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Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems  
- Novel architectures, applications and design techniques using FPGAs

› Research: reconfigurable computing, radio frequency machine learning
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Motivation

› CPUs/GPUs designed to support 
datatypes of fixed wordlength
- Double, float, long, short, char

› FPGA and ASICs can provide 
custom datapaths of arbitrary 
wordlength
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Tradeoff between performance and precision

On-chip
weights
~70 M

~10 M

~5 M

~2 M

Precision

1b

8b

16b

32b

30x

Peak TOPS 

~66

~4

~1

~0.3

200x

Slide: Xilinx

› So how can we utilize low-precision for inference and training?



Outline

› Block Minifloat
› Time series Prediction
› Transfer Learning
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Block Minifloat
Sean Fox



Motivation

§ Training has greater efficiency problem than inference!
§ E.g. 3x more MACs, much higher memory requirements

§ Specialized number representations have been proposed
§ Alternatives to FP32/FP16
§ 4-8 bits for weights, activations and gradients
§ Cheaper and faster training systems
§ Focus on Edge (not sure about the Data Center)



Minifloat

§ Narrow floating-point representation
§ Our range between 4-8 bits
§ NaN/Infinity NOT supported

mantissaexponentsign
IEEE754 (FP32)

mes
Minifloat

§ Pros:
§ Memory (fewer bits)
§ Smaller hardware

§ Cons:
§ Dynamic Range (exponent 

bits)



Block Minifloat

§ Share exponent bias across blocks of N minifloat numbers

§ Dynamic range (with fewer bits)
§ Denser dot-products in 

hardware



Block Minifloat

§ Share exponent bias across blocks of N minifloat numbers

§ Dynamic range (with fewer bits)
§ Denser dot-products in 

hardware

§ Align wtih max exponent
§ Underflow is tolerated 



Block Minifloat
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Block Minifloat



§ Kulisch Accumulator: Fixed point accumulator wide enough to 
compute error-free sum of floating-point products

§ Integer-like hardware complexity for exponent <=4 bits

Fused Multiply-Add (FMA) with 
Kulisch Accumulation



Implementation Details

§ Three techniques to reduce data loss:
§ Gradual underflow, Block Design, Hybrid Formats 

§ Simulate specialized BM hardware on GPU (with FP32)
§ Apply Block Minifloat to all weights, acts, grads

§ Our Spectrum of Block Minifloats



Data Loss Experiments



End-to-end GPU Training with BM

• Weight, activation and gradient tensors quantized to BM with stochastic rounding
• Kulisch accumulator ensures our dot products are exact (can use FP CUDA lib directly)
• FP32 used for Kulisch to floating-point conversion, block minifloat alignments, quantization etc.
• Approx 1x floating point operation every N MACs, 5x slowdown



Training Experiments (1)

ResNet18 Validation



Training Experiments (2)

Transformer on IWSLT’14 DE-En dataset



Training Experiments Summary

Training Accuracy 
with BM ≈ FP32



RTL Synthesis Results

§ Designs synthesized at 750MHz with Cadence RTL Compiler 
and 28nm cell library
§ Fused multiply-add (FMA)
§ 4x4 systolic matrix mutlipliers

BM8 area and 
power comparable 
to INT8



Model: ResNet-18
Dataset: ImageNet

Imagenet

19

BM units are:
- Smaller
- Consume less 

Power
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Time Series Prediction
Wenjie Zhou



BM Inference and Training

› Previous work used GPU implementations with 28nm ASIC study
› Here we explore FPGA implementation

- NBEATS Inference and Training implementation using 4-bit mixed-precision BM 

- BM GEMM array and Training accelerator architecture for NBEATS 
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NBEATS Model

› N-beats: Neural basis 
expansion analysis for 
interpretable
time series forecasting. 
ICLR, 2019

› Achieves state of the art 
time series prediction 
results

› NN comprises mainly FC 
layers with shortcut 
connections



Inference Accelerator Architecture
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GEMM

Vector Addition



GEMM Systolic Architecture

› Each PE performs multiplication and Kulisch accumulation

› Intermediate results are stored in the Kul buffer

› Result transformed to a BM format

24



Accuracy (Since Improved)
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Accuracy of BM8 is similar to FP32

Benchmark M4 dataset

Dataset Yearly, Quarterly, Monthly, 
Daily

Loss symmetric mean absolute 
percentage error (sMAPE)



Resource Utilisation
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Area of BM8 is similar to INT8 but smaller than FP16 



Inference Performance
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BM8 performance and power is close to INT8



NBEATS Training Accelerator Architecture
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Mixed-precision Block Minifloat Training
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Minifloat 
To Fixed

Minifloat 
To Fixed

Psum

Accum

>>Ka >>Kb

ebias δ

Normalization

BM MAC unit (PE) BM GEMM array



NBEATS Accuracy (Preliminary)

› Dataset: M4-Yearly, validation loss: SMAPE loss, block size: 64 
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Loss Configuration
weight activation error gradient

BM4(1) 14.471649 BM<2,1> unsigned 
BM<0,4>

BM<0,3> BM<0,3>

BM4(2) 14.463654 BM<2,1> unsigned 
BM<0,4>

BM<0,3> FP32

BFP8 12.914178 BM<0,7> BM<0,7> BM<0,7> BM<0,7>

BM8 12.939716 BM<2,5> BM<2,5> BM<0,7> BM<0,7>

FP32 12.924581



Transfer Learning
Chuliang Guo



Motivation

› Re-training light-weight CNNs at edge for various applications
- Private and secure

- No personal information uploaded to clouds
- Low-latency

- Locally training at edge without sending to cloud servers 
- Reconfigurable and customised logic resources tailored for low-

precision
- Energy efficient

- Faster than CPUs- e.g., 10X throughput/latency performance
- More energy efficient than GPUs- e.g., 1/10 power consumption



› Back-propagation using SGD
– 3X workload of inference

CNN Training Workflow

Fig. 1 CNN training workflow: (1) Conv in forward path, (2) transposed 
Conv in backward path, (3) dilated Conv in gradient generation, and 
(4) weight update.

Dilated Convolution
(Gradient generation)

[1] Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Arbitrary stride Convolution
(Forward)

Transposed Convolution
(Backward)



› Layer-wise CNN blocks
– Unified bm(2,5) representation
- Non-unit stride Conv support
- Simplified mult/add/MAC
- Fused BN&ReLU

› Main blocks
- Unified Conv

- Conv & transposed Conv
- Dilated Conv

- Weight kernel partition

ResNet20/VGG-like accelerator

Fig. 3 Overall architecture of the generic training accelerator for 
layer-by-layer processing. BN and ReLU are fused.



› Shortcut addition after BN and ReLu functions (enabling fusing)
› Unified bm(2,5) for activations, weights, errors, and gradients (simpler HW)
› Full precision accuracy with these changes

CIFAR10 Training from Scratch



Transfer learning application

– Channel tiling accelerator
– Updating last several Conv & 

FC
• Shortened back-propagation
• Reduced BRAM for 

activations
• Faster convergence

Fig. 8 Transfer learning example from CIFAR-100 to CIFAR-10.  



Resource and Power



Latency Breakdown
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Conclusion



§ Low-precision formats have wide applicability for inference and 
training in Edge applications 
§ Doesn’t necessitate accuracy reduction

§ Faster Training is possible using BM
§ Fewer bits – important for memory-bound
§ Narrow exponents – denser MAC in compute-bound

What are the applications?

Summary
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