step2) Find partial 
products

Step3) Sum up the 
shifted partial 
products

-118 = 0111 0110b

01110110b

Convert 2’s-Comp back to decimal:
0010 1101 1010 0010 = 11682d

00000000      b
00000000        b

1110001010          b
000000000            b
01110110               b

0010110110100010b

110001010  b
01110110    b

0101 1110-99 =
-B
B

-B
0
0
B
0

-B

B = -118 = 1000 1010b
-B =  118 = 0111 0110b

A = -99 = 1001 1101b

Sign Extension

0101 1110-99 =

Source: Shawn Nicholl, Xilinx



Booth Radix-4 Multiplication
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› Similar to Radix-2, but 
uses looks at two low-
order bits at a time 
(instead of 1)

› (-99=-2.43+2.42-1.41+1.40)

Yi+2 Yi+1 Yi ei

0 0 0 0
0 0 1 +B
0 1 0 +B
0 1 1 +2B
1 0 0 -2B
1 0 1 -B
1 1 0 -B
1 1 1 0

Low-order Bits

Last Bit Shifted Out

Recall, 99d = 0110 0011b

1001 1100b
1b

-99d = 1001 1101b
Radix-4 
Booth 
Recoding

-99d = 1122

Source: Shawn Nicholl, Xilinx



Example of Booth Radix-4 Multiplication
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Radix-4 Booth

Step1) Initialize

Step2) Find partial 
products

Step3) Sum up the 
shifted partial 
products

-118d = 0111 0110b

Convert 2’s-Comp back to decimal:
0010 1101 1010 0010 = 11682d

111111110001010b

011101100          b
0010110110100010  b

01110110    b
11100010100       b

B
-B
2B

-
2B

B = -118d = 1000 1010b
-B =  118d = 0111 0110b

2B = -236d = 1 0001 0100b
-2B =  236d = 0 1110 1100b

A = -99d = 1001 1101b

Example: Multiply -118d by -99d

Sign Extension

-99d = 1122

-99d = 1122

- Reduces number of partial products by half!
Source: Shawn Nicholl, Xilinx



Booth Radix-4 Multiplier Implementation
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Booth Radix-4 Multiplier Datapath
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Two-Speed Multiplier
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• Booth Radix-4 datapath split into 2 sections, each with own critical path

• Non-zero encodings take !𝐾𝜏 (add) and zero take 𝜏 (skip)

• Naturally supports sparse problems



Two-speed multiplier Execution
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Results
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Area * Time Improvement of TSM
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Summary

› Variant of the serial-parallel modified radix-4 Booth multiplier
› Adds only the non-zero Booth encodings and skips over the zero operations
› Two sub-circuits with different critical paths are utilised so that throughput and 

latency are improved for a subset of multiplier values
› For bit widths of 32 and 64, our optimisations can result in a 1.42-3.36x 

improvement over the standard parallel Booth multiplier
› Future work: explore training NN with weights to minimise execution time on 

TSM



PIR-DSP: An FPGA DSP block Architecture 
for Multi-Precision Deep Neural Networks 
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› Introduction
› PIR-DSP Architecture
› Results
› Conclusion
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Embedded Deep Neural Networks

› DNNs for embedded applications share two features to reduce computation and 
storage requirements
- Low precision (from 1-16 bits)

- Depthwise separable convolutions
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Standard Convolution 
(standard)

Depthwise Convolution (DW) Pointwise Convolution (PW)
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Computation and Storage for Embedded DNNs

Standard DW PW FC OtherStandard DW PW FC Other

NASNet-A4@1056
MobileNet-v2
ShuffleNet-v2
SqueezeNet

Distribution of # of MACs Distribution of # of parameters

Motivation (1)



Motivation (2)
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Low-Precision Neural Networks

Faraone et al, “SYQ: Learning Symmetric Quantization For Efficient Deep Neural Networks”, CVPR’18

Imagenet accuracy with binary and ternary weights and 
8-bit activations



Aims

› Optimise FPGA DSP architecture to better support
- Efficient implementation of embedded DNNs
- Wordlengths down to ternary and binary

› Talk will focus on convolutions
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› Introduction
› PIR-DSP Architecture
› Results
› Conclusion
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Existing DSPs

› Xilinx DSP48
- 27×18 multiplier, 48-bit ALU 

(Add/Sub/Logic), 27-bit pre-adder, Wide 
96bit XOR, 48-bit comparator
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- No support for low-precision computations

- No run-time configuration 

- 1D arrangement inefficient for implementing 2D systolic arrays

› Intel (Multiprecision)
- 27×27 multiplier decomposable to two 

19×18, Compile-time configurable 
Coefficient registers, Two 18-bit pre-
adder, 54-bit adder



PIR-DSP

› PIR-DSP: Optimized version of DSP48
- Precision: Multiplier architecture

- Interconnect: Shift-Reg

- Reuse : RF/FIFO
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PIR-DSP

DSP48



Precision (1)

› Based on two approaches:
1. Chopping

2. Recursive decomposition 
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Precision (2)

› Notation: M×NCijDk 
› PIR-DSP multiplier: 27×18C32D2 

- Chopping factors 3 and 2 respectively for 27 and 18
- (27=9+9+9)×(18=9+9)
- Six 9×9 multiplier

- Decomposing factor is 2
- Each 9×9 multiplier decomposes to Two 4×4 or Four 2×2 multipliers

› PIR-DSP Modes:
- One    27×18 à 1  MAC
- Two 9×9 + 9×9 + 9×9 à 6  MACs
- Four 4×4 + 4×4 + 4×4 à 12 MACs
- Eight 2×2 + 2×2 + 2×2 à 24 MACs
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Parameterised Decomposable MAC unit



Interconnect (1)

› Three types of convolutions
1- Depth-wise: using three PIR-DSPs

2- Standard: based on depth-wise convolution 
implementation and adding the partial results
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2D systolic array (Eyeriss) conventional ours depthwise convolution

filter r3

sums

ifmap r1
filter r2

filter r1

ifmap r2

ifmap r3
ifmap r4

ifmap r5



Interconnect (2)
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3- Point-wise



Interconnect (2)
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3- Point-wise



Interconnect (2)
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3- Point-wise



Interconnect (2)
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3- Point-wise



Interconnect (2)
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3- Point-wise



Interconnect (2)
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3- Point-wise



Interconnect (2)
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3- Point-wise



Interconnect (2)
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3- Point-wise



Interconnect (2)

41

3- Point-wise



Reuse
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Depthwise Convolution (DW) Pointwise Convolution (PW)



› Introduction
› PIR-DSP Architecture
› Results
› Conclusion
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Area and Frequency

› SMIC 65-nm standard cell technology
- Synopsis Design Compiler 2013.12
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Version Area Ratio Fmax
DSP48E2 1.0 463
+ M27×18C32D2 MAC-IP 1.14 358
+ interconnect 1.18 362
+ reuse 1.28 357



Energy

› Other networks are similar
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Related Work

› Sits between Sharma (low-precision) and Boutros (high-precision)
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Bitfusion [56]
ISCA’18

Ours Boutros [44]
FPL’18

Ours

Area 0.24 1 0.77 1
Performance Per Area
2x2 1 0.4
4x4 1 0.7 1 1.2
8x8 1 1.4 1 1.2
16x16 1 0.4
27x18 1 0.8



› Introduction
› PIR-DSP Architecture
› Results
› Conclusion
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Summary

› Described optimizations to the DSP48 to support a range of low-precision DNNs 
and quantified their impact on performance
- Precision, Interconnect and Reuse

- designs are available at http://github.com/raminrasoulinezhad/PIR-DSP

› Future research 
- Consider what we can do if we give up DSP48-like functionality

- Other interconnect optimisations
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AddNet: Deep Neural Networks using
FPGA-Optimized Multipliers

Julian Faraone, Martin Kumm Member, Martin Hardieck, 
Peter Zipf, Xueyuan Liu, David Boland, Philip H.W. Leong



Overview

› Multipliers (and adders) play a key role in the implementation of DNNs
› This talk

- Two speed multiplier with different critical paths for zero and non-zero recodings

- PIR-DSP block to support a range of precisions

- AddNet which uses k-levels of shifted values as multipliers

- A fully pipelined DNN implementation with ternary coefficients



Introduction

› Reconfigurable constant coefficient multipliers (RCCMs) implement y = cx for a 
fixed set of coefficients c using only adds and shifts e.g. 

› Present FPGA logic element optimised RCCMs which implement large sets c 
with few resources

› When applied to neural networks (AddNet), achieve up to 50% resource savings 
over traditional 8-bit quantized networks



Reconfigurable constant coefficient multipliers (RCCM)

› Another example has the coefficient set 
C={12305, 20746}

› Top adder computes

› Bottom adder computes

52



Base Topologies

› Topology A has potentially a larger coefficient 
set ±Ap ± B1 𝜎 𝑠 chooses operation

› Topology B allows symmetric coefficients 
around 0 as Ap-B1=-(Ap−B1)

› Maximum possible set size is 2

53

Topology A Topology B



Bit Level Slice Mapping

54

Works for any 6-LUT FPGA such as Xilinx Ultrascale or Intel Stratix X



RCCM Circuits
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Distribution Matching

› Weights in a DNN follow a distribution (Gaussian-like)
› RCCM coefficients can be chosen to match

- Find best 5 in terms of Kullback-Leibler divergence, then choose set with largest number 
of coefficients
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DNN Training using AddNet

› Trained using straight-through 
estimator (STE) 
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Distribution-Optimised Coefficient Sets (for Gaussian)

› AlexNet top1/top5: 53.8%/76.9% (unoptimised) vs 55.8%/79.8% (optimised)
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Implementation
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Resource Utilization
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Power Consumption

› 8-bit disab. = DSP disabled, 8-bit enab. = DSP enabled

61



Accuracy-Area Tradeoff Compared with Uniform Multipliers

62



Summary

› Described AddNet which uses constant coefficient multipliers to save area
› Showed it is advantageous over uniform multipliers
› Uses trainability of DNNs to match computer architecture
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Unrolling Ternary Networks

Stephen Tridgell, Martin Kumm, Martin Hardieck, David 
Boland, Duncan Moss, Peter Zipf, Philip H.W. Leong
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› This talk

- Two speed multiplier with different critical paths for zero and non-zero recodings

- PIR-DSP block to support a range of precisions

- AddNet which uses k-levels of shifted values as multipliers

- A fully pipelined DNN implementation with ternary coefficients



Introduction

› Not possible to make fully parallel implementations of a NN on contemporary 
FPGA due to size 

› Fit entire DNN on FPGA by exploiting unstructured sparsity and the following 
techniques:
1. Buffering of streaming inputs in a pipelined manner

2. Ternary weights implemented as pruned adder trees

3. Common subexpression merging 

4. 16-bit bit serial arithmetic to minimize accuracy loss with low area

5. Sparsity control
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Buffering of Streaming Inputs
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Implement Pipelined 3x3 Convolution

Input FIFO outputs the
pixel each cycle to both Buffer A and the 
first stage of a shift register.
Buffer A and Buffer B delay the output by 
the image width



Ternary Weights as Pruned Adder Trees

› Weights are ternary
- So multiplication with ±1 is either addition or subtraction

- Multiplication with 0 makes matrix sparse
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Common Subexpression Elimination

› Weights are ternary
- Reduces convolution to 

constructing adder tree

- Subexpression merged to 
reduce implementation
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Common Subexpression Elimination (RPAG)

› RPAG Algorithm
- Greedy algorithm for the related Multiple Constant Multiplication problem

- Looks at all the outputs of a matrix-vector multiplication and calculates the minimal tree 
depth, d, required to get the results

- Tries to determine the minimum number of terms needed at depth d − 1 to compute the 
terms at depth d and iterates until d=1 (whole tree generated)
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Top-down CSE (TD-CSE)

› Builds multiple adder trees from the inputs to the outputs by creating an adder 
each iteration

› Count frequency of all size 2 subexpressions, replace most frequent (x6=x2+x3)
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Bottom-up CSE (BU-CSE)

› Starts at the outputs and works back to the inputs
› More computation than TD-CSE but can find larger common subexpressions
› Largest common subexpression is then selected to be removed e.g. x6 =x0+x2+x3

appears twice and is added to the bottom row
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Comparison of CSE Techniques for all Layers

› RPAG too computationally expensive for layers 2-6
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Digit Serial Arithmetic

› Used 16-bit fixed point
› Each layer followed by batch 

normalization with floating point 
scaling factor

› Suppose that for a given layer, p 
pixels arrive at the same time
- For p≥ 1 have p adder trees in 

parallel
- For p < 1 word or bit-serial adders 

can match input rate with hardware 
resources

- 4-bit digit serial has 1/4 area

- 1-bit bit serial has 1/16 area

› Avoids idle adders
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Network Studied

› VGG-7 network
› Ternary weights
› 16-bit activations
› Accept a single pixel every cycle 

(p=1)
- W*W image takes W*W cycles
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Sparsity Control

› CIFAR10 dataset
› Image padded with 4 pixels each side and randomly cropped back to 32x32
› Weights are compared with threshold

- 0 if less than threshold, 𝑠(±1) otherwise (s is a scaling factor)

› We introduce the idea of changing 𝜖 to control sparsity 
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Breakdown of Layer Sparsity
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Improvement in using CSE
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Implementation

› System implemented on Ultrascale+ VU9P @ 125 MHz
› Open Source Verilog generator

- https://github.com/da-steve101/binary_connect_cifar

› Generated code using in AWS F1 implementation
- https://github.com/da-steve101/aws-fpga
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https://github.com/da-steve101/binary_connect_cifar


Area Breakdown
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Accuracy
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Comparison with ASIC and FPGA implementations



Accuracy vs Speed
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Summary

› Presented method to unroll convolution with ternary weights and make parallel 
implementation
- Exploits unstructured sparsity with no overhead

- Uses CSE, sparsity control and digit serial adders to further reduce area

- Limited amount of buffering and only loosely dependent on image size

› As larger FPGAs become available this technique may become more favourable
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Summary of the Four Techniques

Flexibility Throughput Area
Two speed Normal Normal Normal
PIR High High High
AddNet Reduced High Low
Unrolled ternary Ternary High Low
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› Multipliers form the basis for the computational part of ML
› Presented a number of different techniques to trade off flexibility, throughput and 

area
› First three are applicable to ASICs or FPGA hard blocks but unrolled ternary is 

FPGA-specific
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