

Philip Leong (philip.leong@sydney.edu.au)

Acknowledgment of Country

I acknowledge the Gadigal people of the Eora Nation as the traditional custodians of the land on which the university stands and pay respects to Elders past, present and emerging.

Computer Engineering Lab

Computer Engineering Lab

- CEL focuses on how to utilise parallelism to solve computing problems
 - Novel architectures, applications and design techniques

Radio Frequency Machine Learning

- Processing RF signals remains a challenge
- ML offers an opportunity to achieve RF scene understanding
- Overall research theme is to achieve high performance in RFML using FPGAs through (EPIC)
 - Exploration, Parallelism, Integration, Customisation

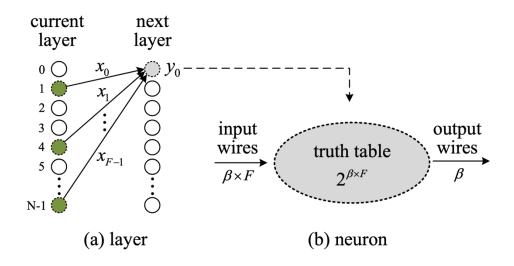
Addressing Research Gaps in Radio Frequency Machine Learning

- Requirements: High throughput, low latency, good accuracy, integration

- Some research gaps (ALERT)
 - Algorithms
 - Latency
 - Edge
 - Representations (features)
 - Training (to adapt to changing conditions)

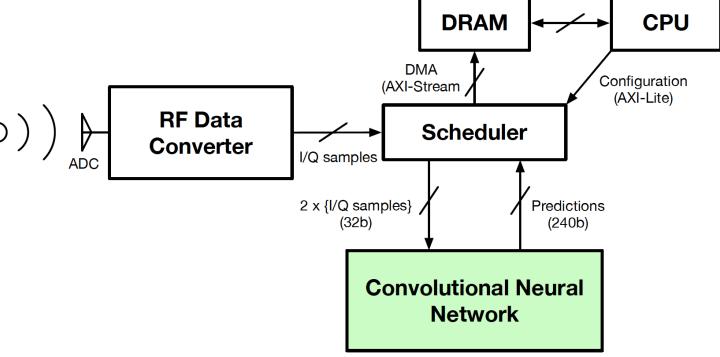
Some Ways to Bridge Gaps

- Algorithms: lower complexity techniques with minimal accuracy reduction
- Latency: highly pipelined architectures, quantisation, hardware-friendly DNN techniques
- Edge: single-FPGA solutions that reduce off-chip communications and utilise massive on-chip bandwidth, integration, memory footprint reduction
- Representations: techniques that match properties of signals, e.g. complex numbers, man-made modulation schemes
- Training: systems that can adapt to changing conditions


ALERT Algorithms: Sparse FFT

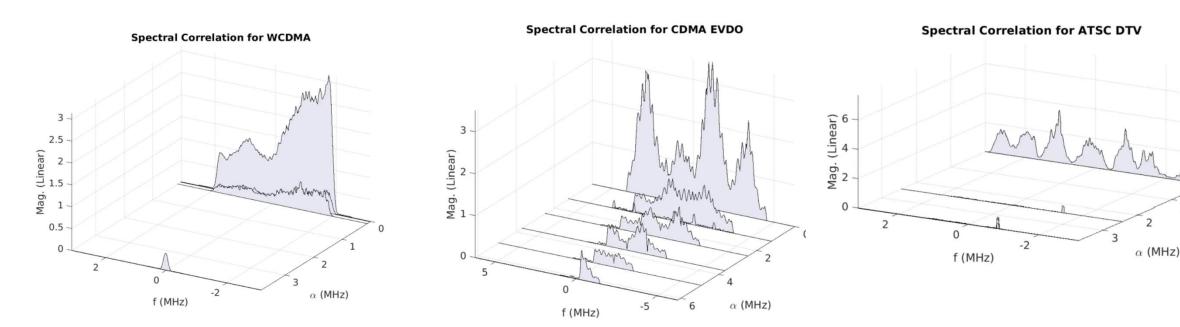
https://phwl.org/assets/papers/s3ca_spl24.pdf

ALERT Latency: PolyLUT-Add


Each neuron implemented in a single LUT

Dataset	Model	Accuracy [†]	LUT	FF	DSP	BRAM	$F_max(MHz)\uparrow$	Latency(ns)↓
MNIST	PolyLUT-Add (HDR-Add2, D=3)	96%	15272	2880	0	0	833	7
	PolyLUT (HDR, <i>D</i> =4) [8]	96%	70673	4681	0	0	378	16
	FINN [20]	96%	91131	-	0	5	200	310
	hls4ml [21]	95%	260092	165513	0	0	200	190
Jet Substructure	PolyLUT-Add (JSC-XL-Add2, D=3)	75%	47639	1712	0	0	400	13
	PolyLUT (JSC-XL, D=4) [8]	75%	236541	2775	0	0	235	21
	Duarte et al. [2]	75%	887	97*	954	0	200	75
	Fahim et al. [17]	76%	63251	4394	38	0	200	45

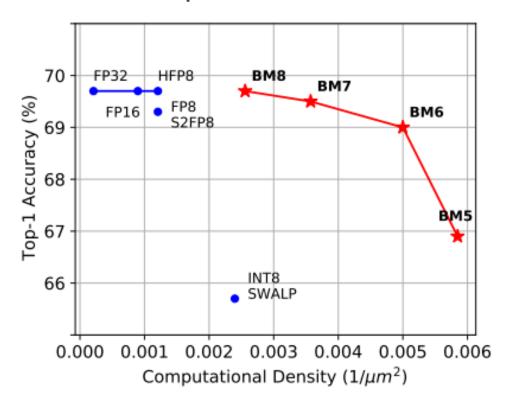
ALERT Edge: Modulation Classification @ 500 Msps


- Combine quantisation, sparsity and CSE to reduce computation 86%
- Fully pipelined design achieves
 - 488K classifications/s
 - 8 uS latency

ALERT Representations: Cyclostationary Features


Cyclostationary: probability distribution changes periodically over time

Excellent at low SNR (but computationally expensive)



ALERT Training: Training of DNNs at the Edge

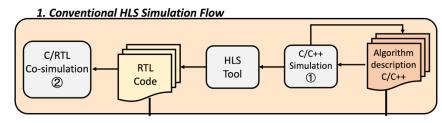
- Block minifloats which can train with 8 and 6-bit precision

Dataset: ImageNet Model: ResNet-18

https://openreview.net/forum?id=6zaTwpNSsQ2

First Real-time Cyclostationary + AI RFML System

Real-time FPGA HW, cyclostationary analysis and Al



Platform	Speedup	Tput (GFLOPs)	Power (W)	Energy Eff (GFLOPs/W)
CPU 19-9900KF	1	9.03	14	0.65
GPU RTX3090	2	18.8	95	0.20
FPGA VEK280	7	66.3	10	6.34

Hercules Verification of Digital Designs (Dr David Boland)

If bugs are detected, we help a user find and fix them:

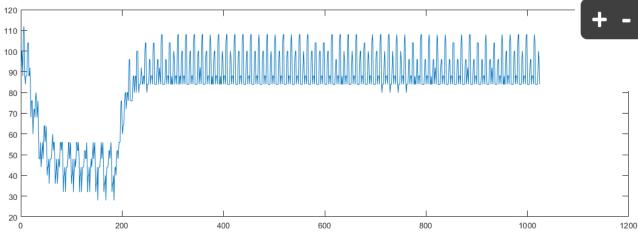
Snapshot controller detects potential errors and take snapshots of all hardware information

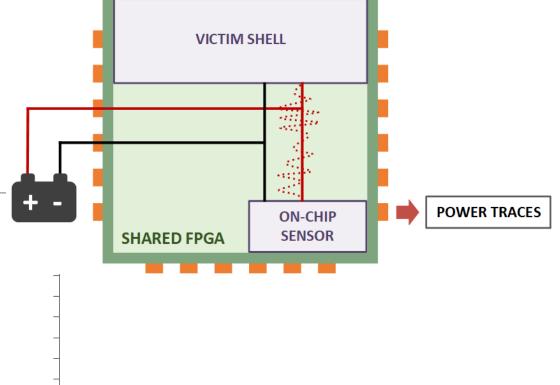
Instead of software simulation of hardware

We simultaneously run on the same FPGA:

- Hardware &Golden referencesoftware implementation
 - We can now detect bugs over a much longer timescale

Able to find bugs orders of magnitude faster than the state of the art

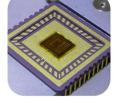

RPA attacks on FPGAs (Prof Sri Parameswaran)


 Using on chip sensors, we gather data from the victim shell (such as AES keys)

Attacks on AWS FPGA servers

Research into Countermeasures

• Published in CHES '22, CHES '24


RISCV Security and Enhancements (Prof Sri Parameswaran)

- Memory Security Extensions (DAC '21, DAC '22)
 - Implemented on FPGA
- Countermeasures for Clock Jitter-based Attacks (ICCAD '25)
 - FPGA implementation
- Efficient AI implementation
 - Implemented on FPGAs using Rocketchip with approximate multipliers for GEMMINI

Rapid Prototype Foundry (A/Prof Steve Shu)

- RPF is a shared **core research facility** for micro-/nano-fabrication & metrology
 - Supported by USyd & Australian
 National Fabrication Facility (ANFF)
 - 700sqm+ ISO 5/6/7 cleanrooms
 - 20+ engineers/operations
 - 70+ tools, incl. litho, deposition, etching, wet processing, packaging, metrology, Fibre Braag Grating, etc.

Semiconductor & Advanced packaging

Quantum

Photonics

Biomedical devices

The University of Sydney

Spinoff Companies

Real-time Al Applications on FPGAs

TernaryNet

Fabless Semiconductor Company

Thank you!

Philip Leong (philip.leong@sydney.edu.au)

David Boland (david.boland@sydney.edu.au)

Steve Shu (steve.shu@sydney.edu.au)

Sri Parameswaran (sri.parameswaran@sydney.edu.au)

Stephen Tridgell, Xueyuan Liu (Modulation classification)

Jingyi Li, Ruilin Wu (Cyclostationary)

Binglei Lou (LUT-based DNNs)

Wenjie Zhou (Edge training)

http://phwl.org/talks

