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Abstract—We present a two-speed radix-4 serial-parallel multi-
plier for accelerating applications such as digital filters, artificial
neural networks, and other machine learning algorithms. Our
multiplier is a variant of the serial-parallel modified radix-4
Booth multiplier that adds only the non-zero Booth encodings and
skips over the zero operations. Two sub-circuits with different
critical paths are utilised so that throughput and latency are
improved for a subset of multiplier values. The multiplier is
evaluated on an Intel Cyclone V FPGA against standard parallel-
parallel and serial-parallel multipliers across 4 different PVT
corners. We show that for bit widths of 32 and 64, our optimisa-
tions can result in a 1.42-3.36x improvement over the standard
parallel Booth multiplier in terms of Area-Time depending on
the input set.

Index Terms—Multiplier, Booth, FPGA, Neural Networks,
Machine Learning

I. INTRODUCTION

Multiplication is arguably the most important primitive for
digital signal processing (DSP) and machine learning (ML)
applications, dictating the area, delay and overall performance
of parallel implementations. Work on the optimisation of
multiplication circuits has been extensive [1], [2], however
the modified Booth Algorithm at higher radixes in combination
with Wallace or Dadda trees has generally been accepted as the
highest performing implementation for general problems [2]–
[4]. In digital circuits, multiplication is generally performed
in one of three ways: (1) parallel-parallel, (2) serial-parallel
and (3) serial-serial. Using the modified Booth Algorithm [5],
[6], we explore a serial-parallel Two Speed multiplier (TSM)
that conditionally adds the non-zero encoded parts of the
multiplication and skips over the zero encoded sections.

In DSP and ML implementations, reduced precision rep-
resentations are often used to improve the performance of a
design, striving for the smallest possible bit width to achieve
a desired computational accuracy [7]. Precision is usually
fixed at design time and hence any changes in requirements
means that further modification involves redesign and changes
to the implementation. In cases where a smaller bit width
would be sufficient, the design runs at a lower efficiency
since unnecessary computation is undertaken. To mitigate
this, mixed-precision algorithms attempt to use a lower bit
width some portion of time, and a large bit width when
necessary [8]–[10]. These are normally implemented with two
datapaths operating at different precisions.

This paper introduces a dynamic control structure to remove
parts of the computation completely during runtime. This is
done using a modified serial Booth multiplier, which skips

over encoded all-zero or all-one computations, independent
of location. The multiplier takes all bits of both operands in
parallel, and is designed to be a primitive block which is easily
incorporated into existing DSPs, CPUs and GPUs. For certain
input sets, the multiplier achieves considerable improvements
in computational performance. A key element of the multiplier
is that sparsity within the input set and the internal binary
representation both lead to performance improvements. The
multiplier was tested using FPGA technology, accounting for
4 different Process-Voltage-Temperature (PVT) corners. The
main contributions of this work are:

• The first serial modified Booth multiplier where the
datapath is divided into two subcircuits, each operating
with a different critical path.

• Demonstrations of how this multiplier takes advantage of
particular bit-patterns to perform less work; this results in
reduced latency, increased throughput and superior area-
time performance than conventional multipliers.

• A model for estimating the performance of the multiplier
and evaluation of the utility of the proposed multiplier
via an FPGA implementation.

This paper is supplemented by an open source repository
supporting reproducible research. The implementation, tim-
ing constraints and all scripts to generate the results are
made available at: http://github.com/djmmoss/twospeedmult.
The rest of the paper is organised as follows. Section III and
Section IV focuses on the modified serial Booth multiplier
and the two speed optimisation respectively. Section V covers
the results and finally, related work and the contributions are
summarized in Section II-B and Section VI respectively.

II. MULTIPLICATION

Multiplication is arguably the most important primitive for
machine learning and digital signal processing applications,
with Sze et. al [11] noting that the majority of hardware
optimisations for machine learning are focused on reducing
the cost of the multiply and accumulate (MAC) operations.
Hence, careful construction of the compute unit, with a focus
on multiplication, leads to the largest performance impact.
This section presents an algorithm for the multiplication of
unsigned integers followed by its extension to signed inte-
gers [2], [3].

Let x and y be the multiplicand and the multiplier, rep-
resented by n digit-vectors X and Y in a radix-r conven-
tional number system. The multiplication operation produces



2

p = x × y, where p is represented by the 2n digit-vector P .
Multiplication is described as:

p = x

n−1∑
i=0

Yir
i =

n−1∑
i=0

rixYi, (1)

Equation 1 can be implemented by first computing the
n xriYi terms followed by the summation. Computation of
the ith term involves a i-position left shift of X and the
multiplication of a single radix-r digit Yi. This single radix-r
digit multiplication is a scaling factor of the ith digit in the
digit-vector set. In the case of radix-2, this is either 0 or 1.
Performing the computation in this manner lends itself to a
combinational or parallel multiplication unit.

The same computation can be expressed recursively:

p[0] = 0,

p[j + 1] = r−1(p[j] + rnxYj) j = 0, 1, . . . , n− 1, (2)
p = p[n],

Expanding this recurrence results in product p[n] = x × y
in n steps. Each time step j consists of a multiplication of x
by a radix-r digit, Yj , similar to Equation 1. This is followed
by a digit left shift, and accumulated with the result from the
previous time step p[j]. The recurrence is finished with a one
digit right shift. It is expressed in this manner to ensure that the
multiplication can proceed from the least-significant digit of
the multiplier y, while retaining the same position with respect
to the multiplicand x. An example is given in Figure 1.

Equation 1 can be extended to the signed, two’s complement
system through the incorporation of a sign bit for the multiplier
y:

y = −Yn−12n−1 +

n−2∑
0

Yi2
i, (3)

and substituting it into Equation 1. The new expression is given
by:

p =

n−2∑
i=0

xYir
i − xYn−12n−1, (4)

The negation of x (−x) is performed by flipping all of the
bits (bf(1101) = 0010) then adding a single bit in the least-
significant position (0010 + 1 = 0011).

A. Multiplier Optimisations

There has been a rich history of ingenious optimisations
for the efficient hardware implementation of multiplication,
with the multitude of conventional techniques being reviewed
in computer arithmetic textbooks [2], [3]. In particular, the
signed Booth algorithm was proposed in 1951 [1], and the
commonly-used modified Booth algorithm, presented in the
previous subsection, in 1961 [5], [6].

Recent work has focused on static reordering of the com-
putation or new layouts for the multiplication hardware on
FPGAs. Rashidi et. al. proposed a low-power and low cost
shift/add multiplexer-based signed Booth multiplier for a Xil-
inx Spartan-3 FPGA [12]. The authors used low-power struc-
tures, mainly a multiplexer-based Booth encoder with signed

n = 4
x = 13 (X = 1101)

y = 9 (X = 1001)
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Fig. 1: Unsigned two’s complement Multiplication p = x ×
y, where x is the multiplicand, y is the multiplier and X
and Y are their respective n = 4 digit-vectors in the radix-2
conventional number system.

shifter blocks and a multiplexer-based Manchester adder. At
50 MHz the design consumes 58 mW with a total latency of
160 nsec. Devi et. al. focused on a fully combinatorial multi-
plier design which used custom carry select adders to reduce
power consumption by 3.82% and 30% compared to standard
ripple carry and carry select adders respectively [13]. Two
contributions were made: a multi-stage partitioning approach
which reduces the overall gate count, and a splitting clock
method to reduce the power of the final accumulation. Our
work is orthogonal to both works as the same optimisations
and structures could be used with our TSM.

Kalivas et. al. described a new bit serial-serial multiplier
capable of operating at 100% efficiency [14]. During standard
bit serial-serial computation zero bits are added into the input
pipeline between successive inputs words to allow time for
the the most-significant bits of the product to be produced.
Kalivas et. al. removed these bits by adding an additional
shift register connected to a secondary output which allows
for the most-significant bits of the previous product to be
produced while the least-significant bits of the current product
are produced. This work differs from our own in two important
areas, first our multiplier is a serial-parallel multiplier using the
radix-4 Booth algorithm. Secondly, our multiplier can operate
at >100% efficiency since computation is effectively skipped,
completing the multiplication in a faster than expected time.

Other work such as Hinkelmann et. al. has focused on spe-
cialized multiplication structures for Galois Field multiplica-
tion [15]. 10 different multiplier alternatives are explored and
compared to a reference architecture. The different strategies
for combining integer and Galois field multiplication show
area savings up to 20% with only a marginal increase in delay
and an increase in power consumption of 25%.

Furthermore, Bahram Rashidi proposed a modified retiming
serial multiplier for finite impulse response (FIR) digital filters
based on ring topologies [16]. The work involved additional
logic which allowed for modification of the scheduling of the
FIR filter computation, allowing the number of compute cycles
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to be reduced from 32 to 24. To further improve performance
of the FIR filter computation, the author proposed a high-speed
logarithmic carry look ahead adder to work in combination
with a carry save adder.

While the TSM is suited for machine learning and applica-
tions with high degrees of sparsity, it differs from the previous
research in that the multiplier performs standard signed multi-
plication and can be used in any application. Our contribution
is a new control structure for performing multiplication that
dynamically avoids unnecessary computation.

B. Previous Work on Reduced Precision Multiplication for
Neural Networks

The most comparable work to this multiplier is the parallel-
serial, or shift-add, multiplier. As described in Equation 2, the
product p is iteratively calculated by examining individual bits
of X each cycle and accumulating a scaled Y [1].

Recent work in bit and digit serial multiplication for FPGAs
has focused on on-line arithmetic [17] and efficient mapping
of the algorithms to the FPGA architecture. Shi et. al. [18]
analysed the effect of overclocking radix-2 on-line arithmetic
implementations and quantified the error introduced by timing
violations. They found a significant reduction in error for
DSP based applications compared with conventional arith-
metic approaches. Zhao et. al. [19] presented a method for
achieving arbitrary precision operations utilising the on-chip
block RAMs to store intermediate values.

In the domain of neural networks, Judd et. al. [7] presented
a bit-serial approach for reduced precision computation. They
showed a 1.3x to 4.5x performance improvement over classical
approaches as their arithmetic units only perform the necessary
computation for the particular bit width.

III. RADIX-4 BOOTH MULTIPLICATION

This section reviews the radix-4 Booth algorithm [1], an
extension to the parallel-serial multiplier. This computes x×y
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Fig. 2: n bit Serial Multiplier. There are five key components
to the standard radix-4 serial Booth multiplier: the shifter,
encoder, partial product generator, control and adder. As the
partial results are generated in the adder, they are accumulated
in the n most-significant bits of the product register.

TABLE I: Booth Encoding

Yi+2 Yi+1 Yi ei

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 2
1 0 0 2̄
1 0 1 1̄
1 1 0 1̄
1 1 1 0

2̄ and 1̄ represent −2 and −1 respectively.

where x and y are n bit two’s complement numbers (the
multiplicand and multiplier respectively); producing a 2n
two’s complement value in the product p. The multiplication
algorithm considers multiple digits of Y at a time and is
computed in N partitions where,

N = bn+ 2

2
c. (5)

An equation describing the computation is given by:

p = (Y1 + Y0)x+

N∑
i=1

22i−1(Y2i+1 + Y2i − 2Y2i−1)x, (6)

Following the notation in Section II, Y denotes the length-N
digit-vector of the multiplier y. The radix-4 Booth algorithm
considers 3 digits of the multiplier Y at a time to create an
encoding e given by:

ei = Y2i+1 + Y2i − 2Y2i−1, (7)

where i denotes the ith digit. As illustrated in Table I, apart
from Yi+2Yi+1Yi = 000 and Yi+2Yi+1Yi = 111 which results
in a 0, the multiplicand is scaled by either 1, 2, −2 or −1
depending on the encoding.

This encoding ei is used to calculate a partial product
PartialProducti by calculating:

PartialProducti = eix = (Y2i+1 + Y2i − 2Y2i−1)x, (8)

This PartialProduct is aligned using a left shift (22i−1) and
the summation is performed to calculate the final result p.
Since the Y−1 digit is non-existent, the 0th partial product
PartialProduct0 = (Y1 +Y0)x. A serial (sequential) version
of the multiplication is performed by computing each partial
product in N cycles:

p[0] = 2n−2(Y1 + Y0)x,

p[j + 1] = 2−2(p[j] + 2n(Y2j+1 + Y2j − 2Y2j−1)x)

j = 1, . . . , N − 1, (9)
p = p[N ],

To better explain the two speed optimisation presented in
the next section, Equation 9 is represented as an algorithm in
Algorithm 1 and illustrated in Figure 2. Two optimisations are
performed to allow for better hardware utilisation. Firstly, the
product p is assigned the multiplier y (p = y), this removes the
need to store y in a separate register and utilises the n least-
significant bits of the p register. Consequently, as the product
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Algorithm: Booth Radix-4 Multiplication
Data: y: Multiplier, x: Multiplicand
Result: p: Product
p = y;
e = (P [0]− 2P [1]);
for count = 1 to N do

PartialProduct = e ∗ x;
p = sra(p,2);
P [2 ∗B − 1 : B] + = PartialProduct;
e = (P [1] + P [0]− 2P [2]);

end
Algorithm 1: x, y are n bit two’s complement numbers,
p denotes the 2n two’s complement result, and sra (the
shift right arithmetic function). y is assigned to the n least-
significant bits of p, hence the encoding, E, can be calculated
directly from P .

p is shifted right (p=sra(p, 2)), the next encoding ei can be
calculated from the three least-significant bits (LSBs) of p.
The second optimisation removes the realignment left shift of
the partial product (2n) by accumulating the PartialProduct
to the n most-significant bits of the product p (P [2∗B−1 : B]
+ = PartialProduct).

IV. TWO SPEED MULTIPLIER

This section presents the TSM which is an extension to
the serial Booth multiplication algorithm and implementation.
The key change is to partition the circuit into two paths; each
having critical paths, τ and Kτ respectively (see Figure 3).
The multiplier is clocked at a frequency of 1

τ , where the Kτ
region is a fully combinatorial circuit with a delay of Kτ . K is
the ratio of the delays between the two subcircuits. K̄ = dKe
is the number of cycles needed for the addition to be completed
before storing the result in the product register; used in the
hardware implementation of the multiplier.

As illustrated in Algorithm 2, before performing the addi-
tion, the encoding, e, (the three least-significant bits of the

Algorithm: Two Speed Booth Radix-4 Multiplication
Data: y: Multiplier, x: Multiplicand
Result: p: Product
p = y;
e = (P [0]− 2P [1]);
for count = 1 to N do

p = sra(p,2);
// If non-zero encoding, take the Kτ

path, otherwise the τ path
if e 6= 0 then

// this path is clocked K̄ times
PartialProduct = e ∗ x;
P [2 ∗B − 1 : B] + = PartialProduct;

end
e = (P [1] + P [0]− 2P [2]);

end
Algorithm 2: When E = 0, zero encodings are skipped and
only the right shift arithmetic function is performed.

Fig. 3: n bit Two Speed Multiplier. This contains an added
control circuit for skipping and operating with two different
delay paths.

product) is examined and a decision is made between two
cases: (1) The encoding and PartialProduct are zero and
0x, respectively, or (2) the encoding is non-zero. These two
cases can be distinguished by generating:

skip =

{
1, if P [2 : 0] ∈ {000, 111},
0, otherwise,

(10)

When skip = 1 only the right shift and cycle counter
accumulate need to be performed, with a critical path of τ .
In the case of a non-zero encoding (skip = 0), the circuit
is clocked K̄ times at τ . This ensures sufficient propagation
time within the adder and partial product generator, allowing
the product register to honour its timing constraints. Hence
the total time T taken by the multiplier can be expressed as
Equation 11, where N is defined by Equation 5, and O is
the number of non-zero encodings in the multiplier’s Y digit-
vector.

T (O) = (N −O)τ +OK̄τ, (11)

The time taken to perform the multiplication is dependent
on the encoding of the bits within the multiplier y. The upper
and lower bound for the total execution time occurs when
O = N and O = 0 respectively. From Equation 11, the max
and min are:

Nτ ≤ T ≤ NK̄τ, (12)

The input that results in the minimum execution time is
when y = 0. In this case all bits within the multiplier are
0, and every three LSB encoding results in a 0x scaling and
O = 0. There are a few input combinations that result in
the worst case, O = N . One case would be a number of
alternating 0 and 1, ie. 1010101..10101..10101. In this case,
each encoding results in a non-zero PartialProduct.

A. Control

As shown in Figure 4a and Figure 4b, the control circuit
consists mainly of: one log2(N) accumulator, one log2(K̄)
accumulator, three gates to identify the non-zero encodings
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Fig. 4: Two counters are used to determine (a) when the
multiplication is finished, and (b) when the result of the Kτ
circuit has been propagated.

and a comparator. Counter2 is responsible for counting the
number of cycles needed for the addition without violating
any timing constraints, i.e, K̄. When the encoding is non-
zero, Counter2 is incremented. Counter1 accumulates the
number of encodings that have been processed. As shown in
Section III, the number of cycles needed to complete a single
multiplication is N , therefore the accumulator and Counter1
needs to be log2(N) bits wide. Counter1 is incremented when
the comparator condition has been met, Counter2 = K̄, or
a zero encoding is encountered. When Counter1 increments,
the signal is given to perform the right shift.

The control needs to distinguish between the zero and non-
zero encodings. It contains a three gate circuit, performing
Equation 10; taking in the three LSBs of the multiplier y. Two
cases of zero encoding exist. The three gates are designed to
identify these non-zero encodings; an inverter is connected to
the accumulator of Counter2, incrementing, in these cases.

B. Example

Figure 5 provides an example of the control operating in the
multiplier and the time taken to perform the multiplication.
Each cycle, the three least-significant bits of the multiplier
y are examined and an action is generated based on their
encoding. Since 000 results in a 0x partial product, the first
action is a “skip” and only the right shift is performed in τ
time. The next three bit encoding, 010, is examined and results
in a 1x partial product. This generates the “add” action in
which Counter2 is accumulated to K̄ and the product register
is held constant. After K̄τ time, the value stored in the register
has had enough time to propagate through the adder and the
result is latched in the product register without causing timing
violations. The multiplier continues operating in this fashion
until all bits of y have been processed and the final result
produced. In Figure 5, the total time is 3τ + 3K̄τ since there
are three “skips” and three “adds”.

C. Set Analysis and Average Delay

Given an input set D of length l and a function f(y)
(given by Equation 13) that calculates the number of non-zero
encodings for a given multiplier y, the probability distribution

Fig. 5: Control example: Non-zero encodings result in an
“add” action taking K̄τ time, whereas zero encodings allow
the “skip” action, taking τ time. For the first encoding, only
the two least-significant bits are considered with a prepended
0 as described in Section III.

p of encountering a particular encoding can be calculated by
Algorithm 3.

f(y) = ¬(Y1 ⊕ Y0) +

N∑
i=1

(¬(Y2i+1 ⊕ Y2i) ∧ ¬(Y2i ⊕ Y2i−1)), (13)

where ¬, ⊕ and ∧ are the logical ‘not’, ‘xor’ and ‘and’
symbols respectively.

Figure 6 shows the Gaussian and Uniform encoding prob-
ability distribution for 32-bits. There are significantly less
numbers in the lower, non-zero encoding region compared
with the higher, non-zero encoding region, resulting in in-
creased computation time. However, as discussed in Section V,
for other workloads, the distributions can shift and change
depending on the problem and optimisation techniques used.

Using the probability p, the average delay of the multiplier
can be calculated using Equation 14.

T =
1

N

N∑
i=0

p(i)T (i), (14)

where T is calculated using Equation 11 and p(i) denotes the
probability of encountering an encoded number with i non-
zeros.

D. Timing

During standard timing analysis, the Kτ path would cause
a timing violation for the circuit operating at frequency 1

τ .
There are two ways to address this issue. The first involves a
standard ‘place and route’ of each individual multiplier as it
is instantiated in the design. An additional timing constraint is
included to address the otherwise violated Kτ path, allowing

Algorithm: Probability of a given encoding
Data: D: Input Set
Result: p: Product
Count{0, 1, . . . , N} = {0};
for i = 0 to l do

Count[f(Xi)]+ = 1
end
p = Count� l

Algorithm 3: Probability of encountering a particular encod-
ing given an input data set, � denotes element-wise division.
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timing driven synthesis and placement to achieve the best
possible layout. The second option is to create a reference
post-‘place and route’ block that is used whenever the multi-
plier is instantiated. This ensures each multiplier has the same
performance and is placed in exactly the same configuration.

There are downsides to each option. The first option gives
the tools freedom to place the blocks anywhere, however the
performance of individual instantiations may differ if the Kτ
and τ sections cannot be placed at the same clock rate. For the
second option, placing a reference block requires availability
of free resources in the layout specified. While this ensures
high performance, placing the reference block may become
increasingly difficult as the design becomes congested.

V. RESULTS

This section presents implementation results of the TSM.
The multiplier is compared against the standard 64, 32 and 16
bit versions of parallel-parallel and serial-parallel multipliers.
For all configurations tested up to 64 bits, the K scaling factor
in the Kτ subcircuit of Figure 3 was always less than two.
This allows the comparison of K̄ with a counter in Figure 4b
to be simplified to a bit-flip operation.

A. Implementation Results

The area and delay of different TSM instantiations are given
in Table II for an Intel Cyclone V 5CSEMA5U23C6 FPGA,
with the results obtained using the Intel Quartus 17.0 Software
Suite. During place and route the software performs static
timing analysis across four different PVT corners, keeping
voltage static. Specifically: (1) Fast 1100mv 0C, (2) Fast
1100mv 85C, (3) Slow 1100mv 0C and (4) Slow 1100mv
85C. The TSM was ‘placed and routed’ using the timing
constraint based methodology and all frequencies reported
for each multiplier represent the upper limit for each one
considered as a standalone module. Unless otherwise specified,
Time is considered to be the result latency, and Area, the
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Fig. 7: The improvement in Area ∗ Time for 4 different
multiplier configurations respectively. Five different sets are
presented for the TSM.

number of logic elements. The TSMs were evaluated using
the Gaussian and Uniform sets, as they are important sets in
machine learning applications, as well as two neural network
weight sets.

All sets were generated in single precision floating-point
and converted to fixed-point numbers. The integer length was
determined by taking the maximum value of the set and
allocating sufficient bits to represent it fully, hence saturation
did not need to be performed. The number of fractional bits are
the remaining bits after the integer portion has been accounted
for. The Gaussian set was generated with a mean of zero
and standard deviation of 0.1. For the Gaussian-8 set, the
numbers were scaled such that they are represented in 8 bits.
The uniform set was generated by selecting numbers between
−1 and 1.

The neural network weight sets are from two convolutional
neural networks, AlexNet [20] and a 75% sparse variant of
LeNet [21], LetNet75, trained using the methodology pre-
sented by Han. et. al [22]. The Parallel(Combinatorial) and
Parallel(Pipelined) multipliers are radix-4 Booth multipliers
taken from an optimised FPGA library provided by the ven-
dor and are designed for high performance [23]. Since the
performance of a Parallel (Pipelined) multiplier is a function
of its pipeline depth, the reported values are the best results
from numerous configurations to ensure a fair comparison.
The Booth Serial-Parallel (SP) multiplier also uses the radix-4
Booth algorithm, illustrated in Algorithm 1 whereas the TSM
implements Algorithm 2.

Figure 7 presents the improvements in Area∗Time for the
four different multipliers, with the Parallel(Combinatorial) il-
lustrating baseline performance for each configuration. Area∗
Time is an important metric for understanding architecture
design attributes and the magnitude of possible tradeoffs be-
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TABLE II: Multiplier Implementation Results

B Type Area Max Delay Latency Power
(LEs) (ns) (Cycles) (mW)

64

Parallel(Combinatorial) 5104 14.7 1 2.23
Parallel(Pipelined) 4695 6.99 4** 9.62
Booth Serial-Parallel 292 3.9 33 2.23
Two Speed 304 1.83 (τ ) 45.2* 5.2

32

Parallel(Combinatorial) 1255 10.2 1 1.33
Parallel(Pipelined) 1232 4.6 4** 5.07
Booth Serial-Parallel 156 3.8 17 1.78
Two Speed 159 1.76 (τ ) 25.6* 3.18

16

Parallel(Combinatorial) 319 6.8 1 0.94
Parallel(Pipelined) 368 3.2 4** 3.49
Booth Serial-Parallel 81 2.72 9 1.67
Two Speed 87 1.52 (τ ) 14* 4.35

For Two Speed, the Max Delay represents the τ subcircuit and K̄ = 2, hence 2τ is the delay of the adder subcircuit.
* This is the average latency over all of the tested sets.
** While the latency of the pipelined multiplier is four, the throughput is one.

tween area and speed [24]. The fixed cycle times of the Booth
Serial-Parallel, Parallel(Combinatorial) and Parallel(Pipelined)
multipliers result in the same performance regardless of the
input set. However, the TSM is designed to take advantage of
the input set and outperforms all other multipliers in the 32
bit and 64 bit configuration. In the 16 bit configuration, the
TSM exhibited similar performance to the baseline.

The highest performing set is the 64 bit Gaussian-8; show-
ing a speed up of 3.64x. For the Gaussian and Uniform sets,
the 64 bit configuration provides a 2.42x and 2.45x improve-
ment respectively. At 32 and 16 bits, the TSM’s improve-
ments range from 1.47-1.52x and 0.97-1.02x respectively.
The Gaussian-8 set illustrates that inefficiencies introduced by
using a lower bit representation are alleviated by the TSM; the
majority of the most-significant bits are either all 0’s in the
positive case, or all 1’s in the negative case, allowing multiple
consecutive “skips”.
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Fig. 8: p(i) 32 bit set: The probability that y will be a particular
encoding.

Figure 8 shows the probability distributions of the five
problems tested at 32-bits. It illustrates the differences between
the Gaussian, Uniform, AlexNet, Gaussian-8 and LeNet75
sets and why particular sets perform better than others. For
Gaussian-8, the majority of the encoding is in the 2−4 range,
resulting in a significant number of “skips” for each input.
While the non-zero numbers in the LeNet75 set contain high
encoding numbers, the set also contains 71% zeros, therefore
the majority of the computations are “skips”.

B. Multiplier Comparison

Table III compares different multiplier designs in terms of
six important factors: Area, Time, Power, Area ∗ Time,
Time ∗ Power and Area ∗ Time ∗ Power, with the specific
application often dictating which is most appropriate. Typi-
cally, tradeoffs are analysed and the variant with the highest
performance is chosen. For area, either the Booth Serial-
Parallel or TSM are the best choices as they have the smallest
footprint. Alternately, when both area and speed are factors,
the TSM outperforms the Booth Serial-Parallel multiplier as
illustrated in Table III and Figure 7. If area is not a concern,
the Parallel(Combinatorial) multiplier may be preferred. When
taking power into account, the Parallel(Combinatorial) multi-
plier outperforms the Parallel(Pipelined) multiplier.

As highlighted in Table III, in terms of Area ∗ Time ∗
Power, the Booth Serial-Parallel multiplier offers the highest
performance and is 1.9x better on this metric than the Paral-
lel(Combinatorial) multiplier for a bit width of 64. However
the TSM still provides a sizeable improvement, achieving a
1.29x improvement on average, peaking at 1.5x for LeNet75
and Gaussian-8.

Figure 9 illustrates the Area ∗ Time trade-off as the bit-
width is increased. For latency, the TSM has the lowest
Area ∗ Time compared to the other multipliers. Calculat-
ing the Area ∗ Time with respect to throughput, shows
that the Parallel(Pipelined) multiplier achieves a 1.84-2.29x
performance improvement over the Parallel(Combinatorial)
multiplier for bit widths 16, 32 and 64. These results are shown
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TABLE III: Multiplier Performance Metrics - Latency and Throughput

B Type Area T ime Power Area ∗ T ime T ime ∗ Power Area ∗ T ime ∗ Power
LEs ns mW

64

Parallel(Combinatorial) 5104 14.7 2.23 75028 32.78 167314
Parallel(Pipelined) 4695 27.96 9.62 131274 (32818) 268.98 315716
Booth Serial-Parallel 292 128,7 2.23 37696 287.00 84062
Two Speed* 304 82.71 5.2 25187 430.12 130972

32

Parallel(Combinatorial) 1255 10.2 1.33 12808 13.57 17034
Parallel(Pipelined) 1232 18.4 5.07 22678 (5667) 93.29 114977
Booth Serial-Parallel 156 64.6 1.78 10116 114.99 18007
Two Speed* 159 45.05 3.18 7186 143.27 22852

16

Parallel(Combinatorial) 319 6.8 0.94 2169 6.39 2039
Parallel(Pipelined) 368 12.8 3.49 4714 (1177) 44.67 16452
Booth Serial-Parallel 81 24.48 1.67 1987 40.88 3319
Two Speed* 87 21.28 4.35 1851 92.56 8053

- (8*8 Signed) (90nm) [12] 160 160 58 25600 9280 1484800
(16*16 Signed) (90nm) [16] 631 62.4 - 39374 - -
(32*32 Signed) (90nm) [13] 20319 65.10 106.87 1322949 6890 139997910

* Average over all tested sets, the individual results will change for specific applications.

in parentheses in the Area ∗ Time column as well as the
Pipeline(Throughput) plot in Figure 9. The TSM still shows
favourable results for both the Uniform and Gaussian sets,
while outperforming on the Gaussian-8 and neural network
sets.

To the best of our knowledge there are only three recent
publications in the domain of FPGA micro-architecture mul-
tiplier optimisations, targeted at serial-parallel computation of
the Booth algorithm [12], [13], [16]. All of these works were
implemented on 90nm FPGAs, making a direct comparison
difficult since they were not only slower and higher power
consumption due to technology, their architecture was also
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Fig. 9: (a) presents the classic encoder and partial product gen-
erator. (b) is the optimised version since the 0M calculations
don’t need to be performed

different, e.g. they used four input lookup tables, and per-
formance of the larger multipliers, such as 32-bit and 64-
bit, were not reported. A fair comparison is thus impossible
but the reported results are listed at the bottom of Table III,
and we note that for the 16-bit and 32-bit cases the TSM
improved Area ∗ Time and Area ∗ Time ∗ Power by an
order of magnitude. Both the Parallel(Combinatorial) and
Parallel(Pipelined) multipliers are taken from libraries that
implement the latest multiplier optimisations and serve as a
good comparison between our work and the industry standard.

VI. CONCLUSION

In this work we presented a TSM, which is divided into
two subcircuits, each operating with a different critical path. In
real-time, the performance of this multiplier can be improved
solely on the distribution of the bit representation. We illus-
trated for bit widths of 32 and 64, typical compute sets, such
as Uniform and Gaussian and neural networks, can expect sub-
stantial improvements of 3x and 3.56x using standard learning
and sparse techniques respectively. The cost associated with
handling lower bit width representations, such as Gaussian-
8 on a 64 bit multiplier are alleviated and show up to a
3.64x improvement compared to the typical Parallel multiplier.
Future work will focus on techniques for constructing M to
take full advantage of the Two Speed optimisation.
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