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Australia vs Taiwan

- More than 200x larger than Taiwan

- Population about the same 

- 27.0M vs 23.4M in 2023
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Computer Engineering Lab

- CEL focuses on how to utilise 

parallelism to solve computing 

problems 

• Novel architectures, applications 

and design techniques

Introduction
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Motivation

- CPUs/GPUs designed to support datatypes of 

fixed wordlength

- Double, float, long, short, char

- FPGA and ASICs can provide custom 

datapaths of arbitrary wordlength

- So how can we utilize low-precision for 

inference and training?

On-chip

weights
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Figure: Xilinx
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Overview

1. Number systems

2. Block Minifloat / Microscaling

3. Applications of BM
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Number Systems – Unsigned
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Number Systems – Two’s Complement
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Number Systems – Two’s Complement Fractions
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Arithmetic Operations on Two’s Complement Fractions

- If we wish to perform arithmetic on two (M,F) format 2’s complement 

fractions

- Addition and subtraction

- Normal addition

- Multiplication

- An (N,F) multiplication gives a (2M, 2F) result so you need to do an arithmetic right 

shift by F bits from the 2(M+F) multiplier output

- E.g. for (4,3) 0.75*0.75 = 0.110*0.110=00.100100 >> 3=0.100=0.5
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Number Systems – Floating Point (1)
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Number Systems – Floating Point (2)

- Standard is IEEE 754-2019 https://standards.ieee.org/ieee/754/6210/ 

Subnormal (or Denormal)

Normalised

Infinity

NaN
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Number systems – Logarithmic Number System
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IEEE 754 Rounding [1]

- IEEE 754 has 4 rounding modes

- Round down

- Round up

- Round towards zero

- Round to nearest (this is what everyone means when they don’t specify)

- If tie then the one with LSB=0 is chosen

15
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Theorem 5.1 (Error Bound) [1]
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Rounding Error of Operators

- For                operators (op), then

i.e. IEEE computed result must be the rounded value of the exact result

- For x, y normal numbers, (x op y) error has same bounds as Theorem 5.1
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Addition/Subtraction

- Let’s consider adding x = 𝑚 × 2𝐸 and y = 𝑝 × 2𝐹

1. Make E>=F by optionally swapping x and y

2. If E>F align significands by shifting p to the right E-F positions; 

3. Add significands 

4. Correctly round result

- Example 3+2 

18
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Additional Bits for Rounding

The “|” indicates bits beyond the LSB

An additional bit called the Guard Bit is needed to get correctly rounded result
19
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How Many Additional Bits do we Need?

1-24 guard bits will get wrong result (need 25 in this case!)

- If the additional bits are

- 10…0 then exactly half way

- 0x…x less than half way (round down)

- Anything else = more than half way (round up)
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Sticky Bit

- To determine which of the 3 cases keep Guard, Round and Sticky Bit (GRS)

- Sticky bit informs whether there is a 1 at or beyond that position
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Multiplication

- Let’s consider multiplying x = 𝑚 × 2𝐸 and y = 𝑝 × 2𝐹

1. Multiply the significands

2. Add the exponents

3. Normalise and correctly round the result

22
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Catastrophic Cancellation

- Catastrophic cancellation can occur when subtracting similar values

- Consider              where       and 

- Relative error is highest when 

23
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Catastrophic Cancellation Example

24

- Imagine a system with only four significant decimal digits and we calculate 

(x-y) where (x=1.2345) and (y=1.2341).

- The floating-point representation might round these to round(x)=1.235x100 and 

round(y)=1.234x100.

- The subtraction would be 1.235x100 - 1.234x100=0.001x100=1.000x10-3

- The exact result is 0.0004=4.000x10-4

- The computed result is more than double the exact result. 

- Only one correct significant digit remains.
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Other Fun Facts about Floating Point Numbers

- (a+b)+c ≠ a+(b+c) 

- There are representations for +/- 0

- There are 5 types of exceptions: invalid 

operation, division by zero, overflow, 

underflow, and inexact

- Required arithmetic operations (add, subtract, 

multiply, divide, square root, fused multiply-

add, remainder, minimum, maximum)

#include <stdio.h>

int main()

{

    int cnt = 0;

    for (double t=0.0; t < 1.0; t += 0.1)
        printf("%d %f\n", cnt++, t);

}
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Lower Precision: Single Precision and Bfloat16
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Formats used for ML including Block Floating Point

Source: http://dx.doi.org/10.48550/arXiv.2107.13490 
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Decreasing Precision Trend

28

Ternary

NVIDIA NVFP4 (next section)
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Minifloat
▪ Narrow floating-point representation

▪ Our range between 4-8 bits

▪ NaN/Infinity NOT supported

 

mantissaexponentsign

IEEE754 (FP32)

mes
Minifloat

▪ Pros:
▪ Memory (fewer bits)

▪ Smaller hardware

▪ Cons:
▪ Dynamic Range (exponent 

bits)
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Block Minifloat circa 2021 [1]

▪ BM = minifloat + shared 

exponent bias β 

› minifloat: small floating-point 
format (same idea as 

Microscaling MX)
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Microscaling (MX)
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Block Minifloat

▪ Share exponent bias across blocks of NxN minifloat numbers
 

▪ Dynamic range (with fewer bits)

▪ Denser dot-products in 

hardware

▪ Align wtih max exponent

▪ Underflow is tolerated 
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Fused Multiply-Add with Kulisch Accumulation

▪ Kulisch Accumulator: Fixed point accumulator wide enough to 

compute error-free sum of floating-point products

▪ Integer-like hardware complexity for exponent <=4 bits
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Implementation Details

▪ Three techniques to reduce data loss:

▪ Gradual underflow, Block Design, Hybrid Formats 

▪ Simulate specialized BM hardware on GPU (with FP32)

▪ Apply Block Minifloat to all weights, acts, grads

▪ Our Spectrum of Block Minifloats
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Data Loss Experiments

36
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GPU Acceleration with BM

• Weight, activation and gradient tensors quantized to BM with stochastic rounding

• Kulisch accumulator ensures our dot products are exact (can use FP CUDA lib directly)

• FP32 used for Kulisch to floating-point conversion, block minifloat alignments, quantization etc.

• Approx 1x floating point operation every N MACs, 5x slowdown
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Training Experiments

ResNet18 on ImageNet Validation

38
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Transformer

Transformer on IWSLT’14 DE-En dataset
39
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Training Summary

Training Accuracy 

with BM ≈ FP32
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RTL Synthesis

▪ Designs synthesized at 750MHz with Cadence RTL Compiler 

and 28nm cell library

▪ Fused multiply-add (FMA)

▪ 4x4 systolic matrix mutlipliers
 

 

BM8 area and 

power comparable 

to INT8

41
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Imagenet

Introduction

42

Model: ResNet-18 Dataset: ImageNet

 

BM units are:

- Smaller

- Consume less 

Power

42
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Microscaling (MX) Data Formats circa 2023 [2]

- Microsoft, AMD, Intel, Meta, NVIDIA, Qualcomm introduced Microscaling 

(MX) which is similar idea to BM
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Compute flow with MX Formats

44



The University of Sydney

Blackwell Supported 4-bit Formats

45
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Nvidia NVFP4

- High-precision scale encoding plus a two-level micro-block scaling strategy
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GPU Performance for Different Generations circa 2024 [3]

Source: NVidia

https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
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Inference Accuracy vs FP8

48
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Generative Inference Results
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Energy Efficiency (GPT-MoE 1.8T)
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Motivation

Introduction

› Target problem: Training on Edge

- Potential: adapt to local conditions

- Problem: ~3x memory and compute vs. inference

- Solution: Use custom number system
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Overview

- CNN training

- NBeats training
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CNN Training Workflow

[1] Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

- Back-propagation using SGD

•3X workload of inference

Fig. 1 CNN training workflow: (1) Conv in forward path, (2) transposed 
Conv in backward path, (3) dilated Conv in gradient generation, and (4) 
weight update.

Fig. 2 Non-unit stride Conv, transposed Conv, and 
dilated Conv [1]. 

 

Arbitrary stride Conv (Forward) Transposed Conv (Backward)

Dilated Conv (Gradient Generation)
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CNN ResNet20/VGG-like Accelerator

- Layer-wise CNN blocks

•Unified bm(2,5) representation

•Non-unit stride Conv 

support

•Simplified mult/add/MAC
•Fused BN&ReLU

- Main blocks

•Unified Conv

•Conv & transposed 

Conv
•Dilated Conv

•Weight kernel 

partition

Fig. 3 Overall architecture of the generic training accelerator for 
layer-by-layer processing. BN and ReLU are fused.
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CNN BM-based TL (ICCAD23)

Introduction

57

Transfer learning example from CIFAR-100 to CIFAR-10  
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Resource and Power
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Latency Breakdown
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Overview

- CNN training

- NBeats training
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This Work

Introduction

› BM arithmetic

- Block size: A novel technique for cross-block BM matrix multiplication

- Mixed precision: BM GEMM kernel with runtime configurable precision for 

FW/BP with pipeline optimization

- DSP packing: 4-bit BM MAC unit with 6 multiplication packed per DSP

› Training accelerator

- First implementation of 4-bit BM training for time series network (NBEATS)
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Block size & mixed precision in BM Matrix multiply

Introduction

Block size

𝐴𝑘, 𝑒𝑘,𝑊𝑘

(mixed precision) 

Accuracy

▪ Problem:

▪ Block size ≠ tile size

▪ Computation error in cross-block MM

▪ Runtime configurable precision GEMM

PE array

Shared exponent

62



The University of Sydney

BM GEMM kernel

BM arithmetic

PE array

(inner-product)

Normalization

inner-product
Find Maximum

norm

› Pipelined implementation

- Inter block & Intra-Normalization Pipeline
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DSP packing

BM arithmetic

› DSP packed PE optimized for 4-bit BM training

- Each PE has 2*3 input, 6 MAC unit

- 6 Significand multiplication in MAC mapped to one DSP48E2

- Support different precisions during training

DSP packed PE design for 4-bit BM MAC Bit Arrangement in Different Training Phases
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Time series prediction network - NBEATS

Training 

accelerator

› NBEATS: A time series prediction network with regular architecture (FC layer & residual)

› SOTA accuracy result on M3, M4 and statistics benchmark

networkNBEATS block 65
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NBEATS training accelerator

Training 

accelerator
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NBEATS training accuracy

Experiment

› Smaller block size, high precision residual, Mixed precision improves accuracy
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NBEATS training accelerator

Experiment

› BM4-mixed packed 

- Accelerator achieves 779 Gops throughput, DSP utilization 0.7 Gops/DSP (SOTA), 
power efficiency 42.4 Gops/W (3.1x)

Ours
(no packing)

Ours
(packing) GPU

Device Alveo U50 GTX 1080

Process TSMC 16nm

Num system BM4-mixed BM4-mixed FP32

Freq.(MHz) 183 159 1733

Tput. (Gops) 299.03 779.12 2991

Power(W) 20.86 18.38 220

Gops/W 14.34 42.4 13.6

Gops/DSP 0.27 0.71 -
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Summary

• Demonstrated FPGA-based 4-bit training of time series 
prediction networks with minimal impact on accuracy
– Systolic array that combines mixed precision and DSP packing

– 3x Gops/W in same technology as GPU

Suitable for edge-based systems with modest energy resources
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