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Abstract. With an aim to understand the information encoded by DNA
sequences, databases containing large amount of DNA sequence informa-
tion are frequently compared and searched for matching or near-matching
patterns. This kind of similarity calculation is known as sequence align-
ment. To date, the most popular algorithms for this operation are heuris-
tic approaches such as BLAST and FASTA which give high speed but
low sensitivity, i.e. significant matches may be missed by the searches.
Another algorithm, the Smith-Waterman algorithm, is a more compu-
tationally expensive algorithm but achieves higher sensitivity. In this
paper, an improved systolic processing element cell for implementing the
Smith-Waterman on a Xilinx Virtex FPGA is presented.

1 Introduction

Bioinformatics is becoming an increasingly important field of research. With
the ability to rapidly sequence DNA information, biologists have the tools to,
among other things, study the structure and function of DNA; study evolution-
ary trends; and correlate DNA information with disease. For example, two genes
were identified to be involved in the origins of breast cancer in 1994 [1]. Such
research is only possible through the help of high speed sequence comparison.

All the cells of an organism consist of some kind of genetic information. They
are carried by a chemical known as the deoxyribonucleic acid (DNA) in the
nucleus of the cell. DNA is a very large molecule and nucleotide is the basic unit
of this type of molecule. There are 4 kinds of nucleotides and each have different
bases, namely adenine, cytosine, guanine and thymine. Their abbreviated forms
are “A”, “C”, “G” and “T” respectively. In this paper, the sequence is referred
to as a string, and the bases form the alphabet for the string.

It is possible to deduce the original sequencing in DNA which codes for a
particular amino acid. By finding the similarity between a number of “amino-
acid producing” DNA sequences and a genuine DNA sequence of an individual,
one can identify the protein encoded by the DNA sequence of the individual. In
addition, if biologists succeed in finding the similarity between DNA sequences of
two different species, they can understand the evolutionary trend between them.
Another important usage is that the relation between disease and inheritance can



also be studied. This is done by aligning specific DNA sequences of individuals
with disease to those of normal people. If correlations can be found which can
be used to identify those susceptable to certain diseases, new drugs may be
made or better techniques invented to treat the disease. There are many other
applications of bioinformatics and this field is expanding at an extremely fast
rate.

A human genome contains approximately 3 billion DNA base pairs. In order
to discover which amino acids are produced by each part of a DNA sequence, it
is necessary to find the similarity between two sequences. This is done by finding
the minimum string edit distance between the two sequences and the process is
known as sequence alignment.

There are many algorithms for doing sequence alignment. The most com-
monly used ones are FASTA [2] and BLAST [3]. BLAST and FASTA are fast
algorithms which prune the search involved in a sequence alignment using heuris-
tic methods. The Smith-Waterman algorithm [4] is an optimal method for ho-
mology searches and sequence alignment in genetic databases and makes all
pairwise comparisons between the two strings. It achieves high sensitivity as all
the matched and near-matched pairs are detected, however, the computation
time required strongly limits its use.

Sencel Bioinformatics [5] compared the sensitivity and selectivity of various
searching methods. The sensitivity was measured by the coverage, which is the
fraction of correctly identified homologues (true positives). The coverage indi-
cates what fraction of structurally similar proteins one may expect to identify
based on sequence alone. Their experiments show that for a coverage around
0.18, the errors per query of BLAST and FASTA are about two times that of
the Smith-Waterman Algorithm.

Many previous ASIC and FPGA implementations of the Smith-Waterman
algorithm have been proposed and some are reviewed in Section 4. To date, the
highest performance chip [6] and system level [7] performance figures have been
achieved using a runtime reconfigurable implementation which directly writes
one of the strings into the FPGA’s bitstream.

In this work, an FPGA-based implementation of the Smith-Waterman algo-
rithm is presented. The main contribution of this work is a new 3 Xilinx Virtex
slice Smith-Waterman cell which is able to achieve the same density and per-
formance as an earlier reported cell [6], without the need to perform runtime
reconfiguration. This has advantages in that the design is less FPGA device
specific and thus can be used for non-Xilinx FPGA devices as well as ASICs.
Whereas the runtime reconfigurable design requires JBits, a Xilinx specific API
for runtime reconfiguration, the design presented in this paper was written in
standard VHDL. Moreover, in the proposed design, both strings being compared
can be changed rapidly as compared to a runtime reconfigurable system in which
the bitstream must be generated and downloaded, which is typically a very slow
process since a large bitstream must be manipulated and downloaded via a slow
interface. This reconfiguration process may become a bottleneck, particularly
for small databases. Furthermore, other applications may require both strings
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0 1 2 3

A 1 ? ? ?

T 2 ? ? ?

C 3 ? ? ?

(a) Initial table.
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(b) Equation 1 val-
ues.

A C G

0 1 2 3

A 1 0 1 2

T 2 1 2 3

C 3 2 1 2

(c) Final table.

Fig. 1. Figure showing the progress of the Smith-Waterman algorithm, when the string
“ACG” is compared with “ATC”.

to change quickly. The design was implemented and verified using Pilchard [8],
a memory-slot based reconfigurable computing environment.

2 The Smith-Waterman Algorithm

The Smith-Waterman Algorithm is a dynamic programming technique which
utilizes a 2D table. As an example of its application, suppose that one wishes
to compare sequence S (“ACG”) with sequence T (“ATC”). The intermediate
values a, b and c (shown in Fig. 1(b)) are then used to compute d according to
the following forumla:

d = min





{
a if Si = Tj
a+ sub if Si 6= Tj

b+ ins
c+ del

(1)

If the strings being compared are the same, the value a is used for d. Other-
wise, the minimum of a plus some substitution penalty sub, b plus some insertion
penalty ins and c plus some deletion penalty del is used for d. Data dependen-
cies mean that entries d in the table can only be calculated if the corresponding
a, b, c values are already known and so the computation of the table spreads out
from the origin as illustrated in Fig. 2. As an example, the first entry that can
be computed is that for “AA” in Fig. 1(a). Since Si = T − i = ‘A′, according to
Equation 1, d = a and so the entry is set to 0. In order to complete the table, the
template of Fig. 1(b) is moved around the table constrained by the dependencies
indicated by Fig. 2.

The substitution, insertion and deletion penalties can be adjusted for different
comparison requirements. If the presence of redundant characters is relatively
less acceptable than just a difference in characters, the insertion and deletion
penalties can be set to a higher value than the substitution penalty. In the
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Fig. 2. Data dependencies in the alignment table. Thick lines show entries which can
be computed in parallel and the time axis is arranged diagonally.

alignment system presented, the insertion and deletion penalties were fixed at 1
and the substitution penalty set to 2, as is typical in many applications.

If S and T are m and n in length respectively, then the time complexity of
a serial implementation of the Smith-Waterman algorithm is O(mn). After all
the squares have been processed, the result of Fig. 1(c) is obtained. In a parallel
implementation, the positive slope diagonal entries of Fig. 2 can be computed
simultaneously. The final edit distance between the two strings appears in the
bottom right table entry.

3 FPGA Implementation

In 1985, Lipton and Lopresti observed that the values of b and c in Equation 1
are restricted to a± 1 and the equation can be simplified to obtain [9]:

d =




a if ((b or c) = a− 1) or (Si = Tj)

a+ 2 if ((b and c) = a+ 1) and (Si 6= Tj)
(2)

Using Equation 2, it can be seen that the data elements b, c and d only have two
possible values. Therefore, the number of data bits used for the representation of
b, c and d can be reduced to 1 bit. Furthermore, two bits can be used to represent
the four possible values of the alphabet.

The processing element (PE) shown in Fig. 3 was used to implement Equa-
tion 2. A number of PEs are then connected in a linear systolic array to process
diagonal elements in the table in parallel. As shown in Fig. 2, PEs are arranged
horizontally and are responsible for its corresponding column. In the description
that follows, the sequence that changes infrequently is S and the sequences from
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Fig. 3. The Smith-Waterman processing element (PE). Boxes represent D-type flip-
flops.

the database are T . In each PE, two latches are used to store a character Si.
These characters are shifted and distributed to every processing element before
the actual comparison process beings. The base pairs of T are passed through
the array during the comparison process, during which the d of Equation 2 is
also computed.

In order to calculate d, inputs a, b and c should be available. In the actual
implementation, the new values b, c and d are calculated during the comparison
of the characters as follows:

1. data in is the new value of c and it is stored in a flip-flop. At the same time,
this new c value and the previous d value (from a flip-flop) determines the
new b value ( b = temp c XNOR temp d)

2. The new b value is stored in a flip-flop. At the same time, the output of a
2-to-1 MUX is then selected depending on whether Si = Ti. The output of
the MUX (a ‘0’ value or (b AND temp c)) becomes the new d value. This
new d value is stored in a flip-flop.

3. Values of b and d determine the data output of the PE (data out = temp b
XNOR temp d). The data output from this PE is connected to the next PE
as its data input (its new c value)

When the transfer signal is high, the sequence S is shifted through the
PEs. When the en signal is high, all the flip-flops (except the two which store
the string S) are reset to their initial values. The init signal is high when new
signals from the preceeding PE are input and the new value of d calculated.
When the init signal is low, the data in all the flip-flops are unchanged.

Each PE used 8 flip-flops as storage elements and 4 LUTs to implement the
combinational logic. Thus the design occupied 4 Xilinx Virtex slices. Guccione
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Fig. 4. Two processing elements mapped to 6 Virtex slices.

and Keller [6] used runtime reconfiguration to write one of the sequences into the
bitstream, saving 2 flip-flops and implementing a PE in 3 slices. In the proposed
approach, two otherwise unused LUTs were configured as shift register elements
using the Xilinx distributed RAM feature [10]. Thus the design occupies 3 Xilinx
Virtex slices per PE, without requiring runtime reconfiguration to change S. In
the actual implemention, 2 PEs were implemented in 6 slices since sharing of
resources between adjacent PEs was necessary in the actual implementation.

Fig. 4 shows the mapping of the PEs to slices. All the signals ending with
“ 1st” were used in PE Number 1, and signals ending with “ 2nd” were used for
PE2. The purpose of each signal can be understood by referring back to Fig. 3.
It was necessary to connect the output of the RAM-based flip-flops directly
to a flip-flop (FF in the diagram) in the same logic cell (LC) since internal LC
connections do not permit them to be used independently (i.e. it was not possible
to avoid connecting the output of the RAM and the input of the FF). Thus, Slice
1 was configured as a 2 stage shift register for consecutive values of Si and Slice
3 was used for two consecutive values of Ti.
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Fig. 5. System data path.

Fig. 5 shows the overall system data path. Since the T sequences are shifted
continuously, the system used a FIFO constructed from Block RAM to buffer
the sequence data supplied by a host computer. This improves throughput of
the system since a large number of string comparisons can be completed before
all of their scores are read from the controller, reducing the amount of idle time
in the systolic array. The input and output data width of the FIFO RAM were
both 64 bits. The wide input data width helped to improve IO bandwidth from
the host computer to the FIFO RAM. A 64-to-2 shifter and a controller counter
were used for reducing the output data width of the FIFO RAM from 64 bits to
2 bits, so as to allow data to be fed into the systolic array.

The Score Counter computes the edit distance by accumulating results cal-
culated in the last PE of the systolic array. The output of the last PE is actually
the d value in the squares of the rightmost column of the matrix, and differ-
ences in values of consecutive squares in the rightmost column must be 1. The
dataout of the last PE is ‘0’ when d = b - 1 , and the output ‘1’ when d = b +
1. Therefore, a Shift Counter was initialized to the length of the sequence S. It
was decremented if the output value is ‘0’, otherwise it was incremented. After
the entire string T is passed through the systolic array, the counter contains the
final string comparison score.

4 Results

The design was synthesized from VHDL using the Xilinx Foundation 5.1i soft-
ware tools and implemented on Pilchard, a reconfigurable computing platform



Fig. 6. Photograph of the Pilchard board.

[8] (Fig. 6). The Pilchard platform uses a Xilinx Virtex XCV1000E-6 FPGA
(which has 12288 slices) and uses a SDRAM memory bus interface instead of
the conventional PCI bus to reduce latency.

A total of 4,032 PEs were places on an XCV1000E-6 device (this number was
chosen for floorplanning reasons). As reported by the Xilinx timing analyzer, the
maximum frequency was 202 MHz.

A number of commercial and research implementations of the Smith Wa-
terman algorithm have been reported and their performance are summarized
in Table 1. Examples are Splash [11], Splash 2 [12], SAMBA [13], Paracel [14],
Celera [15], JBits from Xilinx [6], and the HokieGene Bioinformatics Project [7].
The performance measure of cell updates per second (CUPS) is widely used in
the literature and hence adopted for our results.

Splash contains 746 PEs in a Xilinx XC3090 FPGA performing the Smith-
Waterman Algorithm. Splash 2’s hardware was different from Splash, which
used XC4010 FPGAs with a total of 248 PEs. SAMBA [13] incorporated 16
Xilinx XC3090 FPGAs with 128 PEs altogether dedicated to the comparison of
biological sequences.

ASIC and software implementations have also been reported. Paracel, Inc.
used a custom ASIC approach to do the sequence alignment. Their system used
144 identical custom ASIC devices, each containing approximately 192 process-
ing elements. Celera Genomics Inc. reported a software based system using an
800 node Compaq Alpha cluster.

Both the JBits and the HokieGene Bioinformatics Project were the latest
reported sequence alignment systems using the Smith-Waterman Algorithm and
use the same PE design. JBits reported performance for two different FPGA
chips, the XCV1000-6 and the XC2V6000-5. The HokieGene Bioinformatics
Project used an XCV6000-4. As can be seen from the table, the performance
of the proposed design is similar to the JBits design on the same size FPGA
(a XCV1000-6), and the JBits and HokieGene implementations on an XCV6000
gain performance by fitting more PEs on a chip, and our performance on the
same chip would be similar.

The implementation was successfully verified using the Pilchard platform
whcih provides a 133 MHz, 64-bit wide memory mapped bus to the FPGA.
The processing elements and all other logic of the implementation operate from



System Number of PEs per System Device Run-time

Chips chip Performance Performance reconfiguration

(CUPS) (CUPS) requirement

Splash(XC3090) 32 8 370 M 11 M No

Splash 2(XC4010) 16 14 43 B 2,687 M No

SAMBA(XC3090) 32 4 1,280 M 80 M No

Paracel(ASIC) 144 192 276 B 1,900 M N/A

Celera (software 800 1 250 B 312 M N/A

implementation)

JBits 1 4,000 757 B 757 B Yes

(XCV1000-6)

JBits 1 11,000 3,225 B 3,225 B Yes

(XC2V6000-5)

HokieGene 1 7000 1,260 B 1,260 B Yes

(XC2V6000-4)

This implementation 1 4,032 742 B 742 B No

(XCV1000-6)

This implementation 1 4,032 814 B 814 B No

(XCV1000E-6)

Table 1. Performance and hardware size comparison of previous implementations (pro-
cessor core not including system overheads). Device performance is measured in cell
updates per second (CUPS).



the same 133 MHz clock. The interface logic occupied 3% of the Virtex device.
The working design was used mainly for verification performance and had a
disappointing performance of approximately 136 B CUPS, limited by the simple
polling based host interface used. A high speed interface which performs more
buffering and is able to cause the memory system to perform block transfers
between the host and Pilchard is under development.

5 Conclusion

A technique, commonly used in VLSI layout, in which two processing elements
are merged into a compact cell was used to develop a Smith-Waterman systolic
processing element design which computes the edit distance between two strings.
This cell occupies 3 Xilinx Virtex slices and allows both strings to be loaded into
the system without runtime reconfiguration. Using this cell, 4032 PEs can fit on
a Xilinx XCV1000E-6, operate at 202 MHz and achieve a device performance of
814 B CUPS.
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