
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 8, AUGUST 2005 911

A Hardware Gaussian Noise Generator
Using the Wallace Method

Dong-U Lee, Member, IEEE, Wayne Luk, Member, IEEE, John D. Villasenor, Senior Member, IEEE, Guanglie Zhang,
and Philip H. W. Leong, Senior Member, IEEE

Abstract—We describe a hardware Gaussian noise generator
based on the Wallace method used for a hardware simulation
system. Our noise generator accurately models a true Gaussian
probability density function even at high values. We evaluate
its properties using: 1) several different statistical tests, including
the chi-square test and the Anderson–Darling test and 2) an ap-
plication for decoding of low-density parity-check (LDPC) codes.
Our design is implemented on a Xilinx Virtex-II XC2V4000-6
field-programmable gate array (FPGA) at 155 MHz; it takes up
3% of the device and produces 155 million samples per second,
which is three times faster than a 2.6-GHz Pentium-IV PC. An-
other implementation on a Xilinx Spartan-III XC3S200E-5 FPGA
at 106 MHz is two times faster than the software version. Further
improvement in performance can be obtained by concurrent
execution: 20 parallel instances of the noise generator on an
XC2V4000-6 FPGA at 115 MHz can run 51 times faster than
software on a 2.6-GHz Pentium-IV PC.

Index Terms—Channel coding, communication channels,
field-programmable gate arrays (FPGAs), Gaussian noise, high-
performance, Monte Carlo methods, reconfigurable-computing,
technology-mapping.

I. INTRODUCTION

THE AVAILABILITY of high quality Gaussian random
numbers is critical to many simulation, graphics and

Monte Carlo applications. Currently, the majority of such simu-
lations are performed using systems based on microprocessors,
digital signal processors, or other software-programmable
devices. In these systems, the trigonometric, exponential, and
other functions involved in many of the methods for obtaining
Gaussian random variables can be performed using software
libraries [1]. As a result, not much research has been reported
concerning efficient hardware methods for implementation
of Gaussian noise generators. However, well-optimized hard-
ware implementations can often operate one or more orders

Manuscript received August 20, 2004; revised March 23, 2005. This work
was supported in part by Xilinx Inc., by the U.K. Engineering and Physical
Sciences Research Council under Grants GR/N 66599 and GR/R 31409, by the
U.S. Office of Naval Research, and by the Research Grants Council of the Hong
Kong Special Administrative Region, China, under Project CUHK4333/02E.

D. Lee was with the Department of Computing, Imperial College London,
London SW7 2AZ, U.K. He is now with the Electrical Engineering De-
partment, University of California, Los Angeles, CA 90024 USA (e-mail:
dongu@icsl.ucla.edu).

W. Luk is with the Department of Computing, Imperial College London,
London 2SW 2BT, U.K. (e-mail: w.luk@imperial.ac.uk).

J. D. Villasenor is with the Electrical Engineering Department, University of
California, Los Angeles, CA 90024 USA (e-mail: villa@icsl.ucla.edu).

G. Zhang and P. H. W. Leong are with the Department of Computer Sci-
ence and Engineering, Chinese University of Hong Kong, Shatin, Hong Kong
(e-mail: glzhang@cse.cuhk.edu.hk, phwl@cse.cuhk.edu.hk).

Digital Object Identifier 10.1109/TVLSI.2005.853615

of magnitude faster than similarly optimized software imple-
mentations. Recent advances in field-programmable gate array
(FPGA) technology have substantially improved performance
and cost effectiveness of hardware implementations, and they
provide a strong motivation for us to reexamine the issue of
Gaussian noise generation in hardware.

The work described here is originally motivated by ongoing
advances in communications relating to channel codes [2], and
in particular by the development of new generations of channel
codes that operate on very long (thousands to tens of thousands
of bits each) blocks of data. For these codes, it is often desirable
to perform simulations of extremely large numbers of blocks in
order to assess the bit-error rate (BER) performance at rates as
low as 10 .

There are many other applications in which very large simu-
lations using Gaussian noise are valuable as well. These include
financial modeling [3], simulation of economic systems [4], and
molecular dynamics simulations [5]. For all of these applica-
tions, hardware-based simulation offers the potential to speed
up simulation by several orders of magnitude, but is feasible
only if suitably fast and high-quality noise generators can be im-
plemented. In principle, one could generate the noise samples
on a PC and transfer them to the hardware device performing
the simulation. However in such approaches, generation of the
noise samples is often the performance bottleneck. Hence, it is
desirable to have a hardware noise generator. On-chip noise gen-
eration is significantly faster and does not suffer from transfer
overheads.

In addition, since deviation from an ideal Gaussian proba-
bility density function (pdf) can degrade simulation results, very
large simulations have stringent requirements on the quality of
the pdf in the tails. Samples that lie at large multiples of
(standard deviation) away from the mean are rare, but they are
also exactly the noise realizations that are most likely to in-
duce events of high interest in understanding the behavior of
the overall system. To accurately obtain good characteristics in
the tails requires the combination of: 1) an underlying method
that creates high values with the proper frequency and 2) a
hardware implementation of the method that preserves the req-
uisite precision at all stages to ensure that high behavior is not
compromised.

The principal contribution of this paper is a hardware
Gaussian noise generator based on the Wallace method [6]
that offers quality suitable for simulations involving very
large numbers of noise samples. The noise generator occu-
pies approximately 3% of the resources of a Xilinx Virtex-II

1063-8210/$20.00 © 2005 IEEE

912 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 8, AUGUST 2005

XC2V4000-6 FPGA device, while producing over 155 million
samples per second. The key contributions of our work include:

• a hardware architecture for the Wallace method;
• exploration of hardware implementations of the proposed

architecture targeting both advanced high-speed FPGAs
and low-cost FPGAs;

• evaluation of the proposed approach using several different
statistical tests, including the chi-square test and the An-
derson–Darling (A-D) test, as well as through application
to a large communications simulation involving low-den-
sity parity-check (LDPC) channel codes [7].

The rest of this paper is organized as follows. Section II
covers background material and previous work. Section III
provides an overview of the Wallace method. Section IV de-
scribes our Wallace architecture, and discusses how each of its
steps can be handled in a hardware implementation. Section V
describes technology-specific implementation of the hardware
architecture. Section VI discusses evaluation and results, and
Section VII offers conclusions and future work.

II. BACKGROUND

Most methods for generating random Gaussian variables are
based on transformations or operations on uniform random
variables. Widely used methods include various rejection-ac-
ceptance methods [8]–[10], the use of the central limit theorem
[11], the inversion method [12] and the Box–Muller method
[13]. While there are many software implementations of these
methods, there is little previous work on digital hardware
Gaussian noise generation.

The rejection-acceptance methods are popular in software ap-
proaches. However, they contain conditional loops such that the
output rates are not constant, which is undesirable in a hardware
simulation environment. While in principle the central limit the-
orem can be used to produce Gaussian samples if a suitable
number of samples are involved, in practice an impractically
large number of samples would be required to achieve an ac-
curate representation of the ideal Gaussian pdf.

The Box–Muller method, either alone or in combination with
the central limit theorem, has been the focus of most efforts
in hardware implementation. For example, Boutillon et al.
[14] present a hardware Gaussian noise generator based on the
Box–Muller algorithm in conjunction with the central limit
theorem. Their design occupies 437 logic cells on an Altera
Flex 10K100EQC240-1 FPGA, and outputs 24.5 million noise
samples per second at a clock speed of 98 MHz. Recently, the
“Additive White Gaussian Noise (AWGN) Core 1.0” [15] has
been released by Xilinx, which is based on the Boutillion et al.
architecture.

Chen et al. [16] use a cummulative distribution function
(cdf) conversion table to transform uniform random variables
to Gaussian random variables. They have implemented the
Gaussian noise generator as part of a readback-signal gener-
ator on a Xilinx Virtex-E XCV1000E FPGA at 70 MHz. The
method they employ is basically the inversion method [12]
implemented with a look-up table. However, the number of
table entries are insufficient. To produce high quality noise

samples with their direct table look-up approach, one would
lead to an impractically large table.

Fan et al. [17] present a hardware Gaussian noise generator
based on the polar method [11] in conjunction with the cen-
tral limit theorem. Their design is implemented on an Altera
Mercury EP1M120F484C7 FPGA; it takes up 336 logic ele-
ments and has a clock speed of 73 MHz generating a sample
every clock. The polar method is a variant of the Box–Muller
method and is a class of the rejection-acceptance methods,
hence the output rate is not constant. In order to overcome this
problem, they employ a first-in first-out (FIFO) buffer with the
read speed set to half of the write speed.

The drawback of the hardware designs mentioned above are
revealed by statistical tests applied to evaluate the noise sam-
ples produced. The authors carry out relative error comparisons
between the ideal Gaussian pdf and the obtained pdf for a small
number of samples and limited maximum value. Such tests
are not enough to ensure the quality of the noise samples; one
should thoroughly apply well known goodness-of-fit tests such
as the chi-square test and the A-D test over large numbers of
samples. Designs which fail such statistical tests are inadequate
for high quality hardware communications simulations such
as LDPC codes. This issue is discussed in more detail in
Section VI.

In [18], we present a hardware Gaussian noise generator
based on the Box–Muller method and central limit theorem.
The idea is similar to [14], but we employ more sophisticated
approximation techniques for the mathematical functions of the
Box–Muller method, resulting in significantly more statistically
accurate noise samples. The design occupies 2514 slices, two
block RAMs and eight MULT18X18s (18 18 embedded
multiplier blocks) on a Xilinx Virtex-II XC2V4000-6 FPGA.
It operates at 133 MHz generating a noise sample every clock
and passes the statistical tests widely used for testing normality
discussed in Section VI.

All of the methods described above produce normal variables
by performing operations on uniform variables. In contrast,
Wallace proposes an algorithm using an evolving pool of
normal variables to generate additional normal variables [6].
The approach draws its inspiration from uniform random
number generators that generate one or more new uniform
variables from a set of previously generated uniform variables.
Given a set of normally distributed random variables, a new set
of normally distributed random variables can be generated by
applying a linear transformation. Brent [19] has implemented
a fast vectorized Gaussian random number generator using the
Wallace method on the Fujitsu VP2200 and VPP300 vector
processors. In [20], Brent and Rüb outline possible problems
associated with the Wallace method and discuss ways of
avoiding them.

III. WALLACE METHOD

Wallace proposes a fast algorithm for generating normally
distributed pseudorandom numbers which generates the target
distributions directly using their maximal-entropy properties
[6]. This algorithm is particularly suitable for high throughput

LEE et al.: HARDWARE GAUSSIAN NOISE GENERATOR USING THE WALLACE METHOD 913

Fig. 1. Overview of the Wallace method.

hardware implementation since no transcendental functions
such as , or are required.

An overview of the Wallace method is described in Fig. 1.
It takes a pool of normally distributed random num-
bers from the normal distribution. These values are normalized
so that their average squared value is one. In transformation
steps, numbers are treated as a vector , and transformed
into new numbers from the components of the vector

where is an orthogonal matrix. If the original
values are normally distributed, then so are the new values.
Furthermore, this transformation preserves the sum of squares.

The process of generating a new pool of normally distributed
random numbers is called a “pass.” After a pass, a pool of new
Gaussian random numbers is formed. As there are variables
in the data pool, transformation steps are performed during
each pass. A -vector is multiplied with the orthogonal ma-
trix in performing a transformation step.

As stated by Wallace, it is desirable that any value in the pool
should eventually contribute to every value in the pools formed
after several passes. In Wallace’s original method, the old pool
is treated as an -by- array stored in row-major order, and the
new pass is treated as an -by- array stored in column major
order. Hence, each pass effectively transposes the values in the
pool. If is odd, the transposition is sufficient to ensure eventual
mixing of the values. However if is even, transposition alone
is not sufficient. We describe in Section IV how we overcome
this problem to reduce correlation even further.

The initial values in the pool are normalized so that their av-
erage squared value is one. Because is orthogonal, the sub-
sequent passes do not alter the sum of the squares. This would
be a defect, since if are independent samples from
the normal distribution, we would expect to have a
chi-squared distribution . In order to overcome this defect, a
variate from the previous pool is used to approximate a random
sample from the distribution. A scaling factor is intro-
duced to ensure that the sum of the squares of the values in the
pool is , the random sample.

One concern of the Wallace method is the issue of correla-
tions given the use of previous outputs to generate new outputs.
This can be problematic in the case of realizations with large ab-
solute values lying in the tails of the Gaussian, since each value
contributes values in the subsequent block, values in the
next block, and so on with diminishing influence. With proper
choice of parameters such as pool size and transformation size,
the effect of these correlations can be minimized for a given set
of requirements with respect to number of noise samples, tail
accuracy, and noise quality.

Fig. 2. Overview of our Gaussian noise generator architecture based on the
Wallace method. The triangle in Stage 4 is a constant coefficient multiplier.

IV. ARCHITECTURE

This section provides an overview of the hardware design for
the Wallace method, which involves a four-stage hardware ar-
chitecture shown in Fig. 2. The implementation of this archi-
tecture in FPGA technology will be presented in Section V. In
Fig. 2, the select signals for the multiplexors and the clock en-
able signals for the registers are omitted for simplicity.

In our design illustrated in Fig. 2, we choose and
resulting in a pool size of 1024. Although one can

choose any and , in this work, we follow Wallace’s orig-
inal description. On-chip, true dual read/write port synchronous
RAM is used to implement the pool. The dual-port RAM allows
two values to be read and written simultaneously, improving the
memory bandwidth.

914 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 8, AUGUST 2005

As all the variables from the pool are used to generate the
new pseudo random numbers, the indexes should cover all the
numbers in the pool and at the same time reduce the correlations
between them. The addresses which index the pool are started
from a random origin “start,” stepped by a random odd “stride”
and XOR is performed with a random “mask.” The combination
of these three operations is critical to achieve good mixing be-
tween the Gaussian samples in the pool. Our tests show that if
one of them is not performed, it causes degradation in the overall
Gaussian noise quality.

In order to achieve better mixing of the Gaussian random
number generator, more pass types can be used during a pass
by introducing different orthogonal matrices. As in Wallace’s
original implementation, two orthogonal matrices and
are chosen for our design

During a pass, is used for first half and is used for
the second half of the pass. As the elements of the matrices
and are only 1 or 1, only simple integer addition and shift
operations are required. The Gaussian random variables in the
pool are held as 24 bit two’s complement integers. For the given
set of four values , , , to be transformed, and with our choice
of and , the new values , , , can be calculated from
the old ones as follows:

(1)

(2)

where . Note that the operations
above are performing the actual transformations, hence there is
no need to store and .

A. First Stage

This stage involves generation of the uniformly distributed
realizations start, stride and mask. While traditional linear
feedback shift registers (LFSRs) [21] are sufficient as a uni-
form random number generator (URNG), Tausworthe URNGs
[22] offer better randomness with modest hardware cost. The
Tausworthe URNG we employ follows the algorithm presented
in [22]. It combines three LFSR based random number genera-
tors to obtain improved statistical properties, generates a 32-bit
uniform random number per clock, and has a period of around
2 . Since we use a pool size of 1024, 10 bits are needed for
the three variables. Since stride needs to be odd at all times,
we concatenate a one after the least significant bit. Hence, for
each pass, altogether 29 bits are used for start, stride, and mask.
The remaining three bits are left unused.

Fig. 3. Transformation circuit of Stage 3. The square boxes are registers.
The select signals for the multiplexors and the clock enable signals for the
registers are omitted for simplicity.

B. Second Stage

This stage generates the addresses for the four values , , ,
from start, stride, and mask. The four addresses are calculated

as follows:

start mask (3)

start stride mask (4)

start stride mask (5)

start stride mask (6)

The multiplication by two is implemented simply by a left shift,
and the multiplication by three is implemented by a left shift
followed by an addition. This addressing scheme ensures that
the correlations between variables are kept at a minimum.

C. Third Stage

This stage involves the most interesting challenge: efficiently
performing the actual transformation. This stage contains the
“Pool RAM” which holds the pool of 1024 Gaussian random
variables. Dual-port RAM is used to implement the pool. Since
each variable in the pool is 24 bits, the total size of the pool is

bits. The “init Pool ROM” and the counter
are used to initialize the pool with the original pool contents
when the reset signal is set. This ROM is single-ported and has
the same size as the pool. The contents of this ROM are gener-
ated in software using the Box–Muller method, and the variables
are normalized so that their sum of squares is equal to one.

Fig. 3 shows how we perform the transformation steps de-
scribed in (1) and (2). The timing diagram of this circuit and the
“Pool RAM” is illustrated in Fig. 4. We can see that the dual-port
RAM is fully utilized. is calculated in three steps

(7)

LEE et al.: HARDWARE GAUSSIAN NOISE GENERATOR USING THE WALLACE METHOD 915

Fig. 4. Detailed timing diagram of the transformation circuit and the dual-port “Pool RAM.” A z indicates the address of the data z and WE is the write enable
signal of the “Pool RAM.” All ports and registers of the transformation circuit and ports of the dual-port RAM are shown. We observe that the dual-port RAM is
fully utilized.

(8)

(9)

In principle, we could share a single adder in conjunction with
multiplexors to perform all the operations of the transformation
circuit. However, high-speed adders are efficiently implemented
on FPGAs by fast-carry chains. In fact, both a two-input 24-bit
multiplexor and a 24-bit adder occupy 14 slices (user-config-
urable elements on the FPGA) in a Xilinx Virtex-II FPGA. In
addition the use of multiplexors would increase the delay signif-
icantly. For these reasons, we decide to use separate adders/sub-
ractors for each operation. For other devices such as Applica-
tion-Specific Integrated Circuits (ASICs), it can be more effi-
cient to adopt the former approach involving hardware sharing.
The critical path of the entire Wallace design is from to
which is just a multiplexor followed by a subtractor.

D. The Fourth Stage

This stage performs the sum of squares correction described
in Section III. It follows the approach used by Wallace in the
FastNorm implementations [23].

A random sample with an approximate distribution can
be obtained as

(10)

where has unit normal distribution, and
for large . Hence, can be computed as

(11)

where . We set and .

916 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 8, AUGUST 2005

The noise sample , generated from the transformation cir-
cuit of Stage 3, is multiplied by to correct the sum of the
squares and hence the final noise sample. is obtained by

(12)

Since and are constants, they are precalculated in soft-
ware and stored as constants in the hardware design.

Before a pass, is assigned with a variable from a previous
pass, and is updated. For the very first pass when the reset
signal is set, is initialized to where is the sum
of squares of the initial pool. Note that we are using a pool size
of .

V. IMPLEMENTATION

This section presents implementations of the four-stage ar-
chitecture using FPGA technology.

The Tausworthe URNG in Stage 1 can be implemented
in configurable hardware using a small amount of resources.
Recent FPGAs have a large number of user-configurable ele-
ments: for instance, the Xilinx Virtex-II XC2V4000-6 device
has 23 040 user-configurable elements known as slices. We use
the primitive pentanomial over

with a random initial state. This takes up just 77 slices.
Xilinx Virtex-II devices have embedded memory ele-

ments and multipliers, which are known as block RAMs and
MULT18X18s. Each block RAM can hold 18 kb of data and
each MULT18X18 can implement a 18 bit 18 bit multipli-
cation. If the data or the multiplication are larger than 18 kb
or 18 bit 18 bit, the Xilinx tools will use multiple block
RAMs and MULT18X18s to implement them. The Xilinx
Virtex-II XC2V4000-6 device has 120 block RAMs and 120
MULT18X18s in total. The “init Pool ROM” is implemented
using single-port block RAM, while the “Pool RAM” is imple-
mented using dual-port block RAM. Since, we use a pool of
1024 and use 24 bits for each noise samples, the size of “init
Pool ROM” and “Pool RAM” are both 24 576 bits, occupying
two block RAMs each. The constant coefficient multiplier in
Stage 4 uses two block RAMs to implement part of the mul-
tiplication. The 24 bit 24 bit multiplier in Stage 4 occupies
four MULT18X18s.

Several FPGA implementations have been developed, using
Xilinx System Generator 6.3 [24]. All designs are heavily
pipelined to maximize throughput. Synplicity Synplify Pro 7.7
is used for synthesis. For place-and-route, Xilinx ISE 6.3 is
used with the maximum effort level and the clock constraints
are carefully tuned to give the fastest clock frequency. We have
mapped and tested the Wallace design onto a hardware plat-
form with a Xilinx Virtex-II XC2V4000-6 FPGA. The design
occupies 770 slices, six block RAMs, and four MULT18X18s,
which takes up around 3% of the device. The pipelined de-
sign operates at 155 MHz, and hence our design produces
155 million Gaussian noise samples per second. The resource
usage of each of the four stages is shown in Table I.

The latency of our design is 1138 clock cycles (7 s at
155 MHz); 1024 cycles are used to initialize the “Pool RAM”
with the initial pool of Gaussian random samples. The other 114
cycles are needed to fill up the pipelines of the design. Although

TABLE I
RESOURCE UTILIZATION FOR THE FOUR STAGES OF THE NOISE

GENERATOR ON A XILINX VIRTEX-II XC2V4000-6 FPGA

TABLE II
HARDWARE IMPLEMENTATION RESULTS OF THE NOISE GENERATOR

USING DIFFERENT TYPES OF FPGA RESOURCES ON A

XILINX VIRTEX-II XC2V4000-6 FPGA

the latency is very large, it is not important since we only care
about the throughput in a hardware-based simulation.

From a hardware designer’s point of view, it is interesting to
explore the tradeoffs between using different types of hardware
resources. For instance, a table can be implemented using block
RAM or distributed RAM using slices. Table II shows our noise
generator implemented using different FPGA resources. We ob-
serve that the design using slices only is more than four times the
number of slices and has significantly lower clock speed than
our original design. Also, the area and speed penalty of using
slices to implement tables instead of block RAMs is especially
high. Hence, in our opinion, dedicated FPGA resources such
as block RAMs and MULT18X18s should be used wherever
applicable.

We have also implemented our design on a low-cost Xilinx
Spartan-III XC3S200E-5 FPGA, utilizing the slices, block
RAMs, and MULT18X18s available on the chip. The design
runs at 106 MHz and takes up the same amount of resources as
the Virtex-II design above, which requires around half of the
resources in the device.

VI. EVALUATION AND RESULTS

This section describes the statistical tests that we use to ana-
lyze the properties of the generated Gaussian noise.

To ensure the randomness of the uniform random numbers
start, stride and mask, we have tested the Tausworthe URNG
with the Diehard tests [25]. The Tausworthe URNG pass all the
tests indicating that the uniform random samples generated are
indeed uniformly randomly distributed.

We use two well-known goodness-of-fit tests to check the nor-
mality of the random variables: the chi-square test and the
A-D test [26]. The test involves quantizing the axis into

bins, determining the actual and expected number of samples
appearing in each bin, and using the results to derive a single
number that serves as an overall quality metric. This test is es-
sentially a comparison between an experimentally determined
histogram and the ideal pdf. In contrast to the test which deals

LEE et al.: HARDWARE GAUSSIAN NOISE GENERATOR USING THE WALLACE METHOD 917

Fig. 5. The pdf of the generated noise from our design for a population of four
million samples. The p-values of the � and A-D tests are 0.7303 and 0.8763,
respectively.

with quantized aspects of a design, the A-D test deals with con-
tinuous properties. It is modified from the Kolmogorov-Smirnov
(K-S) test [11] to give more weight to the tails than the K-S test
does. The K-S test is distribution free in the sense that the critical
values do not depend on the specific distribution being tested.
The A-D test makes use of the specific distribution (normal in
our case) in calculating critical values.

The probability that the deviation of the observed from the
expected is due to chance alone can be obtained from a -value
[26] based on the above tests. A sample set with a small -value
means that it is less likely to follow the target distribution. The
general convention is to reject the null hypothesis—that the
samples are normally distributed—if the -value is less than
0.05.

Our hardware Wallace implementation passes the statistical
tests even with extremely large numbers of samples. We have
run a simulation of 10 samples to calculate the -values for
the and A-D test. For the test, we use 100 bins for the
axis over the range . The -values for the and A-D
tests are found to be 0.5385 and 0.7372 respectively, which are
well above 0.05, indicating that the generated noise samples are
indeed normally distributed. To test the noise quality in the high

regions, we run a simulation of 10 samples over the range
and with 100 bins. This is equivalent to a simu-

lation size of over 10 samples. The -values for the and
A-D tests are found to be 0.6839 and 0.7662, showing that the
noise quality even in the high regions is high.

If is a pair of random numbers with Gaussian distri-
butions, then should be uniform over .
Six million Gaussian variables, randomly picked from a popula-
tion of 10 samples generated from our design are transformed
using this identity, resulting in three million uniform random
variables. These uniform variables are tested with the Diehard
tests [25] for uniformity. They pass all tests indicating that the
transformed numbers are indeed uniformly distributed. Fig. 5
shows the pdf obtained from our Gaussian noise generator for a
population of four million samples. The samples pass both the

TABLE III
COMPARISONS OF DIFFERENT HARDWARE GAUSSIAN NOISE GENERATORS

IMPLEMENTED ON XILINX VIRTEX-II XC2V4000-6 FPGAS.
ALL DESIGNS GENERATE A NOISE SAMPLE EVERY CLOCK

and the A-D test resulting in a smooth bell-shaped Gaussian
distribution.

We compare our design with two other designs: “White
Gaussian Noise Generator” block available in Xilinx System
Generator 6.3 [24] and the design presented in [18]. The “White
Gaussian Noise Generator” block is based on the “Additive
White Gaussian Noise (AWGN) Core 1.0” from Xilinx [15].
The Xilinx core follows the architecture presented by Boutillon
et al. in [14], which uses the Box–Muller method in conjunction
with the central limit theorem. The block is slightly slower and
larger than the core, since it is less optimized. The design in
[18] is also based on the Box–Muller method and central limit
theorem, but we employ more sophisticated approximation
techniques for the mathematical functions in the Box–Muller
method, resulting in significantly more statistically accurate
noise samples. We test the noise samples generated from the
Xilinx block with the and the A-D test. We find that the
samples fail the tests after just 160 000 samples. We also tested
the Boutillon et al. [14] design with the test, and found
that it fails after just 20 000 samples. This is primary due to the
limited resolution problem of their nonuniform direct look-up
table approach. We suspect that the tables would have to be
impractically large to generate high quality noise samples with
this approach.

Table III compares the Xilinx block, our Box–Muller design
in [18], and our Wallace design. We can see that the Xilinx block
uses less resources and is slightly faster than our Wallace design,
but as mentioned above the block fails the statistical tests after a
small number of samples. Both of our Box–Muller and Wallace
designs pass the statistical tests, even with very large numbers
of samples. However, our Wallace design is around three times
smaller and slightly faster.

Fig. 6 shows the variation of the value with sample size
for the Xilinx block, and various Wallace implementations at
different data path and noise sample bit-widths. The dotted hor-
izontal line is the 0.05 confidence level (-value), i.e., values
below this line pass the test. We observe that the Xilinx
block fails after a small number of samples. For the Wallace im-
plementations, we observe that with increasing precision more
samples are required to fail the test. This is due to a com-
bination of two factors: 1) insufficient precision in the Wallace
arithmetic leading to low quality noise samples and 2) because
of finite precision of the noise samples, some bins of the
test will be more biased than others, this effect is reduced with
increasing noise precision.

918 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 8, AUGUST 2005

Fig. 6. Variation of the � value with sample size for the Xilinx block and
various Wallace implementations at different precisions.

Fig. 7. Wallace bitwidth versus number of samples without � failure.
We see a linear behavior with the y axis in logarithmic scale.

In Fig. 7 we plot the Wallace bitwidth versus the number
of samples without failure. With the axis in logarithmic
scale, we can see a linear behavior. The dotted line shows the
trend at higher bit-widths. For instance, if 32 bit Wallace is used,
up to around 10 samples would pass the test. Increasing
the Wallace bit-width would require more block RAMs for the
pool, and larger multipliers for the sum-of-squares correction,
and more slices for the larger adders and multiplexors.

Fig. 8 shows BER performance simulation results for a
972 1944 irregular LDPC code from [27]. Results show our
Wallace noise generator, standard Box–Muller, and Box–Muller
with the noise saturated at and . The Box–Muller im-
plementations are written in software using double-precision
floating point arithmetic. Two observations can be made
from this figure. First, there are no distinguishable differ-
ences between our Wallace implementation and the software
Box–Muller. Second, limiting the noise power to a certain
multiple results in inaccurate simulation results, particularly in
regions of lower BER. For instance at dB, our
Wallace gives a BER of 10 , standard Box–Muller gives
10 , whereas Box–Muller saturated at and give
10 and 10 , respectively. Thus, the lack of noise of
sufficient quality can lead to an overly optimistic (and incorrect)
conclusions regarding the behavior of the code.

The performance of the noise generator can be improved by
concurrent execution. We have experimented with placing mul-

Fig. 8. BER performance simulation results for a 972� 1944 irregular
LDPC code. The Box–Muller implementations are written in software using
double-precision floating point arithmetic.

TABLE IV
PERFORMANCE COMPARISON: TIME FOR PRODUCING ONE BILLION GAUSSIAN

NOISE SAMPLES. THE XC2V4000-6 FPGA BELONGS TO THE

XILINX VIRTEX-II FAMILY, WHILE THE XC3S200E-5 FPGA
BELONGS TO THE XILINX SPARTAN-III FAMILY

tiple instances of our noise generator in an FPGA, and discov-
ered that there is a reduction in clock speed due to increased
routing congestion. We are able to fit up to 20 instances on the
XC2V4000-6 FPGA running at 115 MHz, the number of block
RAMs available on the device being the limit. Of course using a
larger device such as the Virtex-4 XC4VFX140 FPGA, we are
able to fit even more instances. Note that it is perfectly valid
to use multiple instances of the noise generator, as long as the
Tausworthe URNGs and pool RAMs are initialized with dif-
ferent random seeds and noise samples.

Our hardware implementations have been compared to sev-
eral software implementations based on the Wallace, Ziggurat
[10], polar and Box–Muller method [11], which are known to be
the fastest methods for generating Gaussian noise for instruction
processors. For the Wallace and Ziggurat methods, FastNorm21

[23] and rnorrexp [10], which are publicly available, are used.
In order to make a fair comparison, we use the same uniform
number generator for all implementations. The mixed multi-
plicative congruential (Lehmer) generator [28] used in the Fast-
Norm2 implementation is chosen. Software implementations
are run on an Intel Pentium-IV 2.6-GHz PC is equipped with
1-GB DDR-SDRAM. They are written in ANSI C and compiled

1In FastNorm2, the pool is updated periodically, whereas in our hardware
implementation it is not.

LEE et al.: HARDWARE GAUSSIAN NOISE GENERATOR USING THE WALLACE METHOD 919

with the GNU gcc 3.2.2 compiler with -O3 optimization, gen-
erating double precision floating-point numbers. Note that all
software implementations pass the and A-D tests. The results
are shown in Table IV. It can be seen that our hardware designs
are faster than software implementations by 2–609 times, de-
pending on the device used and the resource utilization. Looking
at the PC results, we can see that the Wallace method performs
significantly better than other methods.

VII. CONCLUSION

We have presented a hardware Gaussian noise generator
using the Wallace method to support simulations which involve
very large numbers of samples.

Our noise generator architecture contains four stages. It takes
up approximately 3% of a Xilinx Virtex-II XC2V4000-6 FPGA
and half of a Xilinx Spartan-III XC3S200E-5, and can produce
155 million samples per second. Further improvement in per-
formance can be obtained by concurrent execution: 20 parallel
instances of the noise generator on an XC2V4000-6 FPGA at
115 MHz can run 51 times faster than software on a 2.6-GHz
Pentium-IV PC. The quality of the noise samples is confirmed
by two statistical tests: the test and the A-D test, and also
by applications involving LDPC decoding. We are currently
exploring methods for characterizing and optimizing Gaussian
noise generators, such that the most appropriate noise generator
can be selected for a given application.

ACKNOWLEDGMENT

The authors would like to thank R. P. Brent, A. Abdul Gaffar,
A. C. H. Ng, R. C. C. Cheung, E. Vallés, and the reviewers for
their assistance.

REFERENCES

[1] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical
Recipes in C. Cambridge, U.K.: Cambridge Univ. Press, 1993, vol. 2.

[2] B. Levine, R. Taylor, and H. Schmit, “Implementation of near Shannon
limit error-correcting codes using reconfigurable hardware,” in Proc.
IEEE Symp. Field-Programmable Custom Computing Machines, 2000,
pp. 217–226.

[3] A. Brace, D. Ga̧tarek, and M. Musiela, “The market model of interest
rate dynamics,” Math. Finance, vol. 7, no. 2, pp. 127–155, 1997.

[4] A. Bergstrom, “Gaussian estimation of mixed-order continuous-time dy-
namic models with unobservable stochastic trends from mixed stock and
flow data,” Econometric Theory, vol. 13, no. 4, pp. 467–505, 1997.

[5] B. Jung, H. Lenhof, P. Müller, and C. Rüb, “Langevin dynamics simu-
lations of macromolecules on parallel computers,” in Macromolecular
Theory Simul., 1997, pp. 507–521.

[6] C. Wallace, “Fast pseudorandom generators for normal and exponential
variates,” ACM Trans. Math. Softw., vol. 22, no. 1, pp. 119–127, 1996.

[7] R. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory,
vol. IT–8, pp. 21–28, 1962.

[8] J. Ahrens and U. Dieter, “An alias method for sampling from the normal
distribution,” Computing, vol. 42, no. 2–3, pp. 159–170, 1989.

[9] J. Leva, “A fast normal random number generator,” ACM Trans. Math.
Softw., vol. 18, no. 4, pp. 449–453, 1992.

[10] G. Marsaglia and W. Tsang, “The Ziggurat method for generating
random variables,” J. Statist. Softw., vol. 5, no. 8, pp. 1–7, 2000.

[11] D. Knuth, Seminumerical Algorithms, 3rd ed, ser. The Art of Computer
Programming. Reading, MA: Addison-Wesley, 1997, vol. 2.

[12] W. Hörmann and J. Leydold, “Continuous random variate generation
by fast numerical inversion,” ACM Transactions on Modeling and Com-
puter Simulation, vol. 13, no. 4, pp. 347–362, 2003.

[13] G. Box and M. Muller, “A note on the generation of random normal
deviates,” Ann. Math. Statist., vol. 29, pp. 610–611, 1958.

[14] E. Boutillon, J. Danger, and A. Gazel, “Design of high speed AWGN
communication channel emulator,” Analog Integr. Circuits Signal
Process., vol. 34, no. 2, pp. 133–142, 2003.

[15] (2002) Additive white Gaussian noise (AWGN) Core v1.0. Xilinx Inc.
[Online]. Available: http://www.xilinx.com

[16] J. Chen, J. Moon, and K. Bazargan, “Reconfigurable readback-signal
generator based on a field-programmable gate array,” IEEE Trans.
Magn., vol. 40, no. 3, pp. 1744–1750, Mar. 2004.

[17] Y. Fan, Z. Zilic, and M. Chiang, “A versatile high speed bit error rate
testing scheme,” in Proc. IEEE Int. Symp. Quality Electronic Design,
2004, pp. 395–400.

[18] D. Lee, W. Luk, J. Villasenor, and P. Cheung, “A Gaussian noise gen-
erator for hardware-based simulations,” IEEE Trans. Comput., vol. 53,
no. 12, pp. 1523–1534, Dec. 2004.

[19] R. Brent, “A fast vectorised implementation of Wallace’s normal
random number generator,” The Australian National University, ANU
Computer Sci.Tech. Rep. TR-CS-97-07, 1997.

[20] C. Rüb, “On Wallace’s method for the generation of normal variates,”
Max-Planck-Institut für Informatik, Germany, MPI Informatik Res. Rep.
MPI-I-98-1-020, 1998.

[21] P. Chu and R. Jones, “Design techniques of FPGA based random number
generator,” presented at the Military and Aerospace Applications of Pro-
grammable Devices and Technology Conf., Laurel, MD, 1999.

[22] P. L’Ecuyer, “Maximally equidistributed combined Tausworthe genera-
tors,” Math. Comput., vol. 65, no. 213, pp. 203–213, 1996.

[23] C. Wallace. (2003) MDMC software—Random number generators.
[Online]. Available: http://www.datamining.monash.edu.au/software/
random

[24] (2004) Xilinx System Generator User Guide v6.3. Xilinx Inc.. [Online]
[25] G. Marsaglia. (1997) Diehard: A battery of tests of randomness. [On-

line]. Available: http://stat.fsu.edu/~geo/diehard.html
[26] R. D’Agostino and M. Stephens, Goodness-of-Fit Techniques: Marcel

Dekker Inc., 1986.
[27] A. Vila Casado, W. Weng, and R. Wesel, “Multiple rate low-density

parity-check codes with constant block length,” in Proc. IEEE Asilomar
Conf. Signals, Systems and Computers, 2004, pp. 2010–2014.

[28] C. Wallace, “A long-period pseudo-random generator,” Monash Univ.,
Australia, Tech. Rep. TR89/123, 1989.

Dong-U Lee (S’01–M’05) received the B.Eng.
degree in information systems engineering and the
Ph.D. degree in computing, both from Imperial Col-
lege, London, U.K., in 2001 and 2004, respectively.

He is currently a Postdoctoral Researcher at the
Electrical Engineering Department, University of
California, Los Angeles (UCLA), where he is devel-
oping hardware implementations of communication
algorithms for deep-space communications with the
Jet Propulsion Laboratory, NASA. He visited UCLA
in 2002 and 2003 as a Visiting Scholar, where he

developed hardware designs for LDPC codes. His research interests include
reconfigurable computing, computer arithmetic, communications and video
image processing.

Wayne Luk (S’85–M’89) received the M.A., M.Sc.,
and Ph.D. degrees in engineering and computer sci-
ence from the University of Oxford, Oxford, U.K.

He is a Member of Academic Staff in the Depart-
ment of Computing, Imperial College of Science,
Technology, and Medicine, London, U.K., and leads
the Custom Computing Group there. His research
interests include theory and practice of customizing
hardware and software for specific application
domains, such as graphics and image processing,
multimedia, and communications. Much of his

current work involves high-level compilation techniques and tools for parallel
computers and embedded systems, particularly those containing reconfigurable
devices such as field-programmable gate arrays.

920 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 8, AUGUST 2005

John D. Villasenor (M’90–SM’98) received the
B.S. degree from the University of Virginia, Char-
lottesville, in 1985, and the M.S. and Ph.D. degrees
from Stanford University, Stanford, CA, in 1988 and
1989, respectively, all in electrical engineering.

From 1990 to 1992, he was with the Radar Science
and Engineering section of the Jet Propulsion Labo-
ratory in Pasadena, California, where he developed
methods for imaging the earth from space. He joined
the Electrical Engineering Department, University of
California, Los Angeles (UCLA) in 1992, and is cur-

rently a Professor. He served as Vice Chair of the Department from 1996 to 2002.
At UCLA, his research efforts lie in communications, computing, imaging and
video compression, and networking.

Guanglie Zhang received the B.S., M.A., and Ph.D.
degrees in electrical engineering from Xi’an Jiaotong
University, Xi’an, China, in 1997, 2000, and 2003,
respectively.

He is currently a Postdoctoral Research Fellow in
the Chinese University of Hong Kong. His research
interests are in the area of reconfigurable computing,
embedded system, video processing, and MEMS
sensor technologies.

Philip H. W. Leong (M’88–SM’97) received the
B.Sc., B.E., and Ph.D. degrees from the University
of Sydney, Sydney, Australia, in 1986, 1988, and
1993, respectively.

In 1989, he was a research engineer at AWA Re-
search Laboratory, Sydney Australia. From 1990 to
1993, he was a postgraduate student and research as-
sistant at the University of Sydney, where he worked
on low power analogue VLSI circuits for arrhythmia
classification. In 1993, he was a consultant to SGS
Thomson Microelectronics, Milan, Italy. He was a

Lecturer at the Department of Electrical Engineering, University of Sydney
from 1994 to 1996. He is currently an Associate Professor in the Department of
Computer Science and Engineering, Chinese University of Hong Kong and the
Director of the Custom Computing Laboratory. He is the author of more than
70 technical papers and five patents. His research interests include reconfig-
urable computing, digital systems, parallel computing, cryptography and signal
processing.

	toc
	A Hardware Gaussian Noise Generator Using the Wallace Method
	Dong-U Lee, Member, IEEE, Wayne Luk, Member, IEEE, John D. Villa
	I. I ntroduction
	II. B ACKGROUND
	III. W ALLACE M ETHOD

	Fig. 1. Overview of the Wallace method.
	Fig. 2. Overview of our Gaussian noise generator architecture ba
	IV. A RCHITECTURE
	A. First Stage

	Fig. 3. Transformation circuit of Stage 3. The square boxes are
	B. Second Stage
	C. Third Stage

	Fig. 4. Detailed timing diagram of the transformation circuit an
	D. The Fourth Stage
	V. I MPLEMENTATION

	TABLE I R ESOURCE U TILIZATION FOR THE F OUR S TAGES OF THE N OI
	TABLE II H ARDWARE I MPLEMENTATION R ESULTS OF THE N OISE G ENER
	VI. E VALUATION AND R ESULTS

	Fig. 5. The pdf of the generated noise from our design for a pop
	TABLE III C OMPARISONS OF D IFFERENT H ARDWARE G AUSSIAN N OISE
	Fig. 6. Variation of the χ^{2}_{99} value with sample size
	Fig. 7. Wallace bitwidth versus number of samples without $% \chi^
	Fig. 8. BER performance simulation results for a 972 $\, % \times
	TABLE IV P ERFORMANCE C OMPARISON: T IME FOR P RODUCING O NE B I
	VII. C ONCLUSION
	W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerica
	B. Levine, R. Taylor, and H. Schmit, Implementation of near Shan
	A. Brace, D. G tarek, and M. Musiela, The market model of intere
	A. Bergstrom, Gaussian estimation of mixed-order continuous-time
	B. Jung, H. Lenhof, P. Müller, and C. Rüb, Langevin dynamics sim
	C. Wallace, Fast pseudorandom generators for normal and exponent
	R. Gallager, Low-density parity-check codes, IEEE Trans. Inf. Th
	J. Ahrens and U. Dieter, An alias method for sampling from the n
	J. Leva, A fast normal random number generator, ACM Trans. Math.
	G. Marsaglia and W. Tsang, The Ziggurat method for generating ra
	D. Knuth, Seminumerical Algorithms, 3rd ed, ser. The Art of Comp
	W. Hörmann and J. Leydold, Continuous random variate generation
	G. Box and M. Muller, A note on the generation of random normal
	E. Boutillon, J. Danger, and A. Gazel, Design of high speed AWGN

	(2002) Additive white Gaussian noise (AWGN) Core v1.0 . Xilinx I
	J. Chen, J. Moon, and K. Bazargan, Reconfigurable readback-signa
	Y. Fan, Z. Zilic, and M. Chiang, A versatile high speed bit erro
	D. Lee, W. Luk, J. Villasenor, and P. Cheung, A Gaussian noise g
	R. Brent, A fast vectorised implementation of Wallace's normal r
	C. Rüb, On Wallace's method for the generation of normal variate
	P. Chu and R. Jones, Design techniques of FPGA based random numb
	P. L'Ecuyer, Maximally equidistributed combined Tausworthe gener
	C. Wallace . (2003) MDMC software Random number generators . [On

	(2004) Xilinx System Generator User Guide v6.3 . Xilinx Inc.. [O
	G. Marsaglia . (1997) Diehard: A battery of tests of randomness
	R. D'Agostino and M. Stephens, Goodness-of-Fit Techniques: Marce
	A. Vila Casado, W. Weng, and R. Wesel, Multiple rate low-density
	C. Wallace, A long-period pseudo-random generator, Monash Univ.,

