
Multipliers for FPGA Machine Learning
Applications

Philip Leong (梁恆惠) | Computer Engineering Laboratory
School of Electrical and Information Engineering,

The University of Sydney

2

Australia

Population: ~25M (2017)
Europe: ~743M (2018)
Shanghai: ~24M (2018)

Population density: 3.20 people per km2 (Shanghai 2059)

Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems
- Novel architectures, applications and design techniques using VLSI, FPGA and parallel

computing technology

› Research
- Reconfigurable computing

- Machine learning

- Signal processing

› Collaborations
- Xilinx, Intel, Exablaze

- Defence and DSTG

- clustertech.com

3

Overview

› Multipliers (and adders) play a key role in the implementation of DNNs
› This talk

- Two speed multiplier with different critical paths for zero and non-zero recodings

- PIR-DSP block to support a range of precisions

- AddNet which uses k-levels of shifted values as multipliers

- A fully pipelined DNN implementation with ternary coefficients

› These slides are available at https://phwl.github.io/talks

https://phwl.github.io/talks

A Two Speed Multiplier

D. J. M. Moss, D. Boland, and P. H. W. Leong

Overview

› Multipliers (and adders) play a key role in the implementation of DNNs
› This talk

- Two speed multiplier with different critical paths for zero and non-zero recodings

- PIR-DSP block to support a range of precisions

- AddNet which uses k-levels of shifted values as multipliers

- A fully pipelined DNN implementation with ternary coefficients

Unsigned Multiplication

7

› Shift-and-Add Algorithm

Example: Multiply 118d by 99d

Multiplicand
Multiplier

Step1) Initialize

Step2) Find partial products

Step3) Sum up the shifted
partial products

118d
99d

1062d
1062 d
11682d

Two’s Complement
Method

Step1) Initialize

Step2) Find partial
products

Step3) Sum up the
shifted partial
products

118d = 01110110b
99d = 01100011b

01110110b

Convert 2’s-Comp back to decimal:
0010 1101 1010 0010 = 11682d

00000000 b
00000000 b

01110110 b
01110110 b

00000000 b
010110110100010 b

01110110 b
00000000 b

Source: Shawn Nicholl, Xilinx

Signed Multiplication

› How can we handle signed multiplication?
› Could

- multiply absolute values

- separately calculate the sign

- negate if necessary

› But …

8

Signed Multiplication using Booth Recoding

› Booth Recoding
- Reduce the number of partial products by recoding the multiplier operand

- Works for signed numbers

9

Example: Multiply -118 by -99

Recall, 99 = 0110 0011b

-99 = 1001 1101b

Radix-2
Booth
Recoding

0101 1110-99 =

An An-1
Partial
Product

0 0 0
0 1 +B
1 0 -B
1 1 0

Low-order Bit
Last Bit Shifted Out

Source: Shawn Nicholl, Xilinx

Example of Booth Radix-2 Recoding

› -99=(-27+25-22+21-20)

10

Multiply -118 by -99

Radix-2 Booth

Step1) Initialize

Step2) Find partial
products

Step3) Sum up the
shifted partial
products

-118 = 0111 0110b

01110110b

Convert 2’s-Comp back to decimal:
0010 1101 1010 0010 = 11682d

00000000 b
00000000 b

1110001010 b
000000000 b
01110110 b

0010110110100010b

110001010 b
01110110 b

0101 1110-99 =
-B
B

-B
0
0
B
0

-B

B = -118 = 1000 1010b
-B = 118 = 0111 0110b

A = -99 = 1001 1101b

Sign Extension

0101 1110-99 =

Source: Shawn Nicholl, Xilinx

Booth Radix-4 Multiplication

11

› Similar to Radix-2, but
uses looks at two low-
order bits at a time
(instead of 1)

› (-99=-2.43+2.42-1.41+1.40)

Yi+2 Yi+1 Yi ei

0 0 0 0
0 0 1 +B
0 1 0 +B
0 1 1 +2B
1 0 0 -2B
1 0 1 -B
1 1 0 -B
1 1 1 0

Low-order Bits

Last Bit Shifted Out

Recall, 99d = 0110 0011b

1001 1100b
1b

-99d = 1001 1101b
Radix-4
Booth
Recoding

-99d = 1122

Source: Shawn Nicholl, Xilinx

Example of Booth Radix-4 Multiplication

12

Radix-4 Booth

Step1) Initialize

Step2) Find partial
products

Step3) Sum up the
shifted partial
products

-118d = 0111 0110b

Convert 2’s-Comp back to decimal:
0010 1101 1010 0010 = 11682d

111111110001010b

011101100 b
0010110110100010 b

01110110 b
11100010100 b

B
-B
2B

-
2B

B = -118d = 1000 1010b
-B = 118d = 0111 0110b

2B = -236d = 1 0001 0100b
-2B = 236d = 0 1110 1100b

A = -99d = 1001 1101b

Example: Multiply -118d by -99d

Sign Extension

-99d = 1122

-99d = 1122

- Reduces number of partial products by half!
Source: Shawn Nicholl, Xilinx

Booth Radix-4 Multiplier Implementation

13

Booth Radix-4 Multiplier Datapath

14

Two-Speed Multiplier

15

• Booth Radix-4 datapath split into 2 sections, each with own critical path

• Non-zero encodings take !𝐾𝜏 (add) and zero take 𝜏 (skip)

• Naturally supports sparse problems

Two-speed multiplier Execution

16

Results

17

Area * Time Improvement of TSM

18

Summary

› Variant of the serial-parallel modified radix-4 Booth multiplier
› Adds only the non-zero Booth encodings and skips over the zero operations
› Two sub-circuits with different critical paths are utilised so that throughput and

latency are improved for a subset of multiplier values
› For bit widths of 32 and 64, our optimisations can result in a 1.42-3.36x

improvement over the standard parallel Booth multiplier
› Future work: explore training NN with weights to minimise execution time on

TSM

PIR-DSP: An FPGA DSP block Architecture
for Multi-Precision Deep Neural Networks

SeyedRamin Rasoulinezhad, Hao Zhou, Lingli Wang,
and Philip H.W. Leong

Overview

› Multipliers (and adders) play a key role in the implementation of DNNs
› This talk

- Two speed multiplier with different critical paths for zero and non-zero recodings

- PIR-DSP block to support a range of precisions

- AddNet which uses k-levels of shifted values as multipliers

- A fully pipelined DNN implementation with ternary coefficients

› Introduction
› PIR-DSP Architecture
› Results
› Conclusion

22

Overview

Embedded Deep Neural Networks

› DNNs for embedded applications share two features to reduce computation and
storage requirements
- Low precision (from 1-16 bits)

- Depthwise separable convolutions

23

Standard Convolution
(standard)

Depthwise Convolution (DW) Pointwise Convolution (PW)

24

Computation and Storage for Embedded DNNs

Standard DW PW FC OtherStandard DW PW FC Other

NASNet-A4@1056
MobileNet-v2
ShuffleNet-v2
SqueezeNet

Distribution of # of MACs Distribution of # of parameters

Motivation (1)

Motivation (2)

25

Low-Precision Neural Networks

Faraone et al, “SYQ: Learning Symmetric Quantization For Efficient Deep Neural Networks”, CVPR’18

Imagenet accuracy with binary and ternary weights and
8-bit activations

Aims

› Optimise FPGA DSP architecture to better support
- Efficient implementation of embedded DNNs
- Wordlengths down to ternary and binary

› Talk will focus on convolutions

26

› Introduction
› PIR-DSP Architecture
› Results
› Conclusion

27

Overview

Existing DSPs

› Xilinx DSP48
- 27×18 multiplier, 48-bit ALU

(Add/Sub/Logic), 27-bit pre-adder, Wide
96bit XOR, 48-bit comparator

28

- No support for low-precision computations

- No run-time configuration

- 1D arrangement inefficient for implementing 2D systolic arrays

› Intel (Multiprecision)
- 27×27 multiplier decomposable to two

19×18, Compile-time configurable
Coefficient registers, Two 18-bit pre-
adder, 54-bit adder

PIR-DSP

› PIR-DSP: Optimized version of DSP48
- Precision: Multiplier architecture

- Interconnect: Shift-Reg

- Reuse : RF/FIFO

29

PIR-DSP

DSP48

Precision (1)

› Based on two approaches:
1. Chopping

2. Recursive decomposition

30

Precision (2)

› Notation: M×NCijDk
› PIR-DSP multiplier: 27×18C32D2

- Chopping factors 3 and 2 respectively for 27 and 18
- (27=9+9+9)×(18=9+9)
- Six 9×9 multiplier

- Decomposing factor is 2
- Each 9×9 multiplier decomposes to Two 4×4 or Four 2×2 multipliers

› PIR-DSP Modes:
- One 27×18 à 1 MAC
- Two 9×9 + 9×9 + 9×9 à 6 MACs
- Four 4×4 + 4×4 + 4×4 à 12 MACs
- Eight 2×2 + 2×2 + 2×2 à 24 MACs

31

Parameterised Decomposable MAC unit

Interconnect (1)

› Three types of convolutions
1- Depth-wise: using three PIR-DSPs

2- Standard: based on depth-wise convolution
implementation and adding the partial results

32

2D systolic array (Eyeriss) conventional ours depthwise convolution

filter r3

sums

ifmap r1
filter r2

filter r1

ifmap r2

ifmap r3
ifmap r4

ifmap r5

Interconnect (2)

33

3- Point-wise

Interconnect (2)

34

3- Point-wise

Interconnect (2)

35

3- Point-wise

Interconnect (2)

36

3- Point-wise

Interconnect (2)

37

3- Point-wise

Interconnect (2)

38

3- Point-wise

Interconnect (2)

39

3- Point-wise

Interconnect (2)

40

3- Point-wise

Interconnect (2)

41

3- Point-wise

Reuse

42

Depthwise Convolution (DW) Pointwise Convolution (PW)

› Introduction
› PIR-DSP Architecture
› Results
› Conclusion

43

Overview

Area and Frequency

› SMIC 65-nm standard cell technology
- Synopsis Design Compiler 2013.12

44

Version Area Ratio Fmax
DSP48E2 1.0 463
+ M27×18C32D2 MAC-IP 1.14 358
+ interconnect 1.18 362
+ reuse 1.28 357

Energy

› Other networks are similar

45

Related Work

› Sits between Sharma (low-precision) and Boutros (high-precision)

46

Bitfusion [56]
ISCA’18

Ours Boutros [44]
FPL’18

Ours

Area 0.24 1 0.77 1
Performance Per Area
2x2 1 0.4
4x4 1 0.7 1 1.2
8x8 1 1.4 1 1.2
16x16 1 0.4
27x18 1 0.8

› Introduction
› PIR-DSP Architecture
› Results
› Conclusion

47

Overview

Summary

› Described optimizations to the DSP48 to support a range of low-precision DNNs
and quantified their impact on performance
- Precision, Interconnect and Reuse

- designs are available at http://github.com/raminrasoulinezhad/PIR-DSP

› Future research
- Consider what we can do if we give up DSP48-like functionality

- Other interconnect optimisations

48

AddNet: Deep Neural Networks using
FPGA-Optimized Multipliers

Julian Faraone, Martin Kumm Member, Martin Hardieck,
Peter Zipf, Xueyuan Liu, David Boland, Philip H.W. Leong

Overview

› Multipliers (and adders) play a key role in the implementation of DNNs
› This talk

- Two speed multiplier with different critical paths for zero and non-zero recodings

- PIR-DSP block to support a range of precisions

- AddNet which uses k-levels of shifted values as multipliers

- A fully pipelined DNN implementation with ternary coefficients

Introduction

› Reconfigurable constant coefficient multipliers (RCCMs) implement y = cx for a
fixed set of coefficients c using only adds and shifts e.g.

› Present FPGA logic element optimised RCCMs which implement large sets c
with few resources

› When applied to neural networks (AddNet), achieve up to 50% resource savings
over traditional 8-bit quantized networks

Reconfigurable constant coefficient multipliers (RCCM)

› Another example has the coefficient set
C={12305, 20746}

› Top adder computes

› Bottom adder computes

52

Base Topologies

› Topology A has potentially a larger coefficient
set ±Ap ± B1 𝜎 𝑠 chooses operation

› Topology B allows symmetric coefficients
around 0 as Ap-B1=-(Ap−B1)

› Maximum possible set size is 2

53

Topology A Topology B

Bit Level Slice Mapping

54

Works for any 6-LUT FPGA such as Xilinx Ultrascale or Intel Stratix X

RCCM Circuits

55

Distribution Matching

› Weights in a DNN follow a distribution (Gaussian-like)
› RCCM coefficients can be chosen to match

- Find best 5 in terms of Kullback-Leibler divergence, then choose set with largest number
of coefficients

56

DNN Training using AddNet

› Trained using straight-through
estimator (STE)

57

Distribution-Optimised Coefficient Sets (for Gaussian)

› AlexNet top1/top5: 53.8%/76.9% (unoptimised) vs 55.8%/79.8% (optimised)

58

Implementation

59

Resource Utilization

60

Power Consumption

› 8-bit disab. = DSP disabled, 8-bit enab. = DSP enabled

61

Accuracy-Area Tradeoff Compared with Uniform Multipliers

62

Summary

› Described AddNet which uses constant coefficient multipliers to save area
› Showed it is advantageous over uniform multipliers
› Uses trainability of DNNs to match computer architecture

63

Unrolling Ternary Networks

Stephen Tridgell, Martin Kumm, Martin Hardieck, David
Boland, Duncan Moss, Peter Zipf, Philip H.W. Leong

Overview

› Multipliers (and adders) play a key role in the implementation of DNNs
› This talk

- Two speed multiplier with different critical paths for zero and non-zero recodings

- PIR-DSP block to support a range of precisions

- AddNet which uses k-levels of shifted values as multipliers

- A fully pipelined DNN implementation with ternary coefficients

Introduction

› Not possible to make fully parallel implementations of a NN on contemporary
FPGA due to size

› Fit entire DNN on FPGA by exploiting unstructured sparsity and the following
techniques:
1. Buffering of streaming inputs in a pipelined manner

2. Ternary weights implemented as pruned adder trees

3. Common subexpression merging

4. 16-bit bit serial arithmetic to minimize accuracy loss with low area

5. Sparsity control

66

Buffering of Streaming Inputs

67

Implement Pipelined 3x3 Convolution

Input FIFO outputs the
pixel each cycle to both Buffer A and the
first stage of a shift register.
Buffer A and Buffer B delay the output by
the image width

Ternary Weights as Pruned Adder Trees

› Weights are ternary
- So multiplication with ±1 is either addition or subtraction

- Multiplication with 0 makes matrix sparse

68

Common Subexpression Elimination

› Weights are ternary
- Reduces convolution to

constructing adder tree

- Subexpression merged to
reduce implementation

69

Common Subexpression Elimination (RPAG)

› RPAG Algorithm
- Greedy algorithm for the related Multiple Constant Multiplication problem

- Looks at all the outputs of a matrix-vector multiplication and calculates the minimal tree
depth, d, required to get the results

- Tries to determine the minimum number of terms needed at depth d − 1 to compute the
terms at depth d and iterates until d=1 (whole tree generated)

70

Top-down CSE (TD-CSE)

› Builds multiple adder trees from the inputs to the outputs by creating an adder
each iteration

› Count frequency of all size 2 subexpressions, replace most frequent (x6=x2+x3)

71

Bottom-up CSE (BU-CSE)

› Starts at the outputs and works back to the inputs
› More computation than TD-CSE but can find larger common subexpressions
› Largest common subexpression is then selected to be removed e.g. x6 =x0+x2+x3

appears twice and is added to the bottom row

72

Comparison of CSE Techniques for all Layers

› RPAG too computationally expensive for layers 2-6

73

Digit Serial Arithmetic

› Used 16-bit fixed point
› Each layer followed by batch

normalization with floating point
scaling factor

› Suppose that for a given layer, p
pixels arrive at the same time
- For p≥ 1 have p adder trees in

parallel
- For p < 1 word or bit-serial adders

can match input rate with hardware
resources

- 4-bit digit serial has 1/4 area

- 1-bit bit serial has 1/16 area

› Avoids idle adders

74

Network Studied

› VGG-7 network
› Ternary weights
› 16-bit activations
› Accept a single pixel every cycle

(p=1)
- W*W image takes W*W cycles

75

Sparsity Control

› CIFAR10 dataset
› Image padded with 4 pixels each side and randomly cropped back to 32x32
› Weights are compared with threshold

- 0 if less than threshold, 𝑠(±1) otherwise (s is a scaling factor)

› We introduce the idea of changing 𝜖 to control sparsity

76

Breakdown of Layer Sparsity

77

Improvement in using CSE

78

Implementation

› System implemented on Ultrascale+ VU9P @ 125 MHz
› Open Source Verilog generator

- https://github.com/da-steve101/binary_connect_cifar

› Generated code using in AWS F1 implementation
- https://github.com/da-steve101/aws-fpga

79

https://github.com/da-steve101/binary_connect_cifar

Area Breakdown

80

Accuracy

81

Comparison with ASIC and FPGA implementations

Accuracy vs Speed

82

Summary

› Presented method to unroll convolution with ternary weights and make parallel
implementation
- Exploits unstructured sparsity with no overhead

- Uses CSE, sparsity control and digit serial adders to further reduce area

- Limited amount of buffering and only loosely dependent on image size

› As larger FPGAs become available this technique may become more favourable

83

Summary of the Four Techniques

Flexibility Throughput Area
Two speed Normal Normal Normal
PIR High High High
AddNet Reduced High Low
Unrolled ternary Ternary High Low

84

› Multipliers form the basis for the computational part of ML
› Presented a number of different techniques to trade off flexibility, throughput and

area
› First three are applicable to ASICs or FPGA hard blocks but unrolled ternary is

FPGA-specific

References

[1] D. J. M. Moss, D. Boland, and P. H. W. Leong. A two-speed, radix-4, serial–parallel
multiplier. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
27(4):769–777, April 2019. (doi:10.1109/TVLSI.2018.2883645)
[2] SeyedRamin Rasoulinezhad, Hao Zhou, Lingli Wang, and Philip H.W. Leong. PIR-
DSP: An FPGA DSP block architecture for multi-precision deep neural networks.
In Proc. IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 1–8, 2019. (doi:10.1109/FCCM.2019.00015)
[3] Julian Faraone, Martin Kumm, Martin Hardieck, Peter Zipf, Xueyuan Liu, David
Boland, and Philip H.W. Leong. AddNet: Deep neural networks using FPGA-optimized
multipliers. IEEE Transactions on VLSI Systems, page to appear (accepted 11 Aug
2019), 2019. (doi:10.1109/TVLSI.2019.2939429)
[4] Stephen Tridgell, Martin Kumm, Martin Hardieck, David Boland , Duncan Moss,
Peter Zipf, and Philip H. W. Leong. Unrolling ternary neural networks. ACM
Transactions on Reconfigurable Technology and Systems, page to appear (accepted
30 Aug 2019), 2019.

85

https://phwl.github.io/assets/papers/tsm_tvlsi19.pdf
http://dx.doi.org/10.1109/TVLSI.2018.2883645
https://phwl.github.io/assets/papers/pirdsp_fccm19.pdf
http://dx.doi.org/10.1109/FCCM.2019.00015
https://phwl.github.io/assets/papers/addnet_tvlsi19.pdf
http://dx.doi.org/10.1109/TVLSI.2019.2939429
https://phwl.github.io/assets/papers/ternary_trets19.pdf

86

https://phwl.github.io/talks

https://phwl.github.io/talks

