
Block Minifloat Arithmetic for Deep
Learning Inference and Training

Philip Leong
Director, Computer Engineering Laboratory

http://phwl.org/talks

Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems
- Novel architectures, applications and design techniques using FPGAs

› Research: reconfigurable computing, radio frequency machine learning

2

Motivation

› CPUs/GPUs designed to support
datatypes of fixed wordlength
- Double, float, long, short, char

› FPGA and ASICs can provide
custom datapaths of arbitrary
wordlength

3

Tradeoff between performance and precision

On-chip
weights
~70 M

~10 M

~5 M

~2 M

Precision

1b

8b

16b

32b

30x

Peak TOPS

~66

~4

~1

~0.3

200x

Slide: Xilinx

› So how can we utilize low-precision for inference and training?

Outline

› Block Minifloat
› Time series Prediction
› Transfer Learning

4

2

Block Minifloat
Sean Fox

Motivation

§ Training has greater efficiency problem than inference!
§ E.g. 3x more MACs, much higher memory requirements

§ Specialized number representations have been proposed
§ Alternatives to FP32/FP16
§ 4-8 bits for weights, activations and gradients
§ Cheaper and faster training systems
§ Focus on Edge (not sure about the Data Center)

Minifloat

§ Narrow floating-point representation
§ Our range between 4-8 bits
§ NaN/Infinity NOT supported

mantissaexponentsign
IEEE754 (FP32)

mes
Minifloat

§ Pros:
§ Memory (fewer bits)
§ Smaller hardware

§ Cons:
§ Dynamic Range (exponent

bits)

Block Minifloat

§ Share exponent bias across blocks of N minifloat numbers

§ Dynamic range (with fewer bits)
§ Denser dot-products in

hardware

Block Minifloat

§ Share exponent bias across blocks of N minifloat numbers

§ Dynamic range (with fewer bits)
§ Denser dot-products in

hardware

§ Align wtih max exponent
§ Underflow is tolerated

Block Minifloat

M M M
M M M
M M M
M M M

Minifloat

Fixed BFP

M
M
M
M

M
M
M
M

M
M
M
M

M
M
M
M

M
M
M
M

M
M
M
M

M
M
M
M

M
M
M
M

M
M
M
M

E E E

M E
M E
M E
M E

M E
M E
M E
M E

M E
M E
M E
M E

M E
M E
M E
M E

M E
M E
M E
M E

M E
M E
M E
M E

EEE

Block Minifloat

§ Kulisch Accumulator: Fixed point accumulator wide enough to
compute error-free sum of floating-point products

§ Integer-like hardware complexity for exponent <=4 bits

Fused Multiply-Add (FMA) with
Kulisch Accumulation

Implementation Details

§ Three techniques to reduce data loss:
§ Gradual underflow, Block Design, Hybrid Formats

§ Simulate specialized BM hardware on GPU (with FP32)
§ Apply Block Minifloat to all weights, acts, grads

§ Our Spectrum of Block Minifloats

Data Loss Experiments

End-to-end GPU Training with BM

• Weight, activation and gradient tensors quantized to BM with stochastic rounding
• Kulisch accumulator ensures our dot products are exact (can use FP CUDA lib directly)
• FP32 used for Kulisch to floating-point conversion, block minifloat alignments, quantization etc.
• Approx 1x floating point operation every N MACs, 5x slowdown

Training Experiments (1)

ResNet18 Validation

Training Experiments (2)

Transformer on IWSLT’14 DE-En dataset

Training Experiments Summary

Training Accuracy
with BM ≈ FP32

RTL Synthesis Results

§ Designs synthesized at 750MHz with Cadence RTL Compiler
and 28nm cell library
§ Fused multiply-add (FMA)
§ 4x4 systolic matrix mutlipliers

BM8 area and
power comparable
to INT8

Model: ResNet-18
Dataset: ImageNet

Imagenet

19

BM units are:
- Smaller
- Consume less

Power

2

Time Series Prediction
Wenjie Zhou

BM Inference and Training

› Previous work used GPU implementations with 28nm ASIC study
› Here we explore FPGA implementation

- NBEATS Inference and Training implementation using 4-bit mixed-precision BM

- BM GEMM array and Training accelerator architecture for NBEATS

21

NBEATS Model

› N-beats: Neural basis
expansion analysis for
interpretable
time series forecasting.
ICLR, 2019

› Achieves state of the art
time series prediction
results

› NN comprises mainly FC
layers with shortcut
connections

Inference Accelerator Architecture

23

GEMM

Vector Addition

GEMM Systolic Architecture

› Each PE performs multiplication and Kulisch accumulation

› Intermediate results are stored in the Kul buffer

› Result transformed to a BM format

24

Accuracy (Since Improved)

25

Accuracy of BM8 is similar to FP32

Benchmark M4 dataset

Dataset Yearly, Quarterly, Monthly,
Daily

Loss symmetric mean absolute
percentage error (sMAPE)

Resource Utilisation

26

Area of BM8 is similar to INT8 but smaller than FP16

Inference Performance

27

BM8 performance and power is close to INT8

NBEATS Training Accelerator Architecture

28

Mixed-precision Block Minifloat Training

29

Minifloat
To Fixed

Minifloat
To Fixed

Psum

Accum

>>Ka >>Kb

ebias δ

Normalization

BM MAC unit (PE) BM GEMM array

NBEATS Accuracy (Preliminary)

› Dataset: M4-Yearly, validation loss: SMAPE loss, block size: 64

30

Loss Configuration
weight activation error gradient

BM4(1) 14.471649 BM<2,1> unsigned
BM<0,4>

BM<0,3> BM<0,3>

BM4(2) 14.463654 BM<2,1> unsigned
BM<0,4>

BM<0,3> FP32

BFP8 12.914178 BM<0,7> BM<0,7> BM<0,7> BM<0,7>

BM8 12.939716 BM<2,5> BM<2,5> BM<0,7> BM<0,7>

FP32 12.924581

Transfer Learning
Chuliang Guo

Motivation

› Re-training light-weight CNNs at edge for various applications
- Private and secure

- No personal information uploaded to clouds
- Low-latency

- Locally training at edge without sending to cloud servers
- Reconfigurable and customised logic resources tailored for low-

precision
- Energy efficient

- Faster than CPUs- e.g., 10X throughput/latency performance
- More energy efficient than GPUs- e.g., 1/10 power consumption

› Back-propagation using SGD
– 3X workload of inference

CNN Training Workflow

Fig. 1 CNN training workflow: (1) Conv in forward path, (2) transposed
Conv in backward path, (3) dilated Conv in gradient generation, and
(4) weight update.

Dilated Convolution
(Gradient generation)

[1] Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Arbitrary stride Convolution
(Forward)

Transposed Convolution
(Backward)

› Layer-wise CNN blocks
– Unified bm(2,5) representation
- Non-unit stride Conv support
- Simplified mult/add/MAC
- Fused BN&ReLU

› Main blocks
- Unified Conv

- Conv & transposed Conv
- Dilated Conv

- Weight kernel partition

ResNet20/VGG-like accelerator

Fig. 3 Overall architecture of the generic training accelerator for
layer-by-layer processing. BN and ReLU are fused.

› Shortcut addition after BN and ReLu functions (enabling fusing)
› Unified bm(2,5) for activations, weights, errors, and gradients (simpler HW)
› Full precision accuracy with these changes

CIFAR10 Training from Scratch

Transfer learning application

– Channel tiling accelerator
– Updating last several Conv &

FC
• Shortened back-propagation
• Reduced BRAM for

activations
• Faster convergence

Fig. 8 Transfer learning example from CIFAR-100 to CIFAR-10.

Resource and Power

Latency Breakdown

2

Conclusion

§ Low-precision formats have wide applicability for inference and
training in Edge applications
§ Doesn’t necessitate accuracy reduction

§ Faster Training is possible using BM
§ Fewer bits – important for memory-bound
§ Narrow exponents – denser MAC in compute-bound

What are the applications?

Summary

40

References

[1] Sean Fox, Seyedramin Rasoulinezhad, Julian Faraone, and David
Boland Philip H.W. Leong. A block minifloat representation for training deep
neural networks. In Proc. of The International Conference on Learning
Representations (ICLR). 2021. URL: bm_iclr21.pdf.
[2] Wenjie Zhou, Haoyan Qi, David Boland, and Philip H.W. Leong. FPGA
implementation of N-BEATS for time series forecasting using block minifloat
arithmetic. In Proc. Asia Pacific Conference on Circuits and Systems (IEEE
APCCAS 2022). 2022. URL: nbeats_apccas22.pdf.

41

http://phwl.org/assets/papers/bm_iclr21.pdf
http://phwl.org/assets/papers/nbeats_apccas22.pdf

Thank you!

Philip Leong (philip.leong@sydney.edu.au)
http://phwl.org/talks

mailto:philip.leong@sydney.edu.au
http://phwl.org/talks

