
C
R

IC
O

S
 0

0
0
2
6
A

T

E
Q

S
A

 P
R

V
1

2
0

5
7

Computer Arithmetic for

Machine Learning

Philip Leong (philip.leong@sydney.edu.au)

http://phwl.org/talks

mailto:philip.leong@Sydney.edu.au
http://phwl.org/talks
http://phwl.org/talks
http://phwl.org/talks

The University of Sydney

Acknowledgment of Country

I acknowledge the Gadigal people of the Eora Nation as the

traditional custodians of the land on which the university stands

and pay respects to Elders past, present and emerging.

2

The University of Sydney

Australia vs Taiwan

- More than 200x larger than Taiwan

- Population about the same

- 27.0M vs 23.4M in 2023

3

The University of Sydney

Computer Engineering Lab

- CEL focuses on how to utilise

parallelism to solve computing

problems

• Novel architectures, applications

and design techniques

Introduction

4

The University of Sydney

Motivation

- CPUs/GPUs designed to support datatypes of

fixed wordlength

- Double, float, long, short, char

- FPGA and ASICs can provide custom

datapaths of arbitrary wordlength

- So how can we utilize low-precision for

inference and training?

On-chip

weights

~70 M

~10 M

~5 M

~2 M

Precision

1b

8b

16b

32b

3
0

x

Peak TOPS

~66

~4

~1

~0.3

2
0

0
x

Figure: Xilinx

5

The University of Sydney

Overview

1. Number systems

2. Block Minifloat / Microscaling

3. Applications of BM

6

The University of Sydney

C
R

IC
O

S
 0

0
0

2
6
A

T
E

Q
S

A
 P

R
V

1
2

0
5
7

1. Number systems
2. Block Minifloat / Microscaling
3. Applications

The University of Sydney

Number Systems – Unsigned

8

u0)

The University of Sydney

Number Systems – Two’s Complement

9

x0)

The University of Sydney

Number Systems – Two’s Complement Fractions

10

0,

The University of Sydney

Arithmetic Operations on Two’s Complement Fractions

- If we wish to perform arithmetic on two (M,F) format 2’s complement

fractions

- Addition and subtraction

- Normal addition

- Multiplication

- An (N,F) multiplication gives a (2M, 2F) result so you need to do an arithmetic right

shift by F bits from the 2(M+F) multiplier output

- E.g. for (4,3) 0.75*0.75 = 0.110*0.110=00.100100 >> 3=0.100=0.5

11

The University of Sydney

Number Systems – Floating Point (1)

12

(1,F)

(0,F)

The University of Sydney

Number Systems – Floating Point (2)

- Standard is IEEE 754-2019 https://standards.ieee.org/ieee/754/6210/

Subnormal (or Denormal)

Normalised

Infinity

NaN

13

https://standards.ieee.org/ieee/754/6210/

The University of Sydney

Number systems – Logarithmic Number System

14

(2,K)

(N-2-K-F,F)

The University of Sydney

IEEE 754 Rounding [1]

- IEEE 754 has 4 rounding modes

- Round down

- Round up

- Round towards zero

- Round to nearest (this is what everyone means when they don’t specify)

- If tie then the one with LSB=0 is chosen

15

The University of Sydney

Theorem 5.1 (Error Bound) [1]

16

The University of Sydney

Rounding Error of Operators

- For operators (op), then

i.e. IEEE computed result must be the rounded value of the exact result

- For x, y normal numbers, (x op y) error has same bounds as Theorem 5.1

17

The University of Sydney

Addition/Subtraction

- Let’s consider adding x = 𝑚 × 2𝐸 and y = 𝑝 × 2𝐹

1. Make E>=F by optionally swapping x and y

2. If E>F align significands by shifting p to the right E-F positions;

3. Add significands

4. Correctly round result

- Example 3+2

18

The University of Sydney

Additional Bits for Rounding

The “|” indicates bits beyond the LSB

An additional bit called the Guard Bit is needed to get correctly rounded result
19

The University of Sydney

How Many Additional Bits do we Need?

1-24 guard bits will get wrong result (need 25 in this case!)

- If the additional bits are

- 10…0 then exactly half way

- 0x…x less than half way (round down)

- Anything else = more than half way (round up)

20

The University of Sydney

Sticky Bit

- To determine which of the 3 cases keep Guard, Round and Sticky Bit (GRS)

- Sticky bit informs whether there is a 1 at or beyond that position

21

The University of Sydney

Multiplication

- Let’s consider multiplying x = 𝑚 × 2𝐸 and y = 𝑝 × 2𝐹

1. Multiply the significands

2. Add the exponents

3. Normalise and correctly round the result

22

The University of Sydney

Catastrophic Cancellation

- Catastrophic cancellation can occur when subtracting similar values

- Consider where and

- Relative error is highest when

23

The University of Sydney

Catastrophic Cancellation Example

24

- Imagine a system with only four significant decimal digits and we calculate

(x-y) where (x=1.2345) and (y=1.2341).

- The floating-point representation might round these to round(x)=1.235x100 and

round(y)=1.234x100.

- The subtraction would be 1.235x100 - 1.234x100=0.001x100=1.000x10-3

- The exact result is 0.0004=4.000x10-4

- The computed result is more than double the exact result.

- Only one correct significant digit remains.

The University of Sydney

Other Fun Facts about Floating Point Numbers

- (a+b)+c ≠ a+(b+c)

- There are representations for +/- 0

- There are 5 types of exceptions: invalid

operation, division by zero, overflow,

underflow, and inexact

- Required arithmetic operations (add, subtract,

multiply, divide, square root, fused multiply-

add, remainder, minimum, maximum)

#include <stdio.h>

int main()

{

 int cnt = 0;

 for (double t=0.0; t < 1.0; t += 0.1)
 printf("%d %f\n", cnt++, t);

}

25

The University of Sydney

Lower Precision: Single Precision and Bfloat16

26

The University of Sydney

Formats used for ML including Block Floating Point

Source: http://dx.doi.org/10.48550/arXiv.2107.13490

27

http://dx.doi.org/10.48550/arXiv.2107.13490

The University of Sydney

Decreasing Precision Trend

28

Ternary

NVIDIA NVFP4 (next section)

The University of Sydney

References (available at https://phwl.org/assets/papers/papers)

1. Michael Overton, “Numerical Computing with IEEE Floating Point

Arithmetic”, SIAM, 2001 https://doi.org/10.1137/1.9780898718072.fm

29

https://doi.org/10.1137/1.9780898718072.fm

The University of Sydney

C
R

IC
O

S
 0

0
0

2
6
A

T
E

Q
S

A
 P

R
V

1
2

0
5
7

1. Number systems
2. Block Minifloat / Microscaling
3. Applications

The University of Sydney

Minifloat
▪ Narrow floating-point representation

▪ Our range between 4-8 bits

▪ NaN/Infinity NOT supported

mantissaexponentsign

IEEE754 (FP32)

mes
Minifloat

▪ Pros:
▪ Memory (fewer bits)

▪ Smaller hardware

▪ Cons:
▪ Dynamic Range (exponent

bits)

31

The University of Sydney

Block Minifloat circa 2021 [1]

▪ BM = minifloat + shared

exponent bias β

› minifloat: small floating-point
format (same idea as

Microscaling MX)

Itroduction

M M M

M M M

M M M

M M M

Minifloat

Fixed BFP

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

E E E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

EEE

Block Minifloat and

Microscaling (MX)

32

The University of Sydney

Block Minifloat

▪ Share exponent bias across blocks of NxN minifloat numbers

▪ Dynamic range (with fewer bits)

▪ Denser dot-products in

hardware

▪ Align wtih max exponent

▪ Underflow is tolerated

33

The University of Sydney

Fused Multiply-Add with Kulisch Accumulation

▪ Kulisch Accumulator: Fixed point accumulator wide enough to

compute error-free sum of floating-point products

▪ Integer-like hardware complexity for exponent <=4 bits

34

The University of Sydney

Implementation Details

▪ Three techniques to reduce data loss:

▪ Gradual underflow, Block Design, Hybrid Formats

▪ Simulate specialized BM hardware on GPU (with FP32)

▪ Apply Block Minifloat to all weights, acts, grads

▪ Our Spectrum of Block Minifloats

35

The University of Sydney

Data Loss Experiments

36

The University of Sydney

GPU Acceleration with BM

• Weight, activation and gradient tensors quantized to BM with stochastic rounding

• Kulisch accumulator ensures our dot products are exact (can use FP CUDA lib directly)

• FP32 used for Kulisch to floating-point conversion, block minifloat alignments, quantization etc.

• Approx 1x floating point operation every N MACs, 5x slowdown

37

The University of Sydney

Training Experiments

ResNet18 on ImageNet Validation

38

The University of Sydney

Transformer

Transformer on IWSLT’14 DE-En dataset
39

The University of Sydney

Training Summary

Training Accuracy

with BM ≈ FP32

40

The University of Sydney

RTL Synthesis

▪ Designs synthesized at 750MHz with Cadence RTL Compiler

and 28nm cell library

▪ Fused multiply-add (FMA)

▪ 4x4 systolic matrix mutlipliers

BM8 area and

power comparable

to INT8

41

The University of Sydney

Imagenet

Introduction

42

Model: ResNet-18 Dataset: ImageNet

BM units are:

- Smaller

- Consume less

Power

42

The University of Sydney

Microscaling (MX) Data Formats circa 2023 [2]

- Microsoft, AMD, Intel, Meta, NVIDIA, Qualcomm introduced Microscaling

(MX) which is similar idea to BM

43

The University of Sydney

Compute flow with MX Formats

44

The University of Sydney

Blackwell Supported 4-bit Formats

45

The University of Sydney

Nvidia NVFP4

- High-precision scale encoding plus a two-level micro-block scaling strategy

46

The University of Sydney

GPU Performance for Different Generations circa 2024 [3]

Source: NVidia

https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/

47

https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/

The University of Sydney

Inference Accuracy vs FP8

48

The University of Sydney

Generative Inference Results

49

The University of Sydney

Energy Efficiency (GPT-MoE 1.8T)

50

The University of Sydney

References (available at https://phwl.org/assets/papers/papers)

1. Sean Fox, Seyedramin Rasoulinezhad, Julian Faraone, and David Boland

Philip H.W. Leong. A block minifloat representation for training deep neural

networks. In Proc. of The International Conference on Learning

Representations (ICLR). 2021.

2. BD Rouhani et al., “Microscaling data formats for deep learning”,

arXiv:2310.10537, 2023

3. https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-

accurate-low-precision-inference/

51

https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/

The University of Sydney

C
R

IC
O

S
 0

0
0

2
6
A

T
E

Q
S

A
 P

R
V

1
2

0
5
7

1. Number systems
2. Block Minifloat / Microscaling
3. Applications

The University of Sydney

Motivation

Introduction

› Target problem: Training on Edge

- Potential: adapt to local conditions

- Problem: ~3x memory and compute vs. inference

- Solution: Use custom number system

53

The University of Sydney

Overview

- CNN training

- NBeats training

54

The University of Sydney

CNN Training Workflow

[1] Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

- Back-propagation using SGD

•3X workload of inference

Fig. 1 CNN training workflow: (1) Conv in forward path, (2) transposed
Conv in backward path, (3) dilated Conv in gradient generation, and (4)
weight update.

Fig. 2 Non-unit stride Conv, transposed Conv, and
dilated Conv [1].

Arbitrary stride Conv (Forward) Transposed Conv (Backward)

Dilated Conv (Gradient Generation)

55

The University of Sydney

CNN ResNet20/VGG-like Accelerator

- Layer-wise CNN blocks

•Unified bm(2,5) representation

•Non-unit stride Conv

support

•Simplified mult/add/MAC
•Fused BN&ReLU

- Main blocks

•Unified Conv

•Conv & transposed

Conv
•Dilated Conv

•Weight kernel

partition

Fig. 3 Overall architecture of the generic training accelerator for
layer-by-layer processing. BN and ReLU are fused.

56

The University of Sydney

CNN BM-based TL (ICCAD23)

Introduction

57

Transfer learning example from CIFAR-100 to CIFAR-10

57

The University of Sydney

Resource and Power

58

The University of Sydney

Latency Breakdown

59

The University of Sydney

Overview

- CNN training

- NBeats training

60

The University of Sydney

This Work

Introduction

› BM arithmetic

- Block size: A novel technique for cross-block BM matrix multiplication

- Mixed precision: BM GEMM kernel with runtime configurable precision for

FW/BP with pipeline optimization

- DSP packing: 4-bit BM MAC unit with 6 multiplication packed per DSP

› Training accelerator

- First implementation of 4-bit BM training for time series network (NBEATS)

61

The University of Sydney

Block size & mixed precision in BM Matrix multiply

Introduction

Block size

𝐴𝑘, 𝑒𝑘,𝑊𝑘

(mixed precision)

Accuracy

▪ Problem:

▪ Block size ≠ tile size

▪ Computation error in cross-block MM

▪ Runtime configurable precision GEMM

PE array

Shared exponent

62

The University of Sydney

BM GEMM kernel

BM arithmetic

PE array

(inner-product)

Normalization

inner-product
Find Maximum

norm

› Pipelined implementation

- Inter block & Intra-Normalization Pipeline

63

The University of Sydney

DSP packing

BM arithmetic

› DSP packed PE optimized for 4-bit BM training

- Each PE has 2*3 input, 6 MAC unit

- 6 Significand multiplication in MAC mapped to one DSP48E2

- Support different precisions during training

DSP packed PE design for 4-bit BM MAC Bit Arrangement in Different Training Phases

64

The University of Sydney

Time series prediction network - NBEATS

Training

accelerator

› NBEATS: A time series prediction network with regular architecture (FC layer & residual)

› SOTA accuracy result on M3, M4 and statistics benchmark

networkNBEATS block 65

The University of Sydney

NBEATS training accelerator

Training

accelerator

66

The University of Sydney

NBEATS training accuracy

Experiment

› Smaller block size, high precision residual, Mixed precision improves accuracy

67

The University of Sydney

NBEATS training accelerator

Experiment

› BM4-mixed packed

- Accelerator achieves 779 Gops throughput, DSP utilization 0.7 Gops/DSP (SOTA),
power efficiency 42.4 Gops/W (3.1x)

Ours
(no packing)

Ours
(packing) GPU

Device Alveo U50 GTX 1080

Process TSMC 16nm

Num system BM4-mixed BM4-mixed FP32

Freq.(MHz) 183 159 1733

Tput. (Gops) 299.03 779.12 2991

Power(W) 20.86 18.38 220

Gops/W 14.34 42.4 13.6

Gops/DSP 0.27 0.71 -

68

The University of Sydney

Summary

• Demonstrated FPGA-based 4-bit training of time series
prediction networks with minimal impact on accuracy
– Systolic array that combines mixed precision and DSP packing

– 3x Gops/W in same technology as GPU

Suitable for edge-based systems with modest energy resources

69

The University of Sydney

References (available at https://phwl.org/assets/papers/papers)

[1] Chuliang Guo, Binglei Lou, Xueyuan Liu, David Boland, Philip

H.W. Leong, and Cheng Zhuo. BOOST: block minifloat-based on-

device CNN training accelerator with transfer learning. In Proc.

ICCAD, 1–9. 2023.

[2] Wenjie Zhou, Haoyan Qi, David Boland, and Philip H. W.

Leong. FPGA-based block minifloat training accelerator for a time

series prediction network. ACM Trans. Reconfigurable Technol.

Syst., 18(2):1–23, March 2025.

70

	Default Section
	Slide 1: Computer Arithmetic for Machine Learning
	Slide 2: Acknowledgment of Country
	Slide 3: Australia vs Taiwan
	Slide 4: Computer Engineering Lab
	Slide 5: Motivation
	Slide 6: Overview
	Slide 7
	Slide 8: Number Systems – Unsigned
	Slide 9: Number Systems – Two’s Complement
	Slide 10: Number Systems – Two’s Complement Fractions
	Slide 11: Arithmetic Operations on Two’s Complement Fractions
	Slide 12: Number Systems – Floating Point (1)
	Slide 13: Number Systems – Floating Point (2)
	Slide 14: Number systems – Logarithmic Number System
	Slide 15: IEEE 754 Rounding [1]
	Slide 16: Theorem 5.1 (Error Bound) [1]
	Slide 17: Rounding Error of Operators
	Slide 18: Addition/Subtraction
	Slide 19: Additional Bits for Rounding
	Slide 20: How Many Additional Bits do we Need?
	Slide 21: Sticky Bit
	Slide 22: Multiplication
	Slide 23: Catastrophic Cancellation
	Slide 24: Catastrophic Cancellation Example
	Slide 25: Other Fun Facts about Floating Point Numbers
	Slide 26: Lower Precision: Single Precision and Bfloat16
	Slide 27: Formats used for ML including Block Floating Point
	Slide 28: Decreasing Precision Trend
	Slide 29: References (available at https://phwl.org/assets/papers/papers)
	Slide 30
	Slide 31: Minifloat
	Slide 32: Block Minifloat circa 2021 [1]
	Slide 33: Block Minifloat
	Slide 34: Fused Multiply-Add with Kulisch Accumulation
	Slide 35: Implementation Details
	Slide 36: Data Loss Experiments
	Slide 37: GPU Acceleration with BM
	Slide 38: Training Experiments
	Slide 39: Transformer
	Slide 40: Training Summary
	Slide 41: RTL Synthesis
	Slide 42: Imagenet
	Slide 43: Microscaling (MX) Data Formats circa 2023 [2]
	Slide 44: Compute flow with MX Formats
	Slide 45: Blackwell Supported 4-bit Formats
	Slide 46: Nvidia NVFP4
	Slide 47: GPU Performance for Different Generations circa 2024 [3]
	Slide 48: Inference Accuracy vs FP8
	Slide 49: Generative Inference Results
	Slide 50: Energy Efficiency (GPT-MoE 1.8T)
	Slide 51: References (available at https://phwl.org/assets/papers/papers)
	Slide 52
	Slide 53: Motivation
	Slide 54: Overview
	Slide 55: CNN Training Workflow
	Slide 56: CNN ResNet20/VGG-like Accelerator
	Slide 57: CNN BM-based TL (ICCAD23)
	Slide 58: Resource and Power
	Slide 59: Latency Breakdown
	Slide 60: Overview
	Slide 61: This Work
	Slide 62: Block size & mixed precision in BM Matrix multiply
	Slide 63: BM GEMM kernel
	Slide 64: DSP packing
	Slide 65: Time series prediction network - NBEATS
	Slide 66: NBEATS training accelerator
	Slide 67: NBEATS training accuracy
	Slide 68: NBEATS training accelerator
	Slide 69: Summary
	Slide 70: References (available at https://phwl.org/assets/papers/papers)

