Block Minifloat Arithmetic for Deep Learning Inference and Training

Philip Leong Director, Computer Engineering Laboratory http://phwl.org/talks

Computer Engineering Laboratory

- > Focuses on how to use parallelism to solve demanding problems
 - Novel architectures, applications and design techniques using FPGAs
- > Research: reconfigurable computing, radio frequency machine learning

Tradeoff between performance and precision

- CPUs/GPUs designed to support datatypes of fixed wordlength
 - Double, float, long, short, char
- FPGA and ASICs can provide custom datapaths of arbitrary wordlength

Precision	Peak TOPS		On-chip weights		
1b	~66	^	~70 M	<u> </u>	
8b	~4		~10 M		
16b	~1	200x	~5 M	30x	
32b	~0.3		~2 M		

Slide: Xilinx

So how can we utilize low-precision for inference and training?

- Block Minifloat
- > Time series Prediction
- Transfer Learning

Block Minifloat

Sean Fox

- Training has greater efficiency problem than inference!
 - E.g. 3x more MACs, much higher memory requirements
- Specialized number representations have been proposed
 - Alternatives to FP32/FP16
 - 4-8 bits for weights, activations and gradients
 - Cheaper and faster training systems
 - Focus on Edge (not sure about the Data Center)

- Narrow floating-point representation
 - Our range between 4-8 bits
 - NaN/Infinity NOT supported

				mantissa	oonent	expo	sign
IEEE754 (FP32)							
	m	е	S				
Minifloat							

- Pros:
 - Memory (fewer bits)
 - Smaller hardware

- Cons:
 - Dynamic Range (exponent bits)

Share exponent bias across blocks of N minifloat numbers

- Dynamic range (with fewer bits)
- Denser dot-products in hardware

Share exponent bias across blocks of N minifloat numbers

- Dynamic range (with fewer bits)
- Denser dot-products in hardware

- Align wtih max exponent
- Underflow is tolerated

Block Minifloat

Fixed

Minifloat

BFP

Block Minifloat

Fused Multiply-Add (FMA) with Kulisch Accumulation

- Kulisch Accumulator: Fixed point accumulator wide enough to compute error-free sum of floating-point products
- Integer-like hardware complexity for exponent <=4 bits</p>

Implementation Details

- Three techniques to reduce data loss:
 - Gradual underflow, Block Design, Hybrid Formats
- Simulate specialized BM hardware on GPU (with FP32)
 - Apply Block Minifloat to all weights, acts, grads
- Our Spectrum of Block Minifloats

BM8 (ours)	(2,5)/(4,3)
BM7 (ours)	(2,4)/(4,2)
BM6 (ours)	(2,3)/(3,2)
BM5 (ours)	(2,2)/(3,1)
BM5-log (ours)	(4,0)/(4,0)
BM4 (ours)	(2,1)/(3,0)
BM4-log (ours)	(3,0)/(3,0)

Data Loss Experiments

2.4 area cost range 24

1.6

1.2

2.3 2⁴ 2⁵ 2⁶ 2⁷ 2⁸

(a) Validation Accuracy: Training with denormal numbers on ImageNet

(b) HW (left axis) vs Range (right axis): Selecting the block size

(c) Minifloat scaling by varying the exponent base

End-to-end GPU Training with BM

(c) Bwd weight grad. and update

- Weight, activation and gradient tensors quantized to BM with stochastic rounding
- Kulisch accumulator ensures our dot products are exact (can use FP CUDA lib directly)
- FP32 used for Kulisch to floating-point conversion, block minifloat alignments, quantization etc.
- Approx 1x floating point operation every N MACs, 5x slowdown

Training Experiments (1)

Scheme	BFP (ours)	BM (ours)	∇
6-bit	67.0	69.0	+2.0
8-bit	69.2	69.8	+0.6

ResNet18 Validation

Training Experiments (2)

Transformer on IWSLT'14 DE-En dataset

Training Experiments Summary

Model (Dataset) [Metric]	FP32	BM8
AlexNet (ImageNet)	56.0	56.2
EfficientNet-b0 (small ImageNet)	62.6	61.8
LSTM (PTB)[Val ppl.]	84.7	87.33
Transformer-base (IWSLT)[BLEU]	32.3	31.8
SSD-Lite (MbNetV2) (VOC)[mAP]	68.6	68.0

Training Accuracy with BM ≈ FP32

RTL Synthesis Results

- Designs synthesized at 750MHz with Cadence RTL Compiler and 28nm cell library
 - Fused multiply-add (FMA)
 - 4x4 systolic matrix mutlipliers

Component	Area (μm^2)	Power (μW)
FP32	4782	10051
FP8 (w/ FP16 add)	829	1429
INT8 (w/ INT32 add)	417	1269
BM8	391	1141
BM6	200	624
INT8 (4x4 systolic)	7005	20253
FP8 (4x4 systolic)	18201	56202
BM8 (4x4 systolic)	6976	18765

BM8 area and power comparable to INT8

BM units are:

- Smaller
- Consume less
 Power

Model: ResNet-18 Dataset: ImageNet

Time Series Prediction

Wenjie Zhou

BM Inference and Training

- > Previous work used GPU implementations with 28nm ASIC study
- Here we explore FPGA implementation
 - NBEATS Inference and Training implementation using 4-bit mixed-precision BM
 - BM GEMM array and Training accelerator architecture for NBEATS

NBEATS Model

- N-beats: Neural basis expansion analysis for interpretable time series forecasting. ICLR, 2019
- Achieves state of the art time series prediction results
- NN comprises mainly FC layers with shortcut connections

Inference Accelerator Architecture

GEMM Systolic Architecture

- Each PE performs multiplication and Kulisch accumulation
- > Intermediate results are stored in the Kul buffer
- Result transformed to a BM format

Accuracy (Since Improved)

Benchmark	M4 dataset		
Dataset	Yearly, Quarterly, Monthly, Daily		
Loss	symmetric mean absolute percentage error (sMAPE)		

Accuracy of BM8 is similar to FP32

Area of BM8 is similar to INT8 but smaller than FP16

Inference Performance

BM8 performance and power is close to INT8

NBEATS Training Accelerator Architecture

Mixed-precision Block Minifloat Training

BM MAC unit (PE)

NBEATS Accuracy (Preliminary)

Dataset: M4-Yearly, validation loss: SMAPE loss, block size: 64

	Loss	Configuration						
		weight	activation	error	gradient			
BM4(1)	14.471649	BM<2,1>	unsigned BM<0,4>	BM<0,3>	BM<0,3>			
BM4(2)	14.463654	BM<2,1>	unsigned BM<0,4>	BM<0,3>	FP32			
BFP8	12.914178	BM<0,7>	BM<0,7>	BM<0,7>	BM<0,7>			
BM8	12.939716	BM<2,5>	BM<2,5>	BM<0,7>	BM<0,7>			
FP32	12.924581							

Transfer Learning

Chuliang Guo

- Re-training light-weight CNNs at edge for various applications
 - Private and secure
 - No personal information uploaded to clouds
 - Low-latency
 - Locally training at edge without sending to cloud servers
 - Reconfigurable and customised logic resources tailored for lowprecision
 - Energy efficient
 - Faster than CPUs- e.g., 10X throughput/latency performance
 - More energy efficient than GPUs- e.g., 1/10 power consumption

CNN Training Workflow

> Back-propagation using SGD

- 3X workload of inference

Fig. 1 CNN training workflow: (1) Conv in forward path, (2) transposed Conv in backward path, (3) dilated Conv in gradient generation, and (4) weight update.

ResNet20/VGG-like accelerator

Layer-wise CNN blocks

- Unified bm(2,5) representation
- Non-unit stride Conv support
- Simplified mult/add/MAC
- Fused BN&ReLU
- Main blocks
 - Unified Conv
 - Conv & transposed Conv
 - Dilated Conv
 - Weight kernel partition

Fig. 3 Overall architecture of the generic training accelerator for layer-by-layer processing. BN and ReLU are fused.

CIFAR10 Training from Scratch

- Shortcut addition after BN and ReLu functions (enabling fusing)
- Unified bm(2,5) for activations, weights, errors, and gradients (simpler HW)
- Full precision accuracy with these changes

Fig.3. ResNet20 building block.

Tab. 1. Top-1 accuracy on CIFAR-10.

Model	Precision (FP/BP)	CIFAR-10 Acc %
	FP32	91.11%
ResNet20	BFP8 (i.e., bm(0,7))	89.72%
	bm(2,5)/bm(4,3)	90.54%
	bm(2,5)	90.44%
191-1	FP32	91.04%
Modified	BFP8 (i.e., bm(0,7))	89.95%
ResNet20	bm(2,5)/bm(4,3)	90.72%
	bm(2,5)	90.61%

Transfer learning application

Channel tiling accelerator

- Updating last several Conv & FC
 - Shortened back-propagation
 - Reduced BRAM for activations
 - Faster convergence

Fig. 8 Transfer learning example from CIFAR-100 to CIFAR-10.

TABLE III
RESOURCE UTILISATION OF AND POWER THE RESNET20 ACCELERATOR
(WITH THE STATIC POWER OF 30W).

	CLB	LUT	DSP	BRAM	Vivado(W)	PPS(W)
Full update	28824	166502	686	1171	8.714	35
6 Conv+FC	25589	161129	685	671	7.725	34
2 Conv+FC	21340	129453	621	571	6.779	34

TABLE IV
RESOURCE UTILISATION AND POWER OF THE VGG-LIKE ACCELERATOR (WITH THE STATIC POWER OF 30W).

la .	CLB	LUT	DSP	BRAM	Vivado(W)	PPS(W)
Full update	20688	119086	614	505	6.824	34
3 Conv+FC	20489	119740	613	325	6.499	34

Latency Breakdown

Conclusion

- Low-precision formats have wide applicability for inference and training in Edge applications
 - Doesn't necessitate accuracy reduction
- Faster Training is possible using BM
 - Fewer bits important for memory-bound
 - Narrow exponents denser MAC in compute-bound

What are the applications?

[1] Sean Fox, Seyedramin Rasoulinezhad, Julian Faraone, and David Boland Philip H.W. Leong. A block minifloat representation for training deep neural networks. In *Proc. of The International Conference on Learning Representations (ICLR)*. 2021. URL: bm_iclr21.pdf.

[2] Wenjie Zhou, Haoyan Qi, David Boland, and Philip H.W. Leong. FPGA implementation of N-BEATS for time series forecasting using block minifloat arithmetic. In *Proc. Asia Pacific Conference on Circuits and Systems (IEEE APCCAS 2022)*. 2022. URL: nbeats-apccas22.pdf.

