
Compact FPGA-based True and Pseudo Random Number Generators

K.H. Tsoi, K.H. Leung and P.H.W. Leong
{khtsoi,khleung,phwl}@cse.cuhk.edu.hk

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, NT Hong Kong

Abstract

Two FPGA based implementations of random number
generators intended for embedded cryptographic applica-
tions are presented. The first is a true random number gen-
erator (TRNG) which employs oscillator phase noise, and
the second is a bit serial implementation of a Blum Blum
Shub (BBS) pseudorandom number generator (PRNG).
Both designs are extremely compact and can be imple-
mented on any FPGA or PLD device. They were designed
specifically for use as FPGA based cryptographic hardware
cores. The TRNG and PRNG were tested using the NIST
and Diehard random number test suites.

1 Introduction

The random number generator (RNG) is an important
cryptographic primitive widely used for one time pads [24],
key generation (e.g. [21]) and authentication protocols (e.g.
[28]). The security of such systems rely on the assump-
tion that future values in the random number sequence can-
not be predicted from the observed sequence. There are
two types of random number generators commonly used
for cryptographic applications. The true random number
generator (TRNG) derives its output from a physical noise
source whereas a pseudorandom number generator (PRNG)
expands a relatively short key (possibly from a TRNG) into
a long sequence of seemingly random bits based on a deter-
ministic algorithm. A cryptographically secure random bit
generator (CSRBG) is one which produces sequences for
which there is no polynomial time algorithm which, on in-
put of the first l bits of the output sequence s, can predict
the (l+ 1)st bit of s with a probability significantly greater
than 1

2 [16].
Field programmable gate array (FPGA) devices have

been successfully used for the implementation of crypto-
graphic hardware, some examples being the data encryption
standard (DES) [18], advanced encryption standard (AES)

candidate finalists [3], IDEA [17] and RSA cryptography
[26]. In these and other implementations, FPGAs had ad-
vantages in performance, design time, power consumption,
flexibility, cost or area over comparable microprocessor and
very large scale integration (VLSI) based systems.

In this work, FPGA based implementations of a TRNG
and a PRNG are presented. These designs are intended for
integration with other FPGA based cryptographic hardware
to produce embedded cryptosystems on a single FPGA.
Apart from achieving a higher level of integration, keeping
the critical random number generation operations internal
to the device achieves better security since these data do not
need to be passed to the FPGA via the pins.

In many applications, highly secure random numbers are
required only at very low bit rates, perhaps to generate a
single key for the lifetime of the application. An example
is public key cryptography where, once a key pair is gen-
erated, the same key is used for subsequent applications.
The TRNG and PRNG reported in this paper are designed
for low bit rate applications and both are able to generate
highly secure random numbers while occupying minimal
resources. They are particularly suitable for applications
where integration of the RNG and other cryptographic al-
gorithms on the same FPGA is required.

Previous implementations of TRNGs will be reviewed in
Section 2. For the TRNG, oscillator phase noise was used.
This mechanism was chosen since the RNG can be con-
structed from mostly digital components and is thus suitable
for FPGA implementation. Unlike other implementations
using this approach [22], our implementation uses a very
high frequency clock (up to 400 MHz) and does not require
a scrambler to achieve good random output. The only other
single chip FPGA based TRNG of which we are aware uses
analogue phase locked loop (PLL) jitter and can only be im-
plemented on an FPGA with this feature [5]. In contrast, the
method presented in this paper can be implemented on any
FPGA device.

The PRNG presented is a novel bit serial implementa-
tion of the Blum, Blum and Shub (BBS) [12] PRNG. This



algorithm was chosen for its extremely compact circuit, yet
BBS is a CSRBG if the assertion that that there is no poly-
nomial time algorithm for integer factorization remains true
(an unproven assumption). BBS is believed to be one of the
strongest CSRBG algorithms.

The rest of the paper is organized as follows, traditional
techniques used for random number generation (RNG) are
reviewed in Section 2. The basic algorithms used for the
TRNG and PRNG described in this paper are then intro-
duced in Section 3. The architecture of the RNGs and de-
sign details are presented in Section 4. The performance of
the design and the quality of the resulting output is reported
and evaluated in Section 5. Finally, conclusions are drawn
in Section 6.

2 Review of Random Number Generation
Techniques

2.1 True Random Number Generators

Given the importance of random number generation, sur-
prisingly few hardware implementations of TRNGs have
been reported. There are three commonly used techniques
in the literature, namely oscillator sampling, direct ampli-
fication and discrete time chaos. In the oscillator sampling
approach, period variation (i.e. oscillator jitter) in a low
frequency clock of low quality factor (Q) is exploited by
using it to sample a high frequency clock. The direct am-
plification technique digitizes thermal or shot noise, using
a amplifier and comparator. Finally, chaotic systems can be
used to produce TRNGs.

In 1984, Fairfield, Mortenson and Coulthart [22] devel-
oped the first integrated RNG based on oscillator phase
noise. In the design, a high frequency oscillator was sam-
pled using a low frequency oscillator. After removing duty
cycle biases via a parity filter, the flip flop output was fed
into a linear feedback shift register (LFSR) based scrambler.
The design generated 27 bps using a 1000 Hz low frequency
clock. Although our random source uses the same mecha-
nism, our random number design does not require the digital
scrambler used in their design.

The Intel RNG is part of the Intel 8xx chipset starting
with the Intel 810 and is implemented in the Intel 82802
Firmware Hub Device (FWH). It uses amplified thermal
noise to drive a voltage controlled oscillator (VCO), and
oscillator sampling is used to detect the phase noise of the
VCO to produce a digital random source [10].

To the best of the authors’ knowledge, the only previ-
ously reported FPGA implementation of a TRNG was an
implementation by Fischer and Drutarovsky [5] using a
variation of oscillator sampling. Their design was based
on the randomness of jitter in an analogue phase locked
loop (PLL) and a decimator was used to ensure that at least

one sample affecting jitter was included in every output
data. The design was implemented on an Altera APEX
EP20K200-2X FPGA with a 33.3 MHz external clock.
With an 88.245 MHz internal clock, it can generate 69 kbps.
For FPGAs such as the Altera APEX E and APEX II de-
vices which have internal PLLs, this approach requires no
external components. The disadvantage of this approach is
that few FPGAs have this feature.

True random number generators based on chaotic sys-
tems can lead to very compact CMOS implementations. In
2001, Stojanovski et al. [27] implemented an analog chaos-
based RNG in a 0.8 µm CMOS process utilizing switched
current techniques. The estimated output bit rate of this de-
sign was 1 Mbps. Andrea Gerosa et al. [7] also imple-
mented a RNG based on a chaotic system. Their design
with a pipelined ADC (analog-to-digital converter) occu-
pied 2.2 mm2 silicon area and the design can generate 8-
bits of data using a 20 MHz clock.

Petrie et al., combined oscillator sampling, direct ampli-
fication and discrete time chaos to produce an analog VLSI
chip which was robust to power supply noise and substrate
signal coupling [19]. Implemented in 2 µmCMOS, the chip
could produce random numbers at 1.4 Mbps. The design
occupied an area of 1.5 mm2 and dissipated 3.9 mW of
power.

2.2 Pseudorandom Number Generators

There are many methods to generate pseudorandom se-
quences, and the classical software based methods, all of
which can be implemented in hardware, are described in
Knuth [11]. In this section, hardware implementations of
PRNGs will be reviewed.

A common method of producing a PRNG is to use
the output of a linear feedback shift register (LFSR) [11].
Although this technique has good statistical properties
and leads to very efficient hardware implementations, the
Berlekamp–Massey algorithm can be used to efficiently de-
duce the connection polynomial from the LFSR’s output se-
quence, making it unsuitable for cryptographic applications
[16].

In 1986, Wolfram [31] proposed a method to generate
random numbers by connected cellular automatas (CA).
Hortensius et al. [8] proposed a VLSI implementation of
a parallel 1-D cellular automata. The 30-bit hybrid CA de-
sign was about 2.1 times larger than a 30-bit LFSR (linear
feedback shift register) RNG while offering better random-
ness and faster clock rate due to nearest neighbor wiring.

In 2002, P. Martin [15] evaluated different PRNGs im-
plementation on FPGAs. He showed that using multiple
LFSRs with different initial values can give more random
results that a single LFSR.

FPGA based cryptographic PRNGs hardware have also

2



Fh

F l

Fr

Clk

QD

D−FF
Fh

F l

Fr

Figure 1. Oscillator sampling using D-type
flip-flop.

been proposed. Barry Shackleord et al. presented RNGs
based on neighborhood-of-four cellular automata [25]. The
design made use of the 4-input lookup tables (LUTs) in Xil-
inx FPGA to fully utilize the hardware and can generate 64-
bit random numbers at a frequency as high as 230 MHz.
Another FPGA implementation of PRNG was introduced
by Robert K. Watkins et al. in 2001 [30]. Their design used
a Genetic Algorithm (GA) to generate a set of PRNGs and
FIPS-140 was used as a fitness function in the evolution.
This design, implemented on an XESS XSV800 Virtex pro-
totyping board, relied on run time reconfiguration. The final
product of the evolution is a PRNG.

It is not possible to prove a sequence is random. Some
basic tests were introduced by Knuth [11]. A compact and
preliminary test suite was defined in FIPS-140 by the Na-
tional Institute of Standards and Technology (NIST). NIST
proposed a more comprehensive random and pseudorandom
number generator test suite for cryptographic applications
in 2001 [1]. The Diehard test developed by Marsaglia [14]
is widely considered to be one of the most stringent RNG
tests.

3 RNG Algorithms

3.1 TRNG Design

The TRNG operates by sampling an accurate high fre-
quency clock, Fh, with an unstable low frequency clock,
Fl. This was done using an edge-triggered D-type flip-flop
as shown in Figure 1 with Fl as the clock input and Fh as
the data input. The output rate is at the frequency of the the
slow clock, Fl.

There are several factors which affect the randomness of
the output [22]. The first situation is that the duty cycle of
Fh may not be 50%. In this situation, Fr will have unequal
probability of being zero or one. An N -bit parity filter [4,
22] can be used to deskew a non-uniform distribution. If the
ratio of ones to zeroes in the raw random bitstream is p : q
then the probability that the parity will be one or zero is
the sum of the odd or even terms of the binomial expansion
of (p + q)N . This sum can be evaluated to calculate the
probability of a one at the output of the parity filter and is

1
2 ((p+ q)N + (p− q)N ). Since p+ q = 1, this expression
reduces to 1

2 (1 + (p− q)N). As n increases, this expression
tends to 0.5.

The second factor is the selection of clock frequency. If
the variation of the period in Fl is not large enough, there
will be correlation between bits and so the value of the out-
put can be predicted to some extent from the previous val-
ues. Previous research has shown that the standard devia-
tion of the period of Fl should at least be 0.75 times the pe-
riod ofFh [22]. Thus increasingFh and reducingFl leads to
more randomness. The effect of the frequency of Fl on the
quality of the random numbers generated will be addressed
experimentally in Section 5.

A third factor affecting the quality of the RNG is the
random source itself. As there are both periodic and aperi-
odic electromagnetic noise inside a computer system, there
may be correlation in the output sequence as the result of
coupling of periodic noise from the power supply, clocks,
crosstalk, thermal effects etc. This issue is not addressed in
this work.

3.2 PRNG Algorithm

The following equation generates the BBS sequence Xi

where i is a positive integer:

Xi+1 = X2
i mod M (1)

where M is a product of two large prime numbers p and q,
which both have a remainder of 3 when divided by 4. X0 is
a seed which is co-prime with M. As proven in [12], a deter-
ministic algorithm to compute the unique quadratic residue
X−1 mod M such that (X−1)2 mod M = X0 requires the
knowledge of the prime factors ofM . ThusM can be made
public as long as p and q are kept secret and the difficulty of
deducing the output of the PRNG is as difficult as factoriz-
ing M .

Currently, the best general purpose factoring algorithm
is the Number Field Sieve (NFS) which has a runtime ap-
proximatelyO(e1.9(lnn)1/3(ln lnn)2/3

) [13, 23]. To date, the
largest numbers (without special properties) that have been
factored were 155-digits (512-bits) in length. Thus 1024-bit
numbers are considered very secure [23] and are routinely
used for high security applications.

The BBS algorithm is appropriate for use in crypto-
graphic applications since it has a strong security proof
which relates the quality of the generator to the difficulty of
integer factorization [12]. Although the original algorithm
only produced 1-bit per iteration, Vazirani and Vazirani [29]
showed that one can safely use at least blog2(log2(M))c
bits of Xi while maintaining equivalent security. The typ-
ical size of M ranges from 256 to 1024-bits [1]. Using a
larger M will increase the number of available bits in each

3



TRNG

Buffer

PRNG

Buffer
ext_clk

FPGA Chip

other design

seed

TRNG output

host
PRNG output

Figure 2. TRNG and PRNG as a subsystem for
an FPGA-based application.

iteration at the expense of increased area and computational
requirements.

4 Implementation

In this section, the implementation details of the TRNG
and PRNG are presented. The complete TRNG and PRNG
was designed on a single FPGA with the only off-chip com-
ponents being two resistors and a capacitor for the TRNG
low frequency oscillator. The TRNG and PRNG operate in-
dependently. Figure 2 shows the relation between the two
parts. The TRNG first fills its buffer with random bits. This
buffer can be used as a source of random bits and can also
be used as a seed for the PRNG. The output of PRNG is
also stored in a buffer. A host computer interface permits
retrieval of the data in either of the buffers.

4.1 TRNG Circuit

The TRNG circuit of Figure 3 was used for the design.
Fh is a high frequency clock and Fl is a low frequency clock
generated by an external RC oscillator circuit. A parity fil-
ter with 4 stages was applied to the raw random bit stream
to correct for any duty cycle biases. Note that since the
parity filter must use n independent events, the output rate
is reduced by a factor of n. This is implemented by only
producing one write enable every n cycles as shown in the
schematic.

Figure 4 shows the schematic for the free running multi-
vibrator used to implement the Fl oscillator [6, 2]. The pe-
riod of the oscillator will be affected by background noise
which is the source of randomness in the design. R2 is used
to limit the current when Y has an excursion beyond the
supply rails i.e. without R2, the voltage at Y would be
limited to between Vdd and GND due to the FPGA’s in-
put protection diodes. R2 should be chosen to be much
larger than R1 so that there is no appreciable discharge of
C through R2. Note that the inverter and two buffers in
the low frequency oscillator were implemented using the

WECNT

QD

Q
Fh

F

hF

l

D

QDQD QD

Dual Port RAM

PRNGPortA PortB

Figure 3. TRNG circuit showing digital mixing,
parity filter and output buffer.

input/output blocks (IOBs) of the FPGA. The IOBs have
hysteresis which serve to reduce noise due to slow chang-
ing inputs of the oscillator. It is possible to add an enable to
the oscillator so that it can be switched off to save power.

Figure 5 shows the output of node Y of the oscillator as
measured with an oscilloscope. The highest voltage reached
at node Y occurs just after node X switches from low to
high. Since VX increases by Vdd, VY increases by the same
amount to VY = 3Vdd

2 . Charge at node Y then decays
through R1 towards GND (via the output of the inverter)
with an exponential decay VY (t) = 3Vdd

2 e−t/(RC). When
VY reaches the switching point of the bottom buffer, i.e.
VY = V dd/2, the buffer will switch, causing VX to drop
by Vdd. This is turn causes VY to drop to −Vdd/2. The
voltage then rises towards Vdd (since the inverter’s output
is at Vdd until the switching point of the bottom buffer is
again reached. This process repeats indefinitely and is thus
an oscillator.

The resulting half-periodT/2 can be calculated as Vdd
2 =

3Vdd
2 e

−T/2
RC from which the period of the oscillator T =

RC ln(9) can be derived.
The dual port BlockRAM acts as both a buffer and in-

terface. The random bit stream is written to the memory
through port A via the Fl clock. The PRNG circuit reads
the output via port B using the Fh clock. The TRNG cir-
cuit also contains a counter (not shown in Figure 3) whose
output is used as the address for the BlockRAM.

4.2 BBS PRNG

The implemented BBS PRNG used an M which was
1024-bits in length. The size and security of the BBS PRNG
can be changed by appending more registers and increasing
the counter size. The modulus M was hardwired in the de-
sign.

Figure 6 shows the data path of BBS PRNG. Note that
all connections are one bit in width. The main computation
element in the PRNG is a bit serial arithmetic logic unit

4



X

Fl

Y

R1

R2
C

Figure 4. Low frequency clock circuit. Note
that the inverter and two buffers in the oscil-
lator circuit were implemented using the in-
put/output blocks (IOBs) of the FPGA.

Figure 5. Oscilloscope trace of oscillator
node Y.

(ALU). The signal op selects its operation mode, namely:

ALUoutput =





A+B + Cin if op = 0 and sub = 0
B −A if op = 0 and sub = 1
B + Cin otherwise

There are 4 1024-bit shift registers in the design: M, X,
Y and Z. Register M stores the value of M which will not be
changed. Register X stores the value of Xi. This value is
initialized to a random seed from the TRNG and refreshed
after each iteration. Register Y and Z can be combined to
form a 2048-bit register, register YZ, to store the tempo-
rary results of ALU operations. All registers are constructed
by cascading SRL16E components [32] to reduce area con-
sumption where the SRL16E element is a single LUT con-

Table 1. Register values for the validation op-
eration.

Register Value before validation Value after validation
M M M
X M don’t care
Y X0 1
Z X0 X0

figured as a 16-bit shift register with enable.
There are two internal flag registers: z flag and 1 flag

which are asserted when the 1024-bit output of the ALU is
0 or 1 respectively. These two flags are implemented in a se-
rial fashion and are used by the control finite state machine
(FSM).

The BBS PRNG performs three functions: seed valida-
tion, squaring and modulo operations. Seed validation is
performed once only during initialization, and after that, a
squaring and modulo operation are performed each iteration
to produceXi, the least significant blog2(log2(M))c bits of
which are used as random data. Although one could safely
use the least significant 9-bits of Xi (M < 21024), 8-bits
were chosen to simplify interfacing.

4.2.1 Seed Validation

As described in the Section 3.2, the BBS algorithm requires
that the seed, X0 be co-prime with the modulus M. Eu-
clid’s method [11] was used for computing gcd(X0,M).
The validation operation is repeated with different random
seeds X0 (provided by the TRNG) until a seed for which
gcd(X0,M) = 1 is found. The seed validation implemen-
tation is described by the following pseudocode:

seed_validation() {
get_seed:

X = modulus; // backup M
Y = read(TRNG); // get X_0

gcd_sub:
Y = Y - X;
if (Y == 1) return(seed = X_0);
if (Y == 0) goto get_seed;
if (Y < 0) Y = Y + X;
swap X, Y;
goto gcd_sub;

}

Table 1 shows the contents of each register before and
after the validation process.

All operations are performed in a serial manner. The
least significant bits of registers X and Y are passed to the

5



���� ����

���
�

������

	


��
�

����

z_flag 1_flag

Dual Port RAM

PortA

X

M

Z

Y

PortB

c_in

A B

ALU op

c_out
sumcarry

sub

random data

rrng_in

8

Figure 6. BBS PRNG datapath.

ALU as operands and the registers are right shifted after
each clock cycle. Thus a single +/- operation takes 1024
clock cycles. The ALU’s carry flag is used to test if y−x <
0.

4.2.2 Squaring

Table 2 shows the values of the registers before and after the
squaring operation and the following pseudocode describes
the procedure for performing a squaring. Note that 1024
cycles are required to perform the add on the line labeled
L1.

square(X, YZ) {
repeat 1024 times {

if LSB(Z) = 1 then
L1: Y = Y + X;

else
Y = Y;

shift_right_one_bit(YZ);
}

}

4.2.3 Mod Operation

After squaring, YZ contains X2
i . This is reduced modulo

M by restoring division until a negative result is generated,
producingX2

i modM . There are faster methods for finding
the remainder but this method was chosen since it occupies
a very small circuit area. The following pseudocode per-
forms the mod operation.

Table 2. Register values for the squaring op-
eration.

Register Value before Mul Value after Mul
M M M
X Xi Xi

Y 0 (X2
i )[511:256]

Z Xi (X2
i )[255:0]

mod(M, YZ) {
repeat 1024 times {

Y = Y - M;
if (Y < 0) then

Y = Y + M;
L1: YZ = shift_left_1bit(YZ);

}
}

Table 3 shows the values of registers before and after the
mod process.

One implementation detail should be noted. In the pseu-
docode, register YZ is shifted left by one bit. In the actual
hardware this is not implemented directly since the shift
register employs SRL16E components which can only be
used to shift in one direction. In most other operations in-
cluding the validation, squaring and backup, the registers
shift in the right direction, the line labeled L1 being the only
exception in the design. In order to make the hardware sim-
ple and uniform, the shift left operation is transformed to
a rotate right of 2047-bits. It could also have been imple-

6



Table 3. Register values for the mod opera-
tion.

Register Value before Mod Value after Mod
M M M
X Xi Xi

Y (X2
i )[511:256] X2

i mod M
Z (X2

i )[255:0] don’t care

Table 4. Timing analysis of PRNG.
Operation Cycles
1. X = x*x n2

2: X % M (n iterations)
2.1. n-bit sub n
2.2. n-bit restore 0.5n (average)
2.3. shift left = rot 2n bits 2n
TOTAL n2 + n(3.5n) = 4.5n2

mented by using D-type flip-flops for the Y and Z registers,
however, since 16 flip-flops are required to implement a sin-
gle SRL16E, the size of register Y and Z will grow by a
factor of 16 so this approach was not adopted.

4.2.4 Output and Restore

After the mod operation, the result, X2
i mod M , is stored

in register Y. The PRNG output is produced from 8 least
significant bits of register Y which are shifted to the output
buffer, forming the pseudorandom bit stream for the current
iteration.

To restore the registers’ values for the next iteration, Y is
then copied to X and Z. At the same time, zero is shifted into
Y and the flag and carry registers are cleared. After restor-
ing, the values in the registers are as shown in the second
column of Table 2.

4.2.5 PRNG Timing

Table 4 gives a breakdown of the number of cycles required
for each step of the PRNG generation process. In total,
each iteration of the PRNG requires 4.5n2 + n clock cy-
cles, where n is the size of the modules in bits.

5 Results

An implementation of the RNG was synthesized and im-
plemented using Synopsys FPGA Compiler and Xilinx Al-
liance respectively. The FPGA platform used was a Pilchard
FPGA card [20] which uses the SDRAM bus instead of the

Table 5. Implementation summary (Xilinx
XCV300E-8).

Design Period Slices BRAM
Design (ns) (% XCV300) (% XCV300)
TRNG 2.310 15 (1%) 1 (3%)
PRNG 7.212 307 (10%) 1 (3%)
Both 7.280 310 (10%) 2 (7%)

PCI bus used in conventional FPGA boards, and the exter-
nal passive components used for the low frequency oscilla-
tor (R1, R2 and C in Figure 4) were built on a daughter card.
The FPGA used was a Xilinx Virtex XCV300E-8 device.

Table 5 summarizes the resource utilization and perfor-
mance of the TRNG and 1024-bit PRNG design including
the host interface. The design occupies less than 10% of
the logic resources of a Xilinx Virtex XCV300E-8 FPGA.
The high frequency clock of the TRNG can operate at
over 400 MHz, and the PRNG operates at 133 MHz. In
the experiments described below, the PRNG was clocked
at 133 MHz and the TRNG at 266 MHz by doubling the
133 MHz clock using a doubled delay locked loop (DLL).
The frequency of the low frequency clock is variable.

For n=1024, each iteration requires 35 ms. Since the last
8-bits are used as random data, the throughput of the design
is 225 bps.

5.1 TRNG Low Frequency Clock

For all experiments in this and the following randomness
tests, a 50 V monolithic ceramic 0.01µF ± 20% bypass ca-
pacitor was used for C and all resistors were discrete car-
bon resistors, A much larger period variation was observed
if a variable resistor was used for R1, so discrete valued re-
sistors were used for all measurements. The values of R1
ranged from 90 Ω to 2 kΩ resulting in frequencies of 18-
265 kHz. The R2 resistor was chosen to be 30 kΩ. The
square wave output of the low frequency clock was buffered
in the FPGA and the buffer output was measured using a
digital oscilloscope to obtain statistics on the period varia-
tion. The buffering was done to ensure that the measure-
ment process did not affect the noise levels in the low fre-
quency clock generator circuit.

Table 6 summarizes experiments in which the standard
deviation of the period for different R1 values in the low
frequency clock was measured using the statistical feature
of a 500 MHz, 2 Gs/s HP Infinium 54820A oscilloscope.
As can be clearly seen from the table, low frequencies lead
to larger standard deviation in the period. It is reasonable to
assume that the larger the period variation, the more random
the resulting output bitstream and thus lower frequencies

7



Table 6. Low frequency clock measurements.

Frequency std(period)
Hz ns

3.74k 3.7
6.75k 8.5

13.83k 26
54.82k 42
91.91k 81

will lead to higher degrees of randomness.

5.2 NIST Test Suite

For the NIST test suite (version 1.4), all parameters were
set according to the recommendations in [1] and the test
sequences were 1 Mbit in size. The sample size, i.e. the
number of bit sequences to pass the tests was 10. Table 7
summarizes the NIST test results for the PRNG and for the
TRNG at different frequencies. The significance level α
was chosen to be the default of 0.01 (99% confidence) so
a test has passed if the P-value is larger than this number.
Failed tests are shown in bold. It can be seen that the TRNG
passes the NIST RNG test suite when the low frequency os-
cillator is 115 kHz or lower, corresponding to a throughput
of 115/4 = 29 kbps. The PRNG also passes all NIST tests.

5.3 Diehard Test Suite

Although the Diehard test suite is one of the most com-
prehensive publically available sets of randomness tests, un-
fortunately there are no well-defined pass criteria. Intel cal-
culated that the entire 250 test suite passes with a 95% confi-
dence interval for P-values between 0.0001 and 0.9999 [9],
and this method was used for our testing.

The Diehard test results are summarized in Table 8. At
36.8 kHz and 52 kHz, the test which fails is the minimum
distance test. The minimum distance test is as follows, “
It does this 100 times:: choose n=8000 random points in
a square of side 10000. Find d, the minimum distance be-
tween the (n2 − n)/2 pairs of points. If the points are truly
independent uniform, then d2, the square of the minimum
distance should be (very close to) exponentially distributed
with mean .995.”.

It was found that for frequencies below 151 kHz (with
the exception of 52 kHz and 36.8 kHz), the TRNG passes
the test suite. The PRNG random sequences also passes the
Diehard test.

6 Conclusion

In this paper, two FPGA based RNGs were introduced.
The TRNG design demonstrates a method for producing
high quality non-deterministic random numbers. Compared
with previous techniques, this method does not use any spe-
cial features of the FPGA and thus can be implemented on
any CPLD or FPGA device. The PRNG shows that a highly
secure RNG can be implemented with very small area re-
quirements, both designs together plus the host interface
occupying just 310 Virtex slices. The BBS algorithm cho-
sen lends itself to an area efficient serial architecture, which
greatly reduces circuit size, admittedly at the expense of
speed. The maximum bitrate of the TRNG which could
pass the NIST and Diehard test suites were 29 kbps and
4.7 kbps respectively. We recommend that the TRNG be
used at or below 29 kbps, and below 4.7 kbps for very high
security applications. The PRNG passes both Diehard and
NIST tests and achieves an output rate of 225 bps .

Both designs were intended for embedded cryptographic
applications where the random number generator is inte-
grated on the same chip as other cryptographic hardware.
Including an internal high quality random number genera-
tor may also improve security by keeping seeds and keys
internal to the device.

Issues of tamper resistance have not been addressed in
this work. For example, the TRNG could be made to pro-
duce a constant output by externally grounding the pin used
to generate the low frequency clock. It is possible to per-
form rudimentary randomness tests of the TRNG output to
ensure that it has not failed or been tampered with. Future
work will focus on this issue.

References

[1] A. Rukhin, el. A Statistical Test Suit For Random and Pseu-
dorandom Number Generators for Cryptographic Applica-
tions. NIST Special Publication 800-22, 2001.

[2] P. Alfke. Evolution, revolution and convolution: Re-
cent progress in field programmable logic. Tu-
torial notes, 2001. http://www.te.rl.ac.uk/esdg/atlas-
flt/talks/StockholmXilinx.pdf.

[3] B. Chetwynd, A. Elbirt, C. Paar, and W. Yip. An FPGA-
based performance evaluation of the AES block cipher can-
didate algorithm finalists. IEEE Transactions on VLSI,
9(4):545–557, August 2001.

[4] D. Eastlake, S. Crocker, and J. Schiller. Randomness rec-
ommendations for security. Network Working Group, RFC
1750, 1994.

[5] V. Fischer and M. Drutarovsky. True random number gen-
erator embedded in reconfigurable hardware. In Proceed-
ings of the Cryptographic Hardware and Embedded Systems
Workshop (CHES), pages 415–430, 2002.

[6] S. Franco. Design with operational amplifiers and analog
integrated circuits. McGraw-Hill, 2nd edition, 1998.

8



Table 7. NIST RNG test result summary for the PRNG and TRNG at different low frequency oscillator
values. Failed tests are shown in bold.

Test P-value
PRNG 265 kHz 151 kHz 115 kHz 52 kHz 36.8 kHz 18.8 kHz

Frequency 0.739918 0.000439 0.008879 0.739918 0.739918 0.534146 0.122325
Block
Frequency 0.004301 0.000000 0.000000 0.035174 0.350485 0.534146 0.739918
Cusum-Forward 0.066882 0.000000 0.000001 0.534146 0.911413 0.350485 0.213309
Cusum-Reverse 0.350485 0.000000 0.000089 0.534146 0.739918 0.911413 0.066882
Runs 0.911413 0.000000 0.534146 0.350485 0.739918 0.911413 0.739918
Long Run 0.066882 0.739918 0.911413 0.739918 0.122325 0.350485 0.350485
Rank 0.739918 0.350485 0.739918 0.911413 0.911413 0.534146 0.739918
FFT 0.122325 0.534146 0.350485 0.122325 0.739918 0.350485 0.350485
Aperiodic
Templates 0.350485 0.035174 0.739918 0.534146 0.350485 0.991468 0.122325
Periodic
Templates 0.534146 0.213309 0.213309 0.350485 0.739918 0.122325 0.035174
Universal 0.066882 0.066882 0.350485 0.122315 0.350485 0.739918 0.122325
Approximate
Entropy 0.350485 0.000003 0.350485 0.911413 0.534146 0.911414 0.213309
Random
Excursions 0.017639 0.521333 0.981557 0.703204 0.867916 0.294149 0.017639
Serial1 0.350485 0.000001 0.534146 0.911413 0.122325 0.350485 0.122325
Serial2 0.213309 0.213309 0.066882 0.350485 0.534146 0.534146 0.350485
Lempel Ziv 0.066882 0.008879 0.213309 0.739918 0.911413 0.350485 0.534146
Linear
Complexity 0.350485 0.534146 0.066882 0.739918 0.534146 0.350485 0.991468

9



Table 8. Diehard RNG test result summary for the PRNG and TRNG at different low frequency oscillator
values. Failed tests are shown in bold.

Test P-value
PRNG 265 kHz 151 kHz 115 kHz 52 kHz 36.8 kHz 18.8 kHz

Birthday Spacings 0.730825 0.224016 0.774836 0.854676 0.011842 0.457606 0.605795
Overlapping 5-Permutation 0.049365 0.512160 0.605900 0.007404 0.242983 0.892583 0.519530
Binary Rank (31x31) 0.499906 0.616320 0.723351 0.740576 0.706765 0.450976 0.264369
Binary Rank (32x32) 0.937286 0.589322 0.818277 0.452702 0.340073 0.512985 0.519530
Binary Rank (6x8) 0.946102 0.928782 0.166910 0.992197 0.558210 0.652454 0.264369
Bitstream 0.05040 1.00000 0.43382 0.83427 0.54249 0.17241 0.20124
OPSO 0.7242 0.8957 0.9886 0.6214 0.7938 0.7311 0.9808
OQSO 0.4403 0.4470 0.2539 0.7497 0.3784 0.3875 0.0952
DNA 0.6235 0.4271 0.1613 0.9202 0.5149 0.7231 0.3713
Steam Count-the-1 0.895581 0.998743 0.801343 0.418211 0.987518 0.225811 0.915539
Byte Count-the-1 0.373290 0.600272 0.646492 0.599296 0.992857 0.872483 0.395120
parking Lot 0.089494 0.322808 0.246694 0.863809 0.585747 0.287980 0.246216
Min. Distance 0.841020 0.684397 0.232250 0.541518 0.999991 1.00000 0.994580
3D Spheres 0.611194 0.131376 0.332614 0.668792 0.891787 0.093055 0.928373
Squeeze 0.954492 0.738270 0.268667 0.147953 0.801557 0.311240 0.426530
Overlapping Sums 0.855183 0.691566 0.469958 0.926731 0.669721 0.06766 0.436228
Runs up 0.045029 0.743994 0.679103 0.479088 0.381046 0.607365 0.587124
Runs down 0.473325 0.289460 0.350040 0.328526 0.095483 0.632704 0.837897
Craps 0.668026 0.843023 0.330808 0.106158 0.719738 0.233184 0.310008

[7] A. Gerosa, R. Bernardini, and S. Pietri. A fully integrated
8-bit, 20MHz, truly random numbers generator, based on a
chaotic system. In SSMSD. 2001 Southwest Symposium on
Mixed-Signal Design, pages 87–92, 2001.

[8] P. Hortensius, R. McLeod, and H. Card. Parallel ran-
dom number generation for VLSI systems using cellular au-
tomata. IEEE Transactions on Computers, 38(10):1466–
1473, Oct. 1989.

[9] Intel Platform Security Division. The intel ran-
dom number generator. Intel technical brief, 1999.
ftp://download.intel.com/design/security/rng/techbrief.pdf.

[10] B. Jun and P. Kocher. The intel random number genera-
tor. White paper by Cryptographic Research Inc., 1999.
ftp://download.intel.com/design/security/rng/CRIwp.pdf.

[11] D. Knuth. The Art of Computer Programming: Vol. 2,
Seminumerical Algorithms. Addison-Wesley, 1981.

[12] L. Blum, M. Blum, and M. Shub. A simple unpredictable
pseudo-random number generator. SIAM Journal on com-
puting, 15(2):364–383, 1986.

[13] A. Lenstra and H. Lenstra Jr, editors. The development of the
number field sieve, volume 1554. Lecture Notes in Mathe-
matics, Springer-Verlag, 1993.

[14] G. Marsaglia. DIEHARD: a battery of tests for random num-
ber generators. 2002. http://stat.fsu.edu/∼geo/diehard.html.

[15] P. Martin. An analysis of random number generators for
A hardware implementation of genetic programming using
FPGAs and Handel-C. In GECCO 2002: Proceedings of the
Genetic and Evolutionary Computation Conference, pages
837–844, 2002.

[16] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 5th edi-
tion, 2001.

[17] O.Y.H. Cheung, K.H. Tsoi, K.H. Leung, P.H.W. Leong, and
M.P. Leong. Tradeoffs in parallel and serial implementa-
tions of the international data encryption algorithm IDEA.
In Proceedings of the Cryptographic Hardware and Em-
bedded Systems Workshop (CHES), pages 333–347. LNCS
2162, Springer, 2001.

[18] V. Pasham and S. Trimberger. High-Speed DES and Triple
DES Encryptor/Decryptor. Xilinx, Inc., 2001. Applications
Note XAPP270.

[19] C. Petrie and J. Connelly. A noise-based IC random number
generator for applications in cryptography. IEEE Journal of
Solid State Circuits, 47(5):615–621, 2000.

[20] P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung, C.M.
Kwok, M.Y. Wong, and K.H. Lee. Pilchard – a re-
configurable computing platform with memory slot inter-
face. In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM),
2001 (to appear).

[21] R. Ramaswamy. Application of a key generation and distri-
bution algorithm for secure communication in open systems
interconnection architecture. In Security Technology, 1989.
Proceedings. 1989 International Carnahan Conference on,
1989, pages 175–180, 1989.

[22] R.C. Fairfield, R.L. Mortenson, and K.B. Coulthart. An LSI
Random Number Generator (RNG). In Advances in Cryp-

10



tography: Proceedings of Crypto 84, pages 203–230. LNCS
0196, Springer-Verlag, 1984.

[23] RSA Labs. FAQ, 2000.
http://www.rsasecurity.com/rsalabs/faq/index.html.

[24] B. Schneider. Applied Cryptography. John Wiley & Sons,
second edition, 1996.

[25] B. Shackleford, M. Tanaka, R. J. Carter, and G. Snider.
FPGA implementation of neighborhood-of-four cellular au-
tomata random number generators. Technical report, HP
Labs Technical Reports, 2001.

[26] M. Shand and J. Vuillemin. Fast implementations of RSA
cryptography. In Proceedings., 11th Symposium on Com-
puter Arithmetic, pages 252 –259, 1993.

[27] T. Stojanovski, J. Pil, and L. Kocarev. Chaos-based ran-
dom number generators. Part II: practical realization. IEEE
Transactions on Circuits and Systems – I: fundamental The-
ory and Application, 48(3):382–385, March 2001.

[28] T. Rinne, T. Ylonen, Tero Kivinen, and M Saarinen Sami.
SSH Authentication Protocol. Network Working Group, In-
ternet Draft, Internet Engineering Task Force (IETF), 2002.

[29] U. Vazirani and V. Vazirani. Efficient and secure pseudo-
random number generation. In Proc. 25th IEEE Symp. on
the Foundations of Comput. Sci., pages 458–463, 1984.

[30] R. K. Watkins, J. C. Isaacs, and S. Y. Foo. Evolvable ran-
dom number generators: A schemata-based approach. In
2001 Genetic and Evolutionary Computation Conference
Late Breaking Papers, pages 469–473, 2001.

[31] S. Wolfram. Random sequence generation by cellular au-
tomata. Advances in Applied Mathematics, 7:123 – 169,
1986.

[32] Xilinx, Inc. Xilinx Libraries Guide, 1999.

11


