
Rolling Window Time Series Prediction using
MapReduce

Lei Li, Farzad Noorian, Duncan J.M. Moss, Philip H.W. Leong
School of Electrical and Information Engineering
The University of Sydney, 2006, NSW, Australia

Email: {lei.li, farzad.noorian, duncan.moss, philip.leong}@sydney.edu.au

Abstract—Prediction of time series data is an important ap-
plication in many domains. Despite their advantages, traditional
databases and MapReduce methodology are not ideally suited
for this type of processing due to dependencies introduced by the
sequential nature of time series. We present a novel framework
to facilitate retrieval and rolling-window prediction of irregularly
sampled large-scale time series data. By introducing a new
index pool data structure, processing of time series can be
efficiently parallelised. The proposed framework is implemented
in R programming environment and utilises Hadoop to support
parallelisation and fault tolerance. Experimental results indicate
our proposed framework scales linearly up to 32-nodes.
Keywords. Time Series Prediction, MapReduce, Hadoop, Par-
allel Computing, Model Selection

I. INTRODUCTION

Time series analysis forms the basis for a wide range of
applications including physics, climate research, physiology,
medical diagnostics, computational finance and economics [1],
[2]. With the increasing trend in the data size and processing
algorithms’ complexity, handling large-scale time series data
is obstructed by a wide range of complication.

In recent years, Apache Hadoop has become the standard
way to address Big Data problems [8]. The Hadoop Distributed
File System (HDFS) arranges data in fixed-length files which
are distributed across a number of parallel nodes. MapReduce
is used to process the files on each node simultaneously
and then aggregate their outputs to generate the final result.
Hadoop is scalable, cost effective, flexible and fault tolerant
[4].

Nevertheless, Hadoop in its original form is not suitable for
time series analysis. As a result of dependencies among time
series data observations [5], their partitioning and processing
using Hadoop require additional considerations:
• Time series prediction algorithms operate on rolling

windows, where a window of consecutive observations
is used to predict the future samples. This fixed length
window moves from the beginning of the data to the end
of it. But in Hadoop, when the rolling window straddles
two files, data from both are required to form a window
and hence make a prediction (Fig. 1).

• File sizes can vary depending on the number of time
samples in each file.

• The best algorithm for performing prediction depends
on the data and a considerable amount of expertise is
required to design and configure a good predictor.

In this paper, we present a framework which addresses the
above problems under the following assumptions:
• The time series data is sufficiently large such that dis-

tributed processing is required to produce results in a
timely manner.

• Time series prediction algorithms have high computa-
tional complexity.

• Disk space concerns preclude making multiple copies of
the data.

• The time series are organised in multiple files, where the
file name is used to specify an ordering of its data. For
example, daily data might be arranged with the date as
its file name.

• In general, the data consists of vectors of fixed dimension
which can be irregularly spaced in time.

With these assumptions, we introduce a system to allow
analysis of large time series data and backtesting of complex
forecasting algorithms using Hadoop. Specifically, our contri-
butions are:
• design of a new index pool data structure for irregularly

sampled massive time series data,
• an efficient parallel rolling window time series prediction

engine using MapReduce, and
• a systematic approach to time series prediction which

facilitates the implementation and comparison of time
series prediction algorithms, while avoiding common
pitfalls such as over-fitting and peeking on the future data.

The remainder of the paper is organised as follows. In
Section II, Hadoop and the time series prediction problem are
introduced. In Section III, the architecture of our framework
is described, followed by a description of the forecasting
algorithms employed in Section IV. Results are presented in
Section V and conclusions in Section VI.

II. BACKGROUND

A. MapReduce & Hadoop

The MapReduce programming model in its current form
was proposed by Dean [6]. It centres around two functions,
Map and Reduce, as illustrated in Figure 2. The first of
these functions, Map, takes an input key/value pair, performs
some computation and produces a list of key/value pairs as
output, which can be expressed as (k1, v1) → list(k2, v2).
The Reduce function, expressed as (k2, list(v2))→ list(v3),

Split 1 Split 2

Partial
Windows

Window 1

Window 4-2 Window 4-1

Window 2

Window 3

Window 3-2

Window 4

Window 5

Window 3-1

Fig. 1. Issue of partial windows: a rolling window needs data from both windows at split boundaries.

MapReduce

Sort

Map

Map

Map

Split 1

Split 2

Split 3

Split 4

Split 5

Reduce

Reduce

Reduce

Result

Fig. 2. Overview of parallel processing within a MapReduce environment.

takes all of the values associated with a particular key and
applies some computation to produce the result. Both Map and
Reduce functions are designed to run concurrently and without
any dependencies. To ensure that each Reduce receives the
correct key, an intermediate sort step is introduced. Sort takes
the list(k2, v2) and distributes the keys to the appropriate
Reducers.

Apache Hadoop [3] is an implementation of the MapReduce
framework for cluster computers constructed from computing
nodes connected by a network. Used by 60% of the Fortune
500 companies, Hadoop has become the industry standard to
deal with Big Data problems. The Hadoop implementation
of MapReduce can be described as a cluster of TaskTracker
nodes, with a JobTraker and Client node. Once a MapReduce
application has been created, the job is committed to Hadoop
via the Client and then passed to the JobTracker which
initialises it on the cluster. During execution, the JobTracker is
responsible for managing the TaskTrackers on each node and
each TaskTracker spawns Map and Reduce tasks depending on
the JobTrakers requirements [6]. Inputs to the map tasks are
retrieved from the HDFS, a shared file system that ships with
Hadoop. These inputs are partitioned into multiple splits which
are passed to the map tasks. Each split contains a small part of
the data that the Map function will operate on. The Map results
are sorted and subsequently passed to the Reduce tasks. The
results of the Reduce tasks are written back to HDFS where
they can be retrieved by the user [8].

HDFS file system is also the basis of Apache HBase, a
column-oriented distributed database management [7]. HBase
has become the common tool for big data storage and query.

It originates from Google’s BigTable and is developed as part
of Apache Hadoop project [8]. The instinctive features of
HBase are providing the capabilities of managing big data
for Hadoop, such as serving database tables as the input and
output for MapReduce jobs, and random real-time read/write
access to data. Additionally HBase features files compression,
in-memory operation and bloom filters [9].

B. Time Series & Rolling Prediction

Time series is defined as a sequence of data points observed
typically at successive intervals in time [5]. Time series T can
be expressed as an ordered list: T = t1, t2, . . . , tn [10]. Time
series data is well-suited for a number of areas such as statisti-
cal analysing, signal processing, weather forecasting, biology,
mathematical economics and business management [2], [11],
[12].

In time series, adjacent observation are in a natural temporal
ordering. This intrinsic feature of the time series makes its
analysis dependent on the order of the observations, and
distinct from other common data, in which there are no
dependencies of the observations, such as contextual data [5].

Time series prediction is the use of past and current observa-
tions at time t to forecast future values at time t+l [5]. Differ-
ent dynamic and statistical method are available for time series
prediction [11]. Commonly, time series prediction algorithms
operate on a rolling window scheme. Let {yi}, i = 1, . . . , N be
a sampled, discrete time series of length N . For a given integer
window size 0 < W ≤ N and all indices W ≤ k ≤ N , the
h-step, h > 0, rolling (or sliding) window predictions, {ŷk+h}
are computed:

ŷk+h = f(yk−W+1, . . . , yk) (1)

where f is a prediction algorithm. ŷk+h is approximated such
that its error relative to yk+h is minimised.

C. Related Work

Both the processing of times series data and specific time
series prediction techniques have been previously studied by
different researchers. Hadoop.TS [13] was proposed in 2013 as
a toolbox for time series processing in Hadoop. This toolbox
introduced a bucket concept which traces the consistency of a

time series for arbitrary applications. Sheng et al. [14] imple-
mented the extended Kalman filter for time series prediction
using MapReduce methodology. The framework calculates the
filter’s weights by performing the update step in the Map
functions, whilst the Reduce function aggregates the results
to find an averaged value.

A Hadoop based ARIMA prediction algorithm was pro-
posed and utilised for weather data mining by Li et al. [15].
The work describes a nine step algorithm that employs the
Hadoop libraries, HBase and Hive, to implement efficient data
storage, management and query systems. Stokely et al. [16]
described a framework for developing and deploying statistical
methods across the Google parallel infrastructure. By gener-
ating a parallel technique for handing iterative forecasts, the
authors achieved a good speed-up.

The work present in this paper differs from previous work
in three key areas. First, we present a low-overhead dynamic
model for processing irregularly sampled time series data in
addition to regularly sampled data. Secondly, our framework
allows applying multiple prediction methods concurrently as
well as measuring their relative performance. Finally, our
work offers the flexibility to add additional standard or user-
defined prediction methods that automatically utilise all of the
functionalities offered by the framework.

In summary, the proposed framework is mainly focused on
effectively applying Hadoop framework for time series rather
than the storage of massive data. The main objective of this
paper is to present a fast prototyping architecture to benchmark
and backtest rolling time series prediction algorithms. To the
best of authors knowledge, this paper is the first paper focusing
on a systematic framework for rolling window time series
processing using MapReduce methodology.

III. METHODOLOGY

As in a sequential time series forecasting system, our
framework preprocesses the data to optionally normalise, make
periodic and/or reduce its temporal resolution. It then applies a
user supplied algorithm on rolling windows of the aggregated
data.

We assume that before invoking our framework, the nu-
merical samples and their timestamps are stored on HDFS.
We introduce an index pool, which is a table of time series
indexing and time-stamp information for the entire HDFS
directory. This is used to assign the appropriate index keys to
time series entries, when the data could be distributed across
multiple splits. As a result, the index pool is considered the
core of the architecture.

Data aggregation and pre-processing are handled by the
Map function. The aggregated data is then indexed using the
index pool and is assigned a key, such that window parts
spread across multiple splits are assigned the same unique
key. If all of the data for a window is available in the Map
function, the prediction is performed and its performance (in
terms of prediction error) is measured; the prediction result
along with its keys is then passed to the Reduce. Otherwise,
the incomplete window and its key are directly passed to

the Reduce, where they are combined accordingly with other
partial windows into proper rolling windows. Prediction for
these windows is performed in the Reduce. The final output
is created by combining the results of all prediction.

Fig. 3 shows the block diagram of the architecture of the
proposed system and Fig. 4 demonstrates how the data flows
through the blocks. The rest of this section describes each
component of the system in greater detail.

Rolling Window
Key Extraction

Normalisation

Interpolating to
a periodic time series

Dimension Reduction

Rolling Window
Re-Assembly

Step-ahead
Predictor(s)

Error Measurement

Model Selection

Index
Pool

HDFS Data

Time-stamp

Key

M
ap

p
e

r
R

e
d

u
ce

r
Fi

n
al

is
at

io
n

D
at

a
St

o
ra

ge

Step-ahead
Predictor(s)

Error
Measurement

Complete
Window?

Ye
s

No

Results Assembly

Multi-predictor
model

M
u

lt
i-

p
re

d
ic

to
r

m
o

d
el

P
re

p
ro

ce
ss

in
g

Fig. 3. The proposed system’s architecture.

Rolling Window 1

Rolling Window 2

Rolling Window 3 (1)

Rolling Window 3 (2)

Rolling Window 4 (1)

Rolling Window 4 (2)

Rolling Window 5

Split 1

Split 2

Rolling Window 3

Rolling Window 4

Prediction 1

Prediction 2

Prediction 3

Prediction 4

Prediction 5

Map Reduce

Model
Performance

Finalisation

Fig. 4. Flow of data in the proposed framework.

A. Data storage and Index pool

In the proposed system, time series are stored sequentially in
multiple files. Files cannot have overlapping time-stamps, and
are not necessarily separated at regular intervals. Each sample
in time series contains the data and its associated time-stamp.
The file name is the first time-stamp of each file in ISO 8601
format. This simplifies indexing of files and data access.

Table I shows an example of an index pool. This is a global
table that contains the start index and end index for each file
as well as their associated time-stamps.

TABLE I
EXAMPLE OF AN INDEX POOL.

File name Start time-stamp End time-stamp Index list
2011-01-01 2011-01-01 00:00 2011-01-01 22:00 1 → 12
2011-01-02 2011-01-02 00:00 2011-01-02 22:00 13 → 24
2011-01-03 2011-01-03 00:00 2011-01-03 22:00 25 → 36
2011-01-04 2011-01-04 00:00 2011-01-04 22:00 37 → 48
2011-01-05 2011-01-05 00:00 2011-01-05 22:00 49 → 60

The index pool enables arbitrary indices to be efficiently
located and is used to detect and assemble adjacent windows.
Interaction of the index pool with the MapReduce is illustrated
in Fig. 3

Index pool creation is performed in a separate maintenance
step prior to forecasting. Assuming that data can only be
appended to the file system (as is the case for HDFS), index
pool updates are fast and trivial.

B. Preprocessing

Work in the Map function starts by receiving a split of
data. A preprocessing step is performed on the data, with the
following goals:
• Creating a periodic time series: In time series prediction,

it is usually expected that the sampling is performed pe-
riodically, with a constant time-difference of ∆t between
consecutive samples. If the input data is unevenly sam-
pled, it is first interpolated into an evenly sampled time

series. Different interpolation techniques are available,
each with their own advantage [17].

• Normalisation: Many algorithms require their inputs to
follow a certain distribution for optimal performance.
Normalisation preprocessing adjusts statistics of the data
(e.g., the mean and variance) by mapping each sample
through a normalising function.

• Reducing time resolution: Many datasets include very
high frequency sampling rates (e.g., high frequency trad-
ing), while the prediction use-case requires a much lower
frequency. Also the curse of dimensionality prohibits
using high dimensional data in many algorithms. As a re-
sult, users often aggregate high frequency data to a lower
dimension. Different aggregating techniques include av-
eraging and extracting open/high/low/close values from
the aggregated time frame as used in financial Technical
Analysis.

C. Rolling Windows

Following preprocessing, the Map function tries to create
windows of length W from data {yi}, i = 1, · · · , l, where l
is the length of data split. As explained earlier, the data for
a window is spread across 2 or more splits starting from the
sample l−W + 1 onwards and the data from another Map is
required to complete the window.

To address this problem, the Map function uses the index
pool to create window index keys for each window. This key
is globally unique for each window range. The Map function
associates this key with the complete or partial windows as
tuple ({yj}, k), where {yj} is the (partial) window data and
k is the key.

In the Reduce, partial windows are matched through their
window keys and combined to form a complete window. The
keys for already complete windows are ignored. In Fig. 4, an
example of partial windows being merged is shown.

In some cases, including model selection and cross-
validation, there is no need to test prediction algorithms on

all available data; Correspondingly the Map function allows
for arbitrary strides in which every mth window is processed.

D. Prediction

Prediction is performed within a multi-predictor model,
which applies user all of supplied predictors to the rolling
window. Each data window {yi}, i = 1, · · · , w is divided into
two parts: the training data with {yi}, i = 1, · · · , w − h, and
{yi}, i = w − h, · · · , w as the target. Separation of training
and target data at this step removes the possibility of peeking
into future from the computation.

The training data is passed to user supplied algorithms
and the prediction results are returned. For each sample,
the time-stamp, observed value and prediction results from
each algorithm are stored. For each result, user-defined error
measures such as an L1 (Manhattan) norm, L2 (Euclidean)
norm or relative error are computed.

To reduce software complexity, all prediction steps can
be performed in the Reduce; however, this straightforward
method is inefficient in the MapReduce methodology. There-
fore in our proposed framework only partial windows are
predicted in the Reduce after reassembly. Prediction and per-
formance measurement of complete windows are performed in
the Map, and the results and their index keys are then passed
to the Reduce.

E. Finalisation

In the Reduce, prediction results are sorted based on their
index keys and concatenated to form the final prediction re-
sults. The errors of each sample are accumulated and operated
on, to produce an error measure summary, allowing model
comparison and selection.

Commonly used measures are Root Mean Square Error
(RMSE) and Mean Absolute Prediction Error (MAPE):

RMSE(Y, Ŷ) =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (2)

MAPE(Y, Ŷ) =
1

N

N∑
i=1

|yi − ŷi
yi
| (3)

where Y = y1, · · · , yN is the observed time series, Ŷ =
ŷ1, · · · , ŷN is the prediction results and N is the length of
the time series.

Akaike Information Criterion (AIC) is another measure, and
is widely used for model selection. AIC is defined as:

AIC = 2k − 2 ln(L) (4)

where k is the number of parameters in the model and L is
the likelihood function.

IV. FORECASTING

A. Linear Autoregressive Models

Autoregressive (AR) time series are statistical models where
any new sample in a time series is a linear function of its past
values. Because of their simplicity and generalisability, AR

models have been studied extensively in statistics and signal
processing and many of their properties are available as closed
form solutions [11].

1) AR model: A simple AR model is defined by:

xt = c+

p∑
i=1

φixt−i + εt (5)

where xt is the time series sample at time t, p is the model
order, φ1, . . . , φp are its parameters, c is a constant and εt is
white noise.

The model can be rewritten using the backshift operator B,
where Bxt = xt−1:

(1−
p∑

i=1

φiB
i)xt = c+ εt (6)

Fitting model parameters φi to data is possible using the least-
squares method. However, finding the parameters of model for
data x1, . . . , xN , requires the model order p to be known in
advance. This is usually selected using AIC. First, models with
p ∈ [1, . . . , pmax] are fitted to data and then the the model with
the minimum AIC is selected.

To forecast a time series, first a model is fitted to the data.
Using the model, predicting the value of the next time-step is
possible by using (5).

2) ARIMA models: The autoregressive integrated moving
average (ARIMA) model is an extension of AR model with
moving average and integration. An ARIMA model of order
(p, d, q) is defined by:(

1−
p∑

i=1

φiB
i

)
(1−B)

d
xt = c+

(
1 +

q∑
i=1

θiB
i

)
εt (7)

where p is autoregressive order, d is the integration order, q
is the moving average order and θi is the ith moving average
parameter. Parameter optimisation is performed using Box-
Jenkins methods [11], and AIC is used for order selection.

AR(p) models are represented by ARIMA(p, 0, 0). Random
walks, used as Naı̈ve benchmarks in many financial applica-
tions are modelled by ARIMA(0, 1, 0) [18].

B. NARX forecasting
Non-linear auto-regressive models (NARX) extend the AR

model by allowing non-linear models and external variables
being employed. Support vector machines (SVM) and Artifi-
cial neural networks (ANN) are two related class of linear and
non-linear models that are widely used in machine learning
and time series prediction.

1) ETS: Exponential smoothing state Space (ETS) is a
simple non-linear auto-regressive model. ETS estimates the
state of a time series using the following formula:

s0 = x0

st = αxt−1 + (1− α)st−1
(8)

where st is the estimated state of time series Xt at time t and
0 < α < 1 is the smoothing factor.

Due to their simplicity, ETS models are studied along with
linear AR models and their properties are well-known [11].

2) SVM: SVMs and their extension support vector regres-
sion (SVR) use a kernel function to map input samples to
a high dimensional space, where they are linearly separable.
By applying a soft margin, outlier data is handled with a
penalty constant C, forming a convex problem which is solved
efficiently [19]. As a result, there are several models using
SVM that have been successfully studied and used in time
series prediction [20].

In this paper, we use a Gaussian radial basis kernel function:

k(xi, xj) = exp

(
−1

σ2
||xi − xj ||2

)
(9)

where xi and xj are the ith and jth input vectors to the SVM,
and σ is the kernel parameter width.

We define the time series NARX model using SVM as:

xt = f(C, σ, xt−1, · · · , xt−w) (10)

where f is learnt through the SVM and w is the learning
window length.

To successfully use SVM for forecasting, its hyper-
parameters including penalty constant C, kernel parameter σ
and learning window length w have to be tuned using cross-
validation. Ordinary cross-validation cannot be used in time
series prediction as it reveals the future of the time series to
the learner [11]. To avoid peeking, the only choice is to divide
the dataset into two past and future sets, then train on past set
and validate on future set.

We use the following algorithm to perform cross-validation:
for w in [wmin, . . . , wmax] do

prepare X matrix with lag w
training set ← first 80% of X matrix
testing set ← last 20% of X matrix
for C in [Cmin, . . . , Cmax] do

for σ in [σmin, . . . , σmax] do
f ← SVM(C, σ, training set)
err ← predict(f , testing set)
if err is best so far then:

best params ← (C, σ,w)
end if

end for
end for

end for
return best params

3) Artificial Neural Networks: Artificial neural networks
(ANN) are inspired by biological systems. An ANN is formed
from input, hidden and output node layers which are intercon-
nected with different weights. Each node is called a neuron.

Similar to SVM, ANNs have been extensively used in
time series prediction [21]. In an NN autoregressive (NNAR)
model, inputs of the network is a matrix of lagged time series,
and the target output is the time series as a vector. A training
algorithm such as Back-propagation is used to minimise error
of this network’s output. Similarly a cross-validation algorithm
is used for selecting this hyper-parameter.

In this paper, a feed-forward ANNs with a single hidden
layer is used.

V. RESULTS

A. Experiment Setup

This section presents an implementation of the proposed
framework in R programming language [22]. R was chosen
as it allows fast prototyping, is distributed under GPL license
and includes a variety of statistical and machine learning tools
in addition to more than 5600 third party libraries available
through CRAN [23].

1) Experiment Environment: All experiments were under-
taken on the Amazon Web Service (AWS) Elastic Compute
Cloud (EC2) Clusters. The clusters were constructed using
the m1.large instances type in the US east region. Each
node within the cluster has a 64-bit processor with 2 virtual
CPUs, 7.5 GiB memory and a 64-bit Ubuntu 13.04 image that
included the Cloudera CDH3U5 Hadoop distribution [24]. The
statistical computing software R version 3.1.0 [22] and RHIPE
version 0.73.1 [25] were installed on each Ubuntu image.

2) RHIPE: R and Hadoop Integrated Programming Envi-
ronment (RHIPE) [25] introduces an R interface for Hadoop,
in order to allow analysts to handle big data analysis in an
interactive environment. We used RHIPE to control the entire
MapReduce procedure in the proposed framework.

3) Test Data: In order to test the framework, synthetic
data was generated from an autoregressive (AR) model using
(5). The order p = 5 was chosen and {φi} were generated
randomly. The synthetic time series data starts from 2004-01-
01 to 2013-12-31, in 30 minute steps, and is 6.6 MB in size.

4) Preprocessing and window size: The preprocessing in-
cluded normalisation, where the samples were adjusted to have
average of µ = 0 and standard deviation σ = 1. All tests
were performed with a rolling window size w = 7, which
contained the training data of size w′ = 6 and the target
data with length h = 1 for the prediction procedure in the
framework. Consequently, each predictor model was trained
on the previous 3 hours of data to forecast 30 minutes ahead.

B. Test Cases

1) Scaling Test: In order to demonstrate parallel processing
efficiency, the SVM prediction method with cross-validation
was tested using different EC2 cluster sizes: 1, 2, 4, 8, 16 and
32 nodes. The performance of the proposed framework was
evaluated by a comparison of execution time and speed-up for
different cluster sizes.

Table II shows the execution time for this test. With
consideration for the capacity of m1.large, we limited the
maximum number of Map and Reduce tasks in each node to
the number of CPUs and half the number of CPUs respectively.
As evident in Table II, scaling is approximately linear up to
32 nodes for the reasonably small example tested. In smaller
clusters, the proposed framework is considerably well-scaled.
Furthermore, the speed-up of 16 and 32 nodes,are 13.09 and
30.83 respectively. While these speed-ups are not perfect, they
are in an acceptable range. We expect a similarly good scaling
for larger problems.

TABLE II
AWS EC2 EXECUTION TIMES SCALING.

Cluster Size Mappers Reducers Total (Sec) Speed-up
1 Node 2 1 58514.29 1.00

2 Nodes 4 2 28991.34 2.02

4 Nodes 8 4 13762.74 4.25

8 Nodes 16 8 7092.60 8.25

16 Nodes 32 16 4471.06 13.09

32 Nodes 64 32 1898.15 30.83

Fig. 5. Speed-up of execution time versus cluster size.

2) Multi-predictor Model Test: The time series prediction
algorithms described in the previous section, (1) Support Vec-
tor Machines (SVM), (2) Autoregressive Integrated Moving
Average (ARIMA), (3) Artificial Neutral Network (NN), (4)
Naı̈ve (ARIMA(0,1,0)) and (5) Exponential Smoothing State
Space (ETS) model were tested on the synthetic data set
individually.

In addition, we used a multi-predictor model (MPM) scheme
to improve the efficiency of batching predictors in the pro-
posed framework. In this scheme, a multi-predictor function is
called in the Map or the Reduce, which in turn applies all user
supplied predictors to each data window, returning a vector
of prediction results (and error measures) for every predictor.
Following the MapReduce, MPM selects the best predictor
for the tested/selected time series by using an error measure
(RMSE and MAPE) for each prediction model. We used R’s
forecast package [26] for ARIMA, ANN, Naı̈ve and ETS
models, and e1071 package [27] for training SVM models.
AIC was used to chose model parameters in ARIMA and ETS
models, while SVM and NN models were cross-validated as
outlined in section IV-B.

Table III compares MPM with individual prediction
algorithms in terms of execution time, RMSE and MAPE. All
tests were undertaken in an AWS EC2 cluster with 16 nodes.
Relative execution time (RET) is calculated as a ratio of the
model execution time compared to the MPM execution time.
As expected, simpler models execute faster. SVM, which is
cross-validated several times, takes longer, and MPM, which
runs all predictor models, takes the longest. Despite this,
MPM is 2.1× faster than executing all models individually,

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT PREDICTOR MODEL ON A 16

NODE CLUSTER.

Predictor model Execution time (s) RET RMSE MAPE
SVM 2935.77 0.67 3.372 0.508

ARIMA 1729.50 0.40 3.445 0.545

NN 1521.24 0.35 4.641 0.755

Naı̈ve 1476.72 0.34 2.381 0.419

ETS 1585.19 0.36 3.449 0.545

MPM 4351.05 1 2.381 0.419

as the former requires significantly less disk I/O than the
latter. The last two columns show the error associated with
each model’s prediction. For MPM, the minimum RMSE
and MAPE obtained from the best-fitted prediction model
are presented. The results indicate that for the particular
synthetic AR test data generated, the Naı̈ve model has the
lowest prediction error, which is also reported by the MPM.

3) Data Split Handling Comparison: In the proposed
framework, with the help of index pool, a complex data split
algorithm is designed to balance the execution of prediction
methods between Map and Reduce. In order to evaluate the
efficiency of the proposed design, a straightforward design
as discussed in Section III-D, was implemented without this
algorithm.

TABLE IV
COMPUTATIONAL EFFICIENCY OF THE PROPOSED ARCHITECTURE.

Cluster Proposed Benchmark Improvement
size framework (s) framework (s) %

16 Nodes 4351.05 5359.92 %123

32 Nodes 2444.17 3566.94 %145

Table IV compares the proposed framework with the
straightforward benchmark framework for the same MPM
prediction model, elaborately demonstrating the performance
of both frameworks for two different cluster sizes. The results
clearly show that the proposed framework is more efficient
than the benchmark framework. The significant advantages in
execution time can be explained due to the reduced overhead
of data being cached before being moved from the Map to the
Reduce, therefore reducing the communication time.

VI. CONCLUSION

We presented an efficient framework for rolling window
time series prediction, with a focus on computational ef-
ficiency for large-scale data. By utilising an index pool,
windows occurring across data splits can be easily reassembled
via the sorting stage of MapReduce. Our approach allows users
to only be concerned about designing prediction algorithms,
with data management and parallelisation being handled by
the framework.

VII. FUTURE WORK

We are planing to apply our framework with other time
series analysis methods like classification and data mining.
Furthermore, we are trying to implement the proposed system
for a comparatively larger time series data set and further
optimize it for both better performance and functionality.

ACKNOWLEDGEMENT

This research was partially supported by Australian Re-
search Council’s Linkage Projects funding scheme (project
number LP110200413) and Westpac Banking Corporation.
We also thank Dr. Mahsa Baktashmotlagh for her valuable
comments.

REFERENCES

[1] W. Fuller, Introduction to Statistical Time Series, ser. Wiley Series in
Probability and Statistics. Wiley, 1996.

[2] R. Tsay, Analysis of Financial Time Series, ser. CourseSmart. Wiley,
2010.

[3] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/
[4] IBM Software. What is Hadoop? [Online]. Available:

www.ibm.com/software/data/infosphere/hadoop/
[5] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:

Forecasting and Control, 4th ed. Wiley Series in Probability and
Statistics, June 30, 2008.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[7] Apache Hbase. [Online]. Available: http://hbase.apache.org/
[8] R. C. Taylor, “An overview of the Hadoop/MapReduce/HBase frame-

work and its current applications in bioinformatics,” in Proceedings of
the 11th Annual Bioinformatics Open Source Conference (BOSC), 2010.

[9] N. Dimiduk and A. Khurana, HBase in Action, 1st ed. Manning
Publication, November 17, 2012.

[10] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh, “Searching and Mining Trillions of
Time Series Subsequences under Dynamic Time Warping,” in Proceed-
ings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2012, pp. 262–270.

[11] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and
Practice. Otexts, 2013. [Online]. Available: https://www.otexts.org/fpp

[12] W. A. Fuller, Introduction to Statistical Time Series. John Wiley &
Sons, 2009, vol. 428.

[13] M. Kämpf and J. W. Kantelhardt, “Hadoop.TS: Large-Scale Time-Series
Processing,” International Journal of Computer Applications, vol. 74,
2013.

[14] C. Sheng, J. Zhao, H. Leung, and W. Wang, “Extended Kalman Filter
Based Echo State Network for Time Series Prediction using MapReduce
Framework,” in Mobile Ad-hoc and Sensor Networks (MSN), Ninth IEEE
International Conference on. IEEE, 2013, pp. 175–180.

[15] L. Li, Z. Ma, L. Liu, and Y. Fan, “Hadoop-based ARIMA Algorithm and
its Application in Weather Forecast,” International Journal of Database
Theory & Application, vol. 6, no. 5, 2013.

[16] M. Stokely, F. Rohani, and E. Tassone, “Large-scale Parallel Statistical
Forecasting Computations in R,” in JSM Proceedings, 2011.

[17] H. Adorf, “Interpolation of Irregularly Sampled Data Series–A Survey,”
Astronomical Data Analysis Software and Systems IV, vol. 77, pp. 460–
463, 1995.

[18] L. Kilian and M. P. Taylor, “Why is it so Difficult to Beat the Random
Walk Forecast of Exchange Rates?” Journal of International Economics,
vol. 60, no. 1, pp. 85–107, 2003.

[19] V. Vapnik, Statistical Learning Theory. Wiley, 1998.
[20] N. Sapankevych and R. Sankar, “Time Series Prediction using Support

Vector Machines: A Survey,” Computational Intelligence Magazine,
vol. 4, no. 2, pp. 24–38, 2009.

[21] T. Hill, M. O’Connor, and W. Remus, “Neural Network Models for Time
Series Forecasts,” Management science, vol. 42, no. 7, pp. 1082–1092,
1996.

[22] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2014. [Online]. Available: http://www.R-project.org/

[23] The Comprehensive R Archive Network. [Online]. Available:
http://cran.r-project.org/

[24] Amazon Web Service EC2. [Online]. Available:
http://aws.amazon.com/ec2/previous-generation/

[25] S. Guha, Rhipe: R and Hadoop Integrated Programming
Environment, 2012, R package version 0.73.1. [Online]. Available:
http://www.rhipe.org

[26] R. J. H. with contributions from George Athanasopoulos, S. Razbash,
D. Schmidt, Z. Zhou, Y. Khan, C. Bergmeir, and E. Wang,
forecast: Forecasting Functions for Time Series and Linear Models,
2014, R package version 5.3. [Online]. Available: http://CRAN.R-
project.org/package=forecast

[27] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch,
e1071: Misc Functions of the Department of Statistics (e1071),
TU Wien, 2014, R package version 1.6-3. [Online]. Available:
http://CRAN.R-project.org/package=e1071

