Simultaneous Inference and Training using
On-FPGA Weight Perturbation Techniques

Siddhartha*, Steven J.E. Wilton, David Boland*, Barry Flower*, Perry Blackmoret, Philip H.W. Leong*
* The University of Sydney, Email: {siddhartha.siddhartha, david.boland, barry.flower, philip.leong} @sydney.edu.au
t University of British Columbia, Vancouver, Canada, Email: stevew @ece.ubc.ca
IDefence Science and Technology Group, Email: perry.blackmore @dst.defence.gov.au

Abstract—We present an FPGA-optimized implementation of
online neural network training based on weight perturbation
(WP) techniques. When compared to the classic backpropagation
(BP) algorithm, WP is capable of delivering competitive perfor-
mance while occupying minimal area resources. Perturbation-
based methods have been demonstrated as viable training tech-
niques and are suitable for on-line learning applications which
adapt to changing conditions. The viability of applying WP-
based on-chip training for low-precision fixed-point hardware
is demonstrated on two distinct MLP benchmarks: the Iris
dataset classification network and an RF anomaly detector. When
synthesized to a Xilinx Kintex-7 XC7K410T FPGA, WP offers a
3 — 10x area savings with <1% degradation in accuracy com-
pared with backpropagation. Compared with an inference-only
implementation the overhead of introducing on-chip learning is
approximately 30%.

I. INTRODUCTION

Recent machine learning research has seen the emergence
of FPGA-optimized implementations for server, embedded and
real-time applications, e.g. [1]. Order of magnitude lower la-
tency and reduced power over CPU and GPU implementations
has already been demonstrated. While most recent efforts have
been focused on inference, supplementing inference with on-
chip training improves the adaptability of such designs.

In this paper, we focus on on-chip training methods that
enable on-line learning. We show that training can be ac-
complished using finite difference approximations, in which
weights are perturbed, and the impact on the output is used
to determine gradients, without the need to implement the
full backpropagation algorithm. Compared to backpropagation,
these techniques have two advantages: they can re-use much of
the inference hardware, leading to low overhead, and are less
sensitive to reduced precision arithmetic, leading to efficient
FPGA implementations. Although weight perturbation has
been described previously [2f], to the best of our knowledge,
this is the first paper that demonstrates the advantages of these
techniques for on-line FPGA learning tasks.

We demonstrate our techniques using two target applica-
tions: (1) the Iris dataset, which is a multivariate dataset com-
monly used as a benchmark in classification neural network
studies; and (2) an RF anomaly detector, which monitors an
RF spectrum and determines whether the spectrum exhibits
unusual characteristics, such as those that might occur if an
adversary is interfering with a channel.

In these applications, we envisage that the network may
initially be trained either in hardware or software. After

training, during operation, on-line training can be performed
in parallel (or interleaved) with inference, refining the values
of weights as the environment (eg. input channel behaviour)
changes. In addition to providing resilience to changes in the
channel characteristics, the technique makes it less important
to obtain a correct model of the correct behaviour of the
channel at design time, since the parameters can be refined
when the chip is put into the target system. The specific
contributions of this paper include:

1) the first FPGA architecture for simultaneous on-chip
training using weight perturbation techniques with mini-
mal overhead compared to an inference-only design,

2) a demonstration of the feasibility of weight perturbation
to multilayer perceptron (MLP) networks sizes of an
order of magnitude larger than [2], and

3) a comparison of weight perturbation to backpropagation
algorithms, in terms of convergence rate, accuracy, and
FPGA on-chip area for two sample applications.

II. BACKGROUND

A. Backpropagation

Backpropagation is a well-known algorithm for computing
gradients during training to updating weights [3[|-[5[]. Weights
are updated by the formula

OF
8 w;

Aw; = —n (1)
for all weights w;, where Aw; is the change to be applied
to the weights. OF/Ow; is the partial derivative of E with
respect to w;, and 7 is the learning rate. Backpropagation uses
the following weight update formula:

IE(W) i (. i—1\T
: = 52" 2
Wi (=) @
where
5 — (xl —d) o f1 (s1), ifi=L-1 3
| (WIS o fL (s7) otherwise.
for ¢ = [L — 1,...,1], where T denotes the transpose

operation and o the Hadamard product formed by element-
wise multiplication.

B. Weight Perturbation

Weight perturbation [2] implements gradient descent with
direct approximation of the gradient. At each training step,
a small perturbation A is applied to each parameter in the
network one at a time. A feed-forward pass is then performed
to determine the output with the perturbation applied. The
difference between the perturbed output E(w; + A) and the
original output F(w;) can be used to estimate the derivative
using

8wi - A

where the error introduced by this approximation, O(A),
is proportional to A. Unfortunately, reducing A does not
necessarily reduce the error when finite precision arithmetic
is used. It is important to note that a separate forward pass is
required for each parameter in the network during each train-
ing iteration, leading to an O(N*) computational complexity
where N is the number of nodes in the network. However, for
some applications, on-chip training that adapts to slow changes
in the real-time data can be advantageous. In such cases, since
direct computation of gradients is not required, this technique
has the distinct advantage of incurring only minimal additional
hardware over an inference-only implementation.

C. Related Work on FPGAs

Several existing studies [6]-[8] have demonstrated that
using fixed-point 16b weights is sufficient for implement-
ing backpropagation for MLP networks on FPGAs. In [7],
the authors report that 16b fixed-point implementation of
backpropagation delivers 12x better speed and used 13x
less area than a floating-point implementation. Other FPGA-
based works on backpropagation have focused on efficiently
using on-chip memory for weight storage and optimising
precision so that more resources can be assigned to achieving
parallelism.

III. APPLICATIONS

Table[l] gives a summary of the network architecture of thee
applications used in this paper to evaluate the potential of on-
chip perturbation-based training.

Benchmark Architecture Parameters
Iris 4-7-12-3 170
Autoencoder 32 -16-8 -16-32 1352

TABLE I: Network architecture of Iris species detector and
Autoencoder. Non-linear tanh() activation after each layer
output (except final output layer).

A. Iris

Iris is a multivariate dataset commonly used as a benchmark
in classification neural network studies. The Iris dataset is a
table of measurements on three species of Iris flowers. The
dataset has a training/test set of length 150, four features and

three classes. We avoid using the softmax function at the
output, as softmax is highly susceptible to both under and
overflow in fixed-point arithmetic. When trained in software
with Tensorflow, the proposed Iris network achieves 95.3%
accuracy on the test set.

B. RF Anomaly Detector

Anomaly detection on RF channels can be challenging due
to the fast data rates of the physical layer. Recently, MLP-
based techniques [9] have demonstrated promising results
on real-time anomaly detection on RF signals. At the heart
of the anomaly detector is an autoencoder MLP network.
The autoencoder’s first two layers encode the input signal
by compressing it into fewer dimensions, while the final
two layers reconstruct (or decode) the signal back to the
original input. The mean-squared error loss is computed using
the input into the autoencoder as the desired output. The
intuition here is that, through training, the network learns
the key hidden features of the input RF signal, which allows
us to design anomaly detection systems based on simple
techniques such as thresholding the loss observed at the output.
In the scenario where there is an adversary interfering with
the communication channel, the loss at the output would
exceed the preset threshold and be flagged as an anomaly.
While this system would suffice in stationary environments, in
dynamically-changing environments in the field, the network
needs to constantly train and adapt while performing real-time
inference. This paper adds on-line training to the autoencoder
network architecture described in [9].

IV. HARDWARE ARCHITECTURE

Figure |1| shows the proposed system implementation. The
prediction core carries out inference (predictions) on arriving
inputs, based on the active network parameters. We use ping-
pong buffering for the parameters, such that the training core
and the prediction core can operate side-by-side. When a new
set of parameters are ready after a training epoch, the select
lines to the multiplexer (mux2) and demultiplexer (demux2) are
flipped, such that the newly trained parameters are now inputs
to the prediction core, while next training iteration parameters
are written to the other buffer.

Figure [shows the backpropagation training core design for
an example network with two hidden layers. Equations [2]and 3]
are evaluated by the Compute Gradients blocks, while the new
trained parameters are computed in and stored by the Update
Params blocks. The Training Controller block manages the
on-chip training process. At the end of each training epoch,
the controller toggles the multiplexer/demultiplexer select lines
that orchestrate the ping-pong buffering mechanism. We de-
sign each block carefully to support an initiation interval (II)
of 1, such that latency of each training epoch is minimized
(i.e. the network parameters can be updated in real-time as
quickly as possible). This is an area-throughput tradeoff, where
we unroll the network computations spatially on the FPGA to
achieve a high-throughput fully-pipelined training core design.

Input

Active

Layer 2 Params_| Update Params
Params

Core (Layer 2)

Predictions

Params
Buffer 0

Params
Buffer 1

Layer 1 Params

Loss

Compute
Gradients

Update Params
(Layer 1)

Loss [e | 1L, ToMux/
. Demux
Train _| Reg

Sample Compute

Gradients | | Inactive

Predict o Params
rediction
To Mux/ Core

Layer 1
Activations

(Layer 2)

Compute
Gradients
(Layer 1)

Training Core !
(Backprop/Weight- | Train
Perturbation) | input

Active Perturbator [|

Params

Demux
Training
Controller Inactive
.

Params

Overall System Architecture

Backpropagation Training Core

Weight-Perturbation Training Core

Fig. 1: Overall system design and the two variants of backpropagation and weight-perturbation training cores.

The final figure in Figure [T| shows the design of the weight-
perturbation training core. At the heart of the training core is
a prediction core that does continuous inference (Il = 1) on
the same input training sample. The Perturbator block adds
perturbations to each parameter one at a time each cycle, which
is fed into the prediction core. The size of the perturbation is
fixed at compile time. The output from the prediction core is
the E(w; + A) term in Equation 4} The Compute Gradients
block evaluates Equation and commits the new network
parameter to the inactive buffer. Once again, the design is
fully-pipelined to support an II of 1 to maximize the training
frequency.

V. RESULTS

All designs are written in VivadoHLS-C++ and synthesized
with Vivado 2017.4 targeting the Kintex-7 XC7K410T FPGA.
We wrote testbenches to quantify the training performance of
each method across all benchmarks. The batch size is fixed to
1 to simulate stochastic gradient descent training. Our design
space exploration consists of tuning the following hyper-
parameters: (1) fixed-point precision of all weights, biases,
inputs/outputs, and activations in the network; (2) learning rate
(a); and (3) delta (A) by which to perturb each weight/bias
(not applicable to backpropagation). To preserve numerical
stability, we perform arithmetic operations (e.g. accumula-
tions) in double the fixed-point precision used for storing
network parameters and activations. For example, a Q2.12
implementation would have intermediate values of arithmetic
operations computed in Q4.24, which would then be truncated
back to Q2.12 after the computation.

A. Fixed-Point Training

Figure [2| summarizes the fixed-point training capability of
backpropagation (BP) and weight-perturbation (WP) methods
on both applications.

Iris : The Iris classification network shows varying be-
haviour with different techniques at different fixed-point pre-
cisions. Interestingly, a trained Q2.8 WP implementation de-
livers 94.7% accuracy on the test set, while the competing
Q2.8 BP implementation only achieves 52% accuracy on
the test set. At Q2.10, the same comparison sits at 94.7%
vs 85.3%, still in favor of WP. On closer inspection, the
poor accuracy with BP is due to a 44% misclassification
rate on a single class (Versicolour), vs. 10% error rate with

—— BP Fixed —— BP Float WP Fixed —+— WP Float

o Q2.10 Q2.12
S 04
o3
o2
I — — e rcaaus.
Eoo 32 64 96 128 0 32 64 9 128 0 32 64 9 128
Training Epochs
(a) Iris Network
—— BP Fixed —— BP Float WP Fixed —+— WP Float

Q2.8 Q2.10 Q2.12

@ 0.25

Lee=s

128 0 32 64 96 128

— 020
[=2}
£ 015
£
5 010
F 0.05

0

32 64 % 128 0 32 64 9%
Training Epochs

(b) Autoencoder Network

Fig. 2: Training loss vs training epochs for both benchmarks,
evaluated at three representative fixed-point precisions, and
compared to their respective floating-point implementations.

WP. The classification probability at the output is relatively
close (= 0.5) for Versicolour and Virginica classes, which is
the cause for the high error rate. We hypothesize that the
small A perturbations capture the dataset subtleties better
than the BP gradients, where there is a higher chance of
accummulating errors in the backward pass due to limited
fixed-point precision.

RF Anomaly Detector : The RF anomaly detector is 8x
bigger than the Iris network, which increases the complexity
significantly. In Figure [2b]at Q2.8, we observe that BP fails to
train, while WP is unstable. The autoencoder requires at least
14b (Q2.12) of precision to match the floating-point training
loss. To verify the performance of the anomaly detector, we
create a test set in which we inject three different types of noise
— bandpass, chirp, and complex sine — at known intervals. We
then compute an F; score for anomaly detection with each
implementation at the end of 128 training epochs. At Q2.12,
both fixed-point implementations match the F; score (0.57)
obtained with floating-point implementations.

B. Activation Function

Unlike floating-point numbers, low-precision fixed-point
arithmetic has to manage the tradeoffs between numerical
range (i.e. integer bits) and numerical precision (i.e. fractional
bits). Hence, for training low-precision networks, we have to
be careful when designing the network architecture, especially

when choosing the non-linear activation function. A non-
linear function such as ReLuw is not suitable for low-precision
training, as the activations in the outputs can sum to large
positive values at the output of an untrained network, resulting
in unstable training due to saturation/overflow. Non-linear
functions with closed/bounded intervals on the output are
recommended for low-precision on-chip training — examples
include tanh, sigmoid, and softsign.

C. FPGA Area and Performance

Table [shows a detailed resource utilization breakdown
of the on-chip inference and training hardware of both bench-
marks. In both cases, our design goal was to minimize training
epoch frequency, followed by overall design size. To achieve
these goals, each training core sub-blocks are designed to
operate as close to an II of 1 as possible.

For small networks like the Iris network, the target FPGA
is large enough such that the complete BP training circuit
can be unrolled and spatially placed on the FPGA. This
allows us train the network on every new data sample with
the proposed architecture for backpropagation. Since weight-
perturbation computes gradients of network parameters one at
a time every cycle, it is not possible to achieve an II of 1 with
the WP training core. Instead, the II is limited by the latency
of the sub-blocks (247). Hence, the training frequency for
BP is simply the achieved clock frequency of the design (i.e.
3.3x 108 training epochs every second), while the WP achieves
a slower training rate of one epoch every 0.6us (i.e. 6x107
training epochs every second). This high-throughput design,
however, comes at a severe resource cost. For example, the Iris
classification network with BP takes up ~3x more LUTs and
~10x more FFs than the corresponding WP implementation.

As expected, the BP implementation is not able to achieve
an II of 1 on the larger autoencoder network. Instead, the
latency and II of the BP training core now degrades below
the WP implementation at roughly the same resource cost.
The training frequency of the WP core on the autoencoder
is once every ~1.3us, while the BP training core achieves
a rate of once every ~2.5us. For comparison, using the
PAPI [10] profiler, we measure the BP training frequency of
the autoencoder network on a commercial off-the-shelf Intel
i7-6700 CPU to be on average ~2.7us per training epoch
(batch size 1). The FPGA WP training core beats the CPU
implementation by ~2Xx, at a fraction of the power cost.

VI. CONCLUSIONS

In this paper, we have demonstrated an effective and novel
technique for FPGA implementations of artificial neural net-
works with on-line learning. Training is accomplished using
weight-perturbation, which, compared to backpropagation, has
two advantages: (1) it re-uses much of the inference hardware,
leading to low overhead and (2) is less sensitive to reduced
precision arithmetic. Overall, perturbation-based on-line train-
ing is a useful technique that can be performed in parallel (or
interleaved) with inference, refining the values of weights as
the statistics of the problem change over time.

TABLE II: Resource utilization and performance breakdown
of both training methods across both benchmarks (at Q2.10)

Module LUTs FFs BRAMs DSPs Latency 1I
Iris Classification Network
Prediction Core 15946 21931 30 302 142 1
Compute Layers 15623 21245 30 296 125 1
Compute Loss 323 597 0 6 15 1
Training Core (WP) 22189 34360 30 308 248 247
Prediction Core 15668 29483 30 296 142 1
Perturbator 3058 2759 0 12 48 1
Compute Gradients 2311 1792 0 0 54 1
Training Core (BP) 63650 333615 30 325 113 1
Compute Gradients 29594 39715 30 177 99 1
Update Params 33923 37529 0 148 13 1
RF Anomaly Detector
Prediction Core 101817 110114 33 674 165 1
Compute Layers 98797 106458 33 610 139 1
Compute Loss 2992 2820 0 64 24 1
Training Core (WP) 215492 258227 60 1344 171 169
Prediction Core 195985 149284 33 1344 148 1
Perturbator 18011 110273 0 0 17 1
Compute Gradients 1128 1256 0 0 3 1
Training Core (BP) 199113 171057 9 917 721 721
Compute Gradients 74595 91915 9 269 438 256
Update Params 121527 86101 0 648 278 278
ACKNOWLEDGEMENT

The authors gratefully acknowledge support from the De-
fence Science and Technology Group’s Next Generation Tech-
nology Fund under the “High Speed Machine Learning using
FPGASs” project, and the NSERC COHESA Strategic Network.

REFERENCES

[1]1 S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo,
S. Yao, Y. Wang, H. Yang, and W. B. J. Dally, “ESE: Efficient Speech
Recognition Engine with Sparse LSTM on FPGA,” in Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA *17. New York, NY, USA: ACM, 2017, pp. 75—
84. [Online]. Available: http://doi.acm.org/10.1145/3020078.3021745

[2] M. Jabri and B. Flower, “Weight Perturbation: An Optimal Architecture
and Learning Technique for Analog VLSI Feedforward and Recurrent
Multilayer Networks,” Trans. Neur. Netw., vol. 3, no. 1, pp. 154-157,
Jan. 1992. [Online]. Available: http://dx.doi.org/10.1109/72.105429

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1,”
D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group,
Eds. Cambridge, MA, USA: MIT Press, 1986, ch. Learning Internal
Representations by Error Propagation, pp. 318-362. [Online]. Available:
http://dl.acm.org/citation.cfm?1d=104279.104293

[4] R. Lippmann, “An introduction to computing with neural nets,” IEEE
ASSP Magazine, vol. 4, no. 2, pp. 4-22, Apr 1987.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[6] J. L. Holt and T. E. Baker, “Back propagation simulations using
limited precision calculations,” in IJCNN-91-Seattle International Joint
Conference on Neural Networks, vol. ii, Jul 1991, pp. 121-126 vol.2.

[7]1 F. Ortega-Zamorano, J. M. Jerez, D. U. Muoz, R. M. Luque-Baena,
and L. Franco, “Efficient Implementation of the Backpropagation Al-
gorithm in FPGAs and Microcontrollers,” IEEE Transactions on Neural
Networks & Learning Systems, vol. 27, no. 9, pp. 1840-1850, Sept 2016.

[8] M. Moussa, S. Areibi, and K. Nichols, “On the arithmetic precision for
implementing back-propagation networks on FPGAs: A case study,” in
FPGA Implementations of Neural Networks, 2006, pp. 37-61.

[9]1 D.J. Moss, D. Boland, P. Pourbeik, and P. H. Leong, “Real-time FPGA-

based Anomaly Detection for Radio Frequency Signals,” in International

Symposium on circuits and systems (ISCAS). 1EEE, 2018, pp. 1-5.

S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable

programming interface for performance evaluation on modern pro-

cessors,” The international journal of high performance computing

applications, vol. 14, no. 3, pp. 189-204, 2000.

[10]

http://doi.acm.org/10.1145/3020078.3021745
http://dx.doi.org/10.1109/72.105429
http://dl.acm.org/citation.cfm?id=104279.104293
http://www.deeplearningbook.org

	Introduction
	Background
	Backpropagation
	Weight Perturbation
	Related Work on FPGAs

	Applications
	Iris
	RF Anomaly Detector

	Hardware Architecture
	Results
	Fixed-Point Training
	Activation Function
	FPGA Area and Performance

	Conclusions
	References

