Unrolling-based loop mapping and scheduling

Y. M. Lam, J. G. E. Coutinho, W. Luk
Dept. of Computing,
Imperial College London.
{ymlam, jgfc, wl} @doc.ic.ac.uk

Abstract

This paper presents an loop unrolling based mapping
and scheduling strategy to maximum the parallelism of an
application described as task graph targeting on a hetero-
geneous computing systems. Loops are statically unrolled
using compile-time parameters and dynamic tasks are gen-
erated to handle run-time conditions, such that the closer
the match of run-time conditions and compile-time param-
eters, the higher the performance. Experimental results ob-
tained using a speech recognition system show the proposed
method outperforms an approach without unrolling by 2.1
times, and using the processing time of a 2.6GHz micro-
processor as a reference, a speed up of 10 times can be
achieved when compile-time and run-time parameters are
matched, while the performance drops gradually when they
are different.

1 Introduction

Heterogeneous computing systems containing software
processors (e.g. microprocessors) and hardware processors
(e.g. reconfigurable hardware) provide potentially more
effective solutions than single microprocessor systems for
many real time and embedded digital signal processing
(DSP) applications. As we know, computational intensive
parts of such applications are usually iterative operations
such as loops, the problem of generating an implementa-
tion for heterogeneous computing systems given a DSP ap-
plication, such that the hardware resource is fully utilised
and parallelism is maximised, is still difficult. Various
approaches have been proposed to address the scheduling
problem for loop, such as scheduling based on control path
[1],[6], modulo scheduling [2], loop transformation [7] and
unrolling [11],[10],[9], dynamic scheduling [8].

While previous work has focused on paralleling a sin-
gle loop [2],[7],[11],[10],[9], it is noted that a heteroge-
neous system containing reconfigurable hardware is capa-
ble of supporting parallel execution of tasks; the challenge

978-1-4244-2796-3/08/$25.00 © 2008 IEEE

P. H. W. Leong

Dept. of Computer Science and Engineering,

321

The Chinese University of Hong Kong.
{phwl} @cse.cuhk.edu.hk

is to develop techniques for effective exploitation of this
capability. Recent work [3] involving an integrated map-
ping/scheduling system with multiple neighbourhood func-
tion strategy shows promise in mapping acyclic task graphs
into heterogeneous systems. This work addresses multiple
loops parallelisation for task graphs by providing a solution
with additional management tasks so that the resulting sys-
tem is functionally correct.

2 Methodology

2.1 Unrolling-based loop mapping and
scheduling

Given an application described as task graph and un-
rolling factor for each loop, each loop is unrolled and man-
agement task, which is used for data synchronisation (Sec-
tion 2.3), is inserted to form a new task graph. Feedback
edges of loops are then removed using depth first search [7],
such that the task graph is converted into directed acyclic
task graph. An integrated approach [3] is finally used to
generate a mapping/scheduling solution for the targeting
heterogeneous computing system. In this way, parallelism
between different loops and different iterations is fully ex-
plored by the mapping and scheduling system.

2.2 Loop unrolling

The advantage of considering unrolling of all loops glob-
ally is that tasks in different iterations of various loops can
be potentially executed in parallel, i.e. a better scheduling
can be found after unrolling. Figure 2.1 shows the unrolling
example of two loop without data dependency between it-
erations. In the original graph, B and () are loop bodies
which can be single tasks or sub-graphs, B1, B2 and B3
are the 3 unrolled iterations of task B, and task () is un-
rolled as 1, 2 and Q3 respectively. Before unrolling, B
and () are mapped to PE1 and PE2, hardware resource is not
fully utilised, the processing time for 3 iterations using this
mapping is 90 (Figure 2.1c). After unrolling, the first two

FPT 2008

PE2 PE3

RN

Overall processing
time for 3 iterations = 90

()

PE1

PE2 PE3
’ ’ @ I I
PEI exe time PE2 exe time PE3 exe time Overall processing
time for 3 iterations = 50
B: 10 40 40
Q: 20 30 30 (d)

(e)

Figure 1. Example of loop unrolling when
there is no data dependence between itera-
tions: (a) Original graph. (b) Unrolling for
three iterations. (c) Mapping and scheduling
before unrolling, overall processing time for
3 iterations is 90. (d) Mapping and schedul-
ing for unrolled loop, overall processing time
is 50. (e) Execution time of tasks on differ-
ent processing elements. Higher inter-loop
and intra-loop parallelism is achieved by un-
rolling two loops.

iterations (@1 and ()2) of @ are mapped to PE2 and PE3 re-
spectively, other unrolled iterations are mapped to PE1, the
processing time for this mapping is 50 (Figure 2.1d).

If a loop has data dependency between iterations, un-
rolling can still achieve higher parallelism. An example is
shown in Figure 2 which contains two loops with data de-
pendency between iterations. Before unrolling, task B is
mapped to PE1 and () is mapped to PE2, the overall pro-
cessing time for 3 iteration is 90 (Figure 2c). After un-
rolling for 3 iterations, the first iteration of task @ (i.e. Q1)
is mapped to PE2, and the remaining iterations can be exe-
cuted in PE1, the overall processing time becomes 70 (Fig-
ure 2d). A better mapping/scheduling solution with higher
inter-loop parallelism is thus obtained by unrolling.

2.3 Management task

One of the problem need to address after unrolling is data
synchronisation. Since results are produced by different un-
rolled iterations in parallel, these results need to be sorted
into correct order. The other problem is raised by loop count
uncertainty, e.g. a loop is being unrolled n times, but the ac-

322

° PE1 PE2
°
voBy g LT
| | rera
| <? (@) @%@@? Qg
T ! !
(
Q ®» & & C
g ¢ 2
(© (1) PEl PE2
©
(a) (b)
@
PEI exe time PE2 exe time
B 10 40 Overall processing
Q: 20 30 time for 3 iterations = 70

(e)

(d)

Figure 2. Example of loop unrolling when
there is data dependence between iterations:
(a) Original graph. (b) Unrolling for three it-
erations. (c¢) Mapping and scheduling before
unrolling, overall processing time for 3 itera-
tions is 90. (d) Mapping and scheduling for
unrolled loop, overall processing time is 70.
(e) Execution time of tasks on different pro-
cessing elements. A higher inter-loop paral-
lelism is achieved by unrolling two loops.

tual loop count may not be a multiply of n. That means the
unrolled iterations may produce useless results and these re-
sults need to be discarded. We propose a strategy to handle
these problems by generating a management task to handle
data synchronisation.

The following code shows the management task S used
in Figure 2.1 to handle the data synchronisation:

for (i=0; i<(M-1); 1i++) {
al[i*3] = tmpO[i];
alix3+1] = tmpl[i];
al[i*3+2] = tmp2[i];
}
tc =M~ 3 -N-1;
switch(tc) {
case 0:
al[(M-1)*3] = tmpO[M];
al(M-1)%3+1] = tmpl[M];
al(M-1)%3+2] = tmp2[M];
break;
case 1:
al(M-1)%3] = tmpO[M];
al(M-1)*3+1] = tmpl[M];
break;
case 2:
al(M-1)*3] = tmpO[M];

break;

}

where M is the actual count of executing the unrolled loop,
N is the original loop count. tmp0, tmpl and tmp2 are
the results produced by unrolled iterations B1, B2 and B3
respectively. a is the original array to store results.

If there is data dependency between iterations, the func-
tionality of the management task is to select the correct re-
sult from unrolled iterations. The following code shows the
management task S B used in Figure 2 to select result from
B1, B2 and B3:

tc M 3 - N - 1;
switch(tc) {
case 0:
a = tmp2;
break;
case 1:
a = tmpl;
break;
case 2:
a = tmpO0;
break;

}

By generating these management tasks to handle data
synchronisation, the generated mapping/scheduling solu-
tion is independent of designer’s fault or run-time condition.
E.g. For instance, if a user specifies a loop count during
compile-time, the loop is unrolled based on this informa-
tion, and a mapping/scheduling solution is generated. If the
loop count match the run-time loop count, maximum per-
formance can be achieve. However, if the loop count during
run-time is different, the generated data management task
can handle data synchronisation dynamically, which means
the generated mapping/scheduling solution is still feasible.

3 Results

3.1 Experimental setup

The reference heterogeneous computing system used in
this work contains one AMD Opteron(tm) Processor 2218
at 2.6GHz and one Celoxica RCHTX-XV4 FPGA board
with a Xilinx Virtex-4 XC4VLX160 FPGA. Both the FPGA
board and microprocessor are connected by HTX interface
with maximum data transfer up to 3.2GB/s.

An isolated word recognition system [5] is used as an
application which uses 12th order linear predictive coding
coefficients (LPCCs), a codebook with 64 code vectors, and
20 hidden Markov models (HMMs), each with 12 states.
One set of utterances from the TIMIT TI 46-word database
[4] containing 5082 words from 8 males and 8 females are
used for recognition. CPU profiling results show that loops

323

3.5

3.45

34

3.35

33

Speed up

3.25

32

3.15

o i 2 3 . 5
Unrolling factor for vq

Figure 3. Speed up for different unrolling fac-

tors of vector quantisation.

in vector quantisation (VQ), autocorrelation (AUTOCC)
and hidden Markov model decoding (HMMDEC) consume
the largest CPU resource, which are 71.19%, 15.4% and
6.11% respectively.

3.2 Loop unrolling

To evaluate the quality of a mapping/scheduling solution,
a speed up factor is used, it is calculated as the processing
time using single CPU divided by the processing time us-
ing the heterogeneous computing system. Figure 3 shows
the speed up for different unrolling factors of VQ, where all
processes of the isolated word recognition system are exe-
cuted on CPU except vector quantization. It is found that
speed up increases with unrolling factor. However, it tends
to flatten when the unrolling factor increases especially be-
yond 3, this configuration is thus used for the following ex-
periment.

Unrolling vector quantisation for 3 iterations, Figure 4
shows the speed up for different unrolling factors of HM-
MDEC inner loop and AUTOCC. The best speed up is ob-
tained when both HMMDEC and AUTOCC are unrolled
for 12 iterations, AUTOCC is actually fully unrolled. The
FPGA resource used is 48039 slices and the operating fre-
quency is 319MHz. The speed up obtained for this config-
uration is 9.8, compared with a speed up of 4.7 obtained
without unrolling, where VQ, AUTOCC, and HMMDEC
are executed in FPGA without unrolling, a 2.1 times of en-
hancement is obtained using unrolling.

3.3 Compile-time vs run-time parameters

In the previous experiment, mapping/scheduling is gen-
erated based on a compile-time 12th order LPCCs. Figure 5

+

4 10
1" i 9.5
il T S to+ 9
10 T A T S 8.5
+ + + i + + - 8
+ A +
ol A SRS RN 75
+ + + + 7
+ + 1o+ + o+ +
8 + +++ i i i S + 6.5
. + + + * 6
+ + o+ + o+ +
i . p—— 55
L + + .
7 y < + + i 5
6 4.5
5
4

hmm unrolling factor 4aut060c unrolling factor

Figure 4. Speed up for different unrolling fac-
tors of hidden Markov model decoding and
autocorrelation.

shows the performance of the system for different run-time
LPCC orders. It is found that maximum performance is
achieved on 12th LPCCs, and performance is drop when
the run-time LPCC order is different from pre-defined value
during compile-time, but the proposed strategy can still pro-
vide a feasible system.

4 Conclusions

A static task graph mapping/scheduling technique
with loop unrolling is proposed and the generated map-
ping/scheduling is tolerant of designer’s fault or run-time
condition. Experimental results obtained using an isolated
speech system show that a speed up of 9.8 times is achieved
and it outperforms an approach without unrolling by 2.1
times. The performance drops gradually when compile-
time and run-time parameters are different.
Acknowledgement. The support of FP6 hArtes (Holis-
tic Approach to Reconfigurable Real Time Embedded Sys-
tems) Project, the UK Engineering and Physical Sciences
Research Council, Agility, Celoxica and Xilinx is gratefully
acknowledged.

References

[1] R. Camposano. Path-Based Scheduling for Synthesis. /[EEE
Transactions on Computer-Aided Design, 10(1):85-93, Ja-
nurary 1991.

[2] A.Hatanaka and N. Bagherzadeh. A Modulo Scheduling Al-
gorithm for a Coarse-Grain Reconfigurable Array Template.
In Proceedings of the IEEE International Parallel and Dis-
tributed Processing Symposium, pages 1-8, 2007.

324

5
4 6 8 10 12

Run-time LPC order

14

Figure 5. Speed up for different run-time
LPCC order, the compile-time LPCC order is
12.

(3]

(4]
(3]

(6]

(7]

(8]

(9]

(10]

[11]

Y. M. Lam, J. G. F. Coutinho, P. H. W. Leong, and W. Luk.
Mapping and Scheduling with Task Clustering for Hetero-
geneous Computing Systems. In Proceedings of the Inter-
national Conference on Field Programmable Logic and Ap-
plications, pages 275-280, 2008.

LDC. http://www.ldc.upenn.edu.

L. Rabiner and B. H. Juang. Fundamentals of Speech Recog-
nition. Prentice Hall PTR, 1993.

M. Rahmouni and A. A. Jerraya. Formulation and Evalu-
ation of Scheduling Techniques for Control Flow Graphs.
In Proceedings of the Design Automation Conference, pages
386-391, 1995.

F. E. Sandnes and O. Sinnen. A New Strategy for Multi-
processor Scheduling of Cyclic Task Graphs. International
Journal of High Performance Computing and Networking,
3(1):62-71, 2005.

H. Styles, D. B. Thomas, and W. Luk. Pipelining Designs
with Loop-carried Dependencies. In Proceedings of the
International Conference on Field-Programmable Technol-
0gy, pages 255-262, 2004.

P. Sucha, Z. Hanzalek, A. Hermanek, and J. Schier. Effi-
cient FPGA Implementation of Equalizer for Finite Interval
Constant Modulus Algorithm. In Proceedings of the Inter-
national Symposium on Industrial Embedded Systems, pages
1-10, 2006.

M. Weinhardt and W. Luk. Pipeline Vectorization. [EEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 20(2):234-248, February 2001.

T. Yang and C. Fu. Heuristic Algorithms for Scheduling
Iterative Task Computations on Distributed Memory Ma-
chines. IEEE Transactions on Parallel and Distributed Sys-
tems, 8(6):608-622, June 1997.

