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Abstract

Foreign exchange (FX) dealers are exposed to currency risk through both
market and counterparty activities. Research in FX risk management has
mainly focused on long-term risks, yet trading costs associated with long-
term strategies make them undesirable for short-term risk hedging. In this
paper, a short-term risk management system for FX dealers is described in
which the optimal risk-cost profiles are obtained through dynamic control
of the dealer’s positions on the spot market. This approach is formulated
as a stochastic receding horizon control (SRHC) problem, incorporating el-
ements which model client flow, transaction cost, market impact, exchange
rate volatility and fluctuations caused by macroeconomic announcements.

The proposed technique is backtested using both synthetic and historical
client trade data. The results obtained outperform three benchmark hedging
strategies on a risk-cost Pareto frontier, achieving up to 47.6% cost improve-
ment over benchmark strategies. A flexible scenario generation oracle is also
introduced and used to quantify the effects of predictive model quality on
risk management.
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1. Introduction

Foreign exchange (FX) market dealers facilitate international trade by ab-
sorbing corporate, retail and institutional clients’ cash flow and managing the
resulting FX risk in the interbank market. Unexpected or even anticipated
fluctuation in FX rates, combined with an accumulation of large transac-
tions being made on behalf of their clients creates a significant risk for these
dealers. While this risk can be mitigated by using financial derivatives or re-
ducing positions, there are alternative strategies available that have potential
to reduce contract and transaction costs.

In this paper, we formalize a methodology to manage short-term FX risk
where the dealer hedges only by opening or closing new FX spot positions
subject to market conditions and client flow. To find the optimal portfolio
of positions in foreign currency, stochastic receding horizon control (SRHC)
is used. First, a multi-period mean-variance cost function is formulated to
minimize both the transaction costs due to trades and the risk caused by
rate fluctuations. Several real-world constraints are accounted for and the
resulting stochastic programming problem is approximated to a quadratic
programming (QP) problem via Monte Carlo methods. Each stochastic sce-
nario in the Monte Carlo simulation is generated by randomly sampling from
custom distributions, modeling client flow, FX rate volatility and transaction
cost. This data-driven approach enables a more versatile definition of data
models compared to model-based analytic approaches. These result in an op-
timal cost-risk Pareto frontier which outperforms single-stage and rule-based
hedging strategies.

We also offer statistical models for client flow, FX rate volatility and
transaction cost. Specifically, time-varying models are used and special at-
tention is paid to expected price jumps caused by macroeconomic announce-
ments, as it has been shown that they heavily contribute to total daily price
variation (Evans, 2011). Furthermore, a scenario generation oracle is in-
troduced to analyze the effect of each model on the hedging strategy. By
combining observations with synthetic data, the oracle generates scenarios
with different predictive accuracies, allowing the dealer to identify the pos-
sible shortcomings of each component via backtesting.

The main contribution of this work is the formulation of a QP based FX
risk management strategy which can accommodate stochastic FX rate and
client flow models. While the idea of hedging risk, either by using deriva-
tives or by employing a hedging portfolio (Josephy et al., 2013) has been
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thoroughly explored in the literature, to the best of our knowledge the pro-
posed method has been formally introduced only in previous work by the
authors (Noorian and Leong, 2014). This paper extends that work by im-
posing limit constraints on positions, more realistic volatility models and
time-varying bid-ask spreads, further analysis and simplification of the an-
alytic cost function, and finally the formalization of a scenario generation
oracle with exponential decay.

This paper is organized as follows. Section 2 explores the background
of FX risk management and SRHC in finance. In Section 3, the problem is
formally defined and the hedging objective is determined. Our optimization
model is introduced in Section 4, followed by data models for scenario gen-
eration in Section 5. Finally, a series of numerical tests using synthetic and
real-world data are used to validate the proposed method in Section 6.

2. Background

Receding horizon control (RHC), also known as model predictive control
(MPC), is a process control technique where optimal policies are dynamically
devised by solving a future looking multi-period optimization (Borrelli et al.,
2014). This is achieved by embedding a predictive model of the system,
which determines the system’s future performance with regards to different
inputs, in the optimization’s cost function.

RHC is commonly implemented in discrete-time: at the start of each
time-step, the predictive model is updated based on the latest observations
and an optimization is performed to find the optimal control actions over a
finite horizon. Only the optimization result for the current period is applied
to the system, the rest being discarded. At the next time-step, the hori-
zon is shifted one step forward (hence the name receding horizon) and the
process is repeated. If the optimization objective has a strict deadline, the
number of remaining time-steps shrinks as time advances and this technique
is alternatively referred to as shrinking horizon control (Skaf et al., 2010)
(Figure 1).

Updating the system model at each step, referred to as feedback in con-
trol theory, allows better regulation of the system in presence of external
disturbances and model misspecification compared to an open-loop control
system, at the expense of increased computational demand for the repeated
optimization.
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Figure 1: Flowchart of shrinking horizon control. The algorithm operates on time-steps
t ∈ [0, N ].

Stochastic RHC (SRHC) introduces random variables and uncertainty
into the optimization, and is more versatile in cases where a deterministic
model of the underlying system is not available. Ordinarily, such a problem
requires solving a multi-stage stochastic dynamic programming, and quickly
becomes infeasible to solve as the horizon length grows. Recent literature
have proposed Monte Carlo techniques (Glasserman, 2003) for solving this
problem: by discretizing the stochastic variable evolutions to a finite number
of scenarios, the problem is approximated by a sub-optimal random convex
program (Calafiore, 2010). For linear-quadratic systems, this translates to
a quadratic programming (QP) formulation, and is solved efficiently using
numeric solvers. This technique has been shown to be stable (Bernardini and
Bemporad, 2012), with analytic bounds on the number of scenarios required
to obtain any level of robustness (Schildbach et al., 2013).

Additionally, scenarios allow a versatile range of models to be adopted
compared to the limited nature of analytical formulations. Hence, scenario
generation techniques have been widely studied (Römisch, 2011), and are
applied to different aspects of quantitative finance including portfolio opti-
mization (Jabbour et al., 2007) and risk minimization (Gilli et al., 2006).

There has been a growing interest in using SRHC in many financial ap-
plications, as this technique is a natural solution for multi-period stochastic
systems with uncertain models. Portfolio optimization and asset allocation
is one such application. Historically, techniques such as amortizing the ex-
pected costs and including the probability of profit realization over the ex-
pected holding period were used to extend the result of single-period opti-
mization to multiple periods (diBartolomeo, 2012). By comparing dynamic
asset allocation using stochastic dynamic programming against single-stage
techniques, Infanger (2006) proved that dynamic techniques offer superior
results. A receding horizon approach for portfolio selection, under the as-
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sumption of zero transaction cost, has been formulated by Herzog et al.
(2006). Topaloglou et al. (2008) included currency forwards in the port-
folio to combine hedging and portfolio allocation using dynamic stochastic
programming. Primbs (2007) considered both problems of wealth maximiza-
tion and index tracking for a portfolio with different constraints using SRHC.
Calafiore (2008) used an RHC strategy for portfolio allocation. By employing
affine policies, he managed to convert the stochastic programming problem
to a convex quadratic programming problem. In further publications, this
method was enhanced with transaction cost (Calafiore, 2009) and asymmetric
measures of risk (Calafiore and Kharaman, 2014).

Options hedging is another area where RHC approaches have been ex-
tensively used. Gondzio et al. (2003) extended the simple delta-vega hedging
approach for hedging contingent claims using stochastic optimization. Hedg-
ing a basket of European call options using receding horizon techniques has
been studied both with a mean-variance model approach (Primbs, 2009) and
a scenario based approach (Primbs, 2010). In their other work, Meindl and
Primbs (2008) incorporated a utility function as a part of their optimization
function for option hedging. Recent works by Bemporad et al. (2010, 2011,
2014) have shown that hedging options using stochastic model predictive
control can perform extremely well, with performance approaching that of
prescient hedging models for European style options.

Empirical studies have been undertaken to quantify FX rate volatility,
transaction costs and effect of news announcements in FX market. Mc-
Groartya et al. (2009) confirmed many previous studies regarding existence
of intra-day patterns in FX spot market. While FX market is a true global
market, liquidity and dealer participation depends on the geographical dis-
tribution of the currency being traded. As a result, volatility and bid-ask
spreads exhibit M-shaped and U-shaped daily patterns respectively, as the
markets go through the daily cycle of open, trade and close. Evans (2011)
showed that jumps accompanying the announced events are prevalent and
significant. Furthermore, approximately one third of jumps are caused by US
macroeconomic news announcements, and the size of jumps are correlated
with the informational surprise of the announcement. Scholtus et al. (2014)
found that the bid-ask spread widens and volatility increases in the period
around the announcements, which also coincides with a decrease in market
depth.

Short-term FX risk management, specially from a dealer’s inventory man-
agement view, has not been explored widely in the literature. Lyons (1998)
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studied a week of an FX dealer’s trades, revealing informed decisions re-
garding hedging and speculation; nonetheless, no insights on the inventory
management techniques were given. D’Souza (2002) described FX order
flow risk management of market intermediaries, explaining how the Bank
of Canada engages in selective hedging, by either hedging their risk in a
derivatives market (namely FX forwards) or holding their excess invento-
ries if they are compensated with a risk premium. A two-stage stochastic
programming decision model has been suggested by Volosov et al. (2005) to
hedge deterministic foreign cash flow, with spot and forward rates random
behavior predicted by a vector error correction model. Other approaches
have proposed ad-hoc rules for changing hedging intensity, mainly based on
high frequency FX rate predictions (Ullrich, 2009).

We were unable to find any previous work on short-term FX inventory
management or risk hedging using a stochastic multi-period optimization
technique. As will be demonstrated, this problem has its own unique chal-
lenges.

3. Problem formulation

In this section, we define the specific problem of an FX dealer, who accepts
flow from corporate, retail and institutional clients. The dealer wishes to
hedge the risk of his position only by opening or closing new positions in the
spot market. Here we assume:

• The dealer does not perform speculation and is only interested in hedg-
ing.

• The dealer makes decision in discrete time-steps.

• There is a limit on how much the dealer can trade at each time-step.

• There is a limit on how much open position the dealer is allowed or
willing to keep at each time-step.

• The dealer must close all positions at the end of a trading session (eg,
daily or weekly). This is common practice to avoid carrying an open
position’s risk during non-business hours (Lyons, 1998).

• Market impact affects the interbank market’s bid-ask spread (Borkovec
et al., 2013).
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• Client flow is always initiated by the clients, and the dealer is unable
to refuse them, assuming credit status and other conditions (eg, anti-
money laundering laws) are satisfied.

• The dealer works with local clients (either corporate, retail or institu-
tional), under their own geographic time-zone. These type of clients
usually buy more foreign currency than sell (Ranaldo, 2009).

• FX rate jumps resulting from macroeconomic news announcements are
a large contributor to the dealer’s risk (Evans, 2011). The timing of
these events is known, but the direction and magnitude of the jumps
are not.

The dealer’s profit and loss (P&L) arises from three major sources:

1. Transaction costs received from clients.

2. Transaction costs paid to interbank market counterparties for hedging
trades.

3. Market volatility.

Here, we assume that the profit from transaction costs received from clients
are not influenced by hedging. As a result, they are not considered and only
volatility and transaction costs paid to interbank market counterparties are
included in the optimization formulation.

3.1. Dealer dynamics

We formulate the problem in discrete-time notation, with the dealer trad-
ing at t ∈ [0, 1, ..., N ]. The trading session ends at t = N + 1. At any time
t, the dealer holds a position of xk(t) ∈ R for currency k. The dealer’s ini-
tial position is denoted by xk(0). Positions vary in time as a result of the
accumulated client flow fk(t) ∈ R and the dealer’s hedging actions hk(t) ∈ R
(Figure 2):

xk(t+ 1) = xk(t) + hk(t) + fk(t) (1)

The dealer must close all positions at the end of a trading session (eg,
daily or weekly), therefore xk(N + 1) = 0,∀k. As a result, the last hedging
action has to be

hk(N) = −(xk(N) + fk(N)). (2)
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Figure 2: Hedging state-space dynamics. The dealer’s position at time t+ 1, x(t+ 1), is a
result of his position at time t being updated with accumulated client flow in this period
f(t) and hedged with h(t).

At time t, the cumulative transaction costs paid by the dealer for hedging
is

Ck(t) =
t∑
i=0

fcost(hk(i), i, k), (3)

where fcost(h, t, k) = sk(h, t)|h| is a time dependent transaction cost function
based on the bid-ask spread sk(h, t) quoted for trading h at time t, and |h| is
the size (ie, absolute value) of h. The spread is known to be highly volatile,
and is affected by market impact (ie, increases with the size of h), market
conditions (eg, the spread decreases in liquid markets), and the history of
trades between counterparties. The spreads are modeled as having a linear
relationship with the size of trade (Borkovec et al., 2013),

sk(h, t) = δk(t)|h| (4)

where δk(t) is the time-varying market impact coefficient. This results in a
quadratic cost function:

fcost(h, t, k) = δk(t)h
2 (5)

Additionally, we limit the size of hedging actions to hk,max:

|hk(t)| ≤ hk,max (6)

This is realistic as the dealer will have trading limits with its counterparties
in the interbank market and usually wishes to avoid impacting the market’s
liquidity beyond a certain degree.
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FX rate volatility changes the value of positions, causing profit and loss.
We denote the logarithmic market price of currency k with pk(t) and its
returns rk(t) with

rk(t) = pk(t)− pk(t− 1).

The profit and loss (P&L), Lk(t), is therefore given by

Lk(t) =
t∑
i=1

xk(i)rk(i). (7)

The dealer usually wishes to avoid the risk of excessive loss, thus the
maximum position of each currency is restricted to

|xk(t)| ≤ xk,max. (8)

4. Dynamic FX risk management

Dealers wish to reduce their transaction costs and risk exposure, subject
to the discrete space representation and constraints defined in Section 3.1.
Considering the probabilistic nature of client flow and FX rate, we formulate
this as a mean-variance optimization, E[C(N)] + λVar[L(N)], where 0 ≤
λ < ∞ is the risk aversion factor. The following equation, considering the
probabilistic nature of client flow and FX rate, describes the minimization
problem:

argmin
hk(t); ∀t,k

E

[
m∑
k=1

N∑
t=0

fcost(hk(t))

]
+ λVar

[
m∑
k=1

N∑
t=1

xk(t)rk(t)

]
subject to xk(t+ 1) = xk(t) + hk(t) + fk(t)

xk(N + 1) = 0

|hk(t)| ≤ hk,max

|xk(t)| ≤ xk,max

(9)

where m is the number of currencies in the dealer’s portfolio.
Replacing the transaction cost function in (9) with (5), applying con-

straint (2), and expanding xk(t) recursively using (1) results in the following
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cost function:

J =E

[
m∑
k=1

N−1∑
t=0

δk(t)hk(t)
2+

m∑
k=1

δk(N)

(
N−1∑
i=0

hk(i) +
N∑
i=0

fk(i) + xk(0)

)2 ]
+

λVar

[
m∑
k=1

N∑
t=1

(
t−1∑
i=0

hk(i) +
t−1∑
i=0

fk(i) + xk(0)

)
rk(t)

] (10)

To simplify notation, we introduce variable yk(t), as the unhedged posi-
tion of the dealer:{

yk(0) = xk(0)

yk(t) =
∑t−1

i=0 fk(i) + xk(0)
(11)

This simplifies (10) to

J =E

[
m∑
k=1

N−1∑
t=0

δk(t)hk(t)
2+

m∑
k=1

δk(N)

(
N−1∑
i=0

hk(i) + yk(N + 1)

)2 ]
+

λVar

[
m∑
k=1

N∑
t=1

(
t−1∑
i=0

hk(i) + yk(t)

)
rk(t)

]
.

(12)

Optimizing (12) results in a risk-cost Pareto frontier parametrized by λ.
Using this information, the dealers choose the best hedging strategy consid-
ering contextual factors, such as their utility of risk.

4.1. Matrix Notation

We use the following matrix notation to simplify representation of the
dealer dynamics. Vectors xk,fk,hk, δk, rk, yk ∈ RN are the collection of
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variables xk(t), fk(t), hk(t), δk(t), rk(t) and yk(t) in time:

xk = [xk(0) xk(1) · · · xk(N − 1)]T

fk = [fk(0) fk(1) · · · fk(N − 1)]T

hk = [hk(0) hk(1) · · · hk(N − 1)]T

δk = [δk(0) δk(1) · · · δk(N − 1)]T

rk = [rk(1) rk(2) · · · rk(N)]T

yk = [yk(1) yk(2) · · · yk(N)]T

Notice that rk and yk are indexed differently.
Vectors X,H ,F , δ,R, Y ∈ RmN are defined as concatenations of xk,

fk, hk, δk, rk and yk over all currencies. For example, for 3 currencies USD,
EUR and GBP,

X = [xUSD xEUR xGBP ]T. (14)

Similarly, vectors x(t), f(t), h(t), δ(t), r(t), y(k) ∈ Rm are the concate-
nation of their respective variables at time t for all k, eg,

x(t) = [xUSD(t) xEUR(t) xGBP (t)]T. (15)

Notice that all vectors except optimization objectives H , h(t) and hk,
are stochastic processes.

The matrix form of (12) is

J =E
[
HT∆H + (ΥTH + y(N + 1))TD(ΥTH + y(N + 1))

]
+

λVar
[
(ΨH + Y )TR

] (16)

where

ΨmN×mN = Im×m ⊗ SN×N =


S 0 · · · 0
0 S · · · 0
...

...
. . .

...
0 0 · · · S

 ,

ΥmN×m = Im×m ⊗ ~1N×1,

Dm×m = diag(δ(N)),

∆mN×mN = diag(δ),
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S is a lower triangular matrix of 1’s, ~1N×1 is [1 1 . . . 1]N×1, I is the iden-
tity matrix, diag(x) creates a diagonal matrix from vector x and ⊗ is the
Kronecker product.

Additionally, matrix form of (11) is

Y = ΨF + Υx(0). (17)

Stochastic operators in (16) can be expanded,

J =HTE[∆]H +HTΥE[D]ΥTH+

2HTΥE[Dy(N + 1)] + E[y(N + 1)TDy(N + 1)]+

λ
(
Var[Y TR] +HTΨTVar[R]ΨH + 2HTΨTCov[R,Y TR]

)
and then reordered by H to

J =HT
(
E[∆] + ΥE[D]ΥT + λΨTVar[R]Ψ

)
H+

2HT
(
ΥE[Dy(N + 1)] + λΨTCov[R,Y TR]

)
+

E[y(N + 1)TDy(N + 1)] + λVar[Y TR],

(18)

which is a quadratic function of hedging actions H .

4.2. Hedging constraints

Unconstrained RHC problems with quadratic cost function and linear
state-space are referred to as linear-quadratic (LQ) control problems and
their solution can be found using the matrix algebraic Riccati equation (Bor-
relli et al. (2014, Chapter 9)). With deterministic constraints, (18) can be
solved efficiently using numeric quadratic programming techniques.

The problem formulation in (9) includes four inequality constraints. The
first two constraints were implicitly implemented as a part of the cost function
in Section 4. The third constraint, |hk(i)| ≤ hk,max, is deterministic and easily
described by:

−H ≤Hmax

H ≤Hmax

The fourth constraint requires special attention, as xk(i), i ∈ [1, · · · , N ]
are stochastic variables, and therefore are not deterministically constrainable
before being observed. However, in a real-world multi-stage optimization, one
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can use f(0) and x(0), which are known before solving for h(0) (as shown in
Figure 2), to make the first inequality, x(1) < xmax, deterministic. The rest
of inequalities can be replaced with their expected value (Calafiore, 2008),
ie, |E[xk(i)]| ≤ xk,max. While this results in a less conservative control policy,
it still guarantees constraints fulfillment (Bernardini and Bemporad, 2012).

Other approaches are also possible, including imposing constraints to hold
with a given sufficiently high probability, or using the worst case of a scenario
tree. Both of these approaches may not hold for some situations (eg, in case of
scenario trees, when the outcome is not covered by the generated scenarios),
and suffer from higher computational complexity.

In this paper, the expected value constraint is implemented. Rewritten
in matrix form, and given E[X] = E[ΨH +Y ], the following constraints are
imposed:

−ΨH ≤Xmax + E[Y ]

ΨH ≤ Xmax − E[Y ]

4.3. Simplification of the hedging cost function

If client flow is uncorrelated to the market conditions (ie, the FX rate re-
turns, volatility and market impact coefficient), (18) can be further simplified
to

J =HT
(
∆̄ + ΥD̄ΥT + λΨTΣΨ

)
H+

2HT
(
ΥD̄ȳ(N + 1) + λΨTΣȲ

)
,

(20)

where Σ = Var[R] is the returns covariance matrix and for every variable
the expected value E[x] is denoted by x̄. Notice that optimization’s constant
terms are also dropped. Consequently the only requirements are

• expected position of the dealer in absence of hedging Ȳ = E[Y ], or the
expected client flow F̄ = E[F ] as E[Y ] = ΨE[F ] + x(0),

• expected market impact coefficient δ̄ = E[δ], which is then formed into
diagonal matrices ∆̄ and D̄, and

• FX rate returns covariance matrix Σ.

One must note that this assumption is not generally true. It has been
shown that order flow can exhibit a strong relationship with FX rates (Evans
and Lyons, 2002), specially cumulative order flow being highly correlated
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Figure 3: The proposed FX risk management system and its components.

with cumulative price change (McGroartya et al., 2009). Hence, while (20)
makes the analysis more similar to the original Markovitz portfolio theory
formulation, it may produce inferior results compared to the full model of
(18).

4.4. The risk management system architecture

Figure 3 illustrates the relationship of the proposed risk management
system to the dealer and the FX market. Notice that the system is sepa-
rated from the dealer, and its control actions are passed through an action
management subsystem which is arbitrated by the dealer. This subsystem
acts as a circuit breaker, monitoring the behavior of the hedging system and
alerting the dealer if any problems are found. Additionally, the design allows
fault tolerance through N-module redundancy; multiple identical instance of
the risk management systems can be employed and queried, and the correct
results can be chosen on the basis of a quorum, thus making the system
tolerant to hardware failure.
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Algorithm 1: Stochastic receding horizon hedging algorithm.

1 t← 0.
2 while t ≤ N do
3 Update client flow models using new trades data.
4 Update FX rate returns models from market conditions.
5 Update market impact coefficient models from market

conditions.
6 Generate η scenarios for F , R and δ for time t ∈ [t, ..., N ].
7 Compute the optimal hedging action

H = [h(t),h(t+ 1), . . . ,h(N)] by minimizing (18).
8 Hedge by h(t).
9 Update positions x(t).

10 t← t+ 1.

11 end
12 Close all position using h(N) = −(x(N) + f(N)).

4.5. Receding horizon optimization

In real-world systems, exact modeling of the client flow and the FX market
is impossible due to incomplete data and approximations, and consequently
the accuracy of hedging actions is lost over time. To improve performance,
one can include new information in the optimizer using a receding horizon
scheme, as summarized in Algorithm 1: at each time-step, client flow, FX
rate returns and market impact coefficient models are updated based on
observed market conditions. Monte Carlo methods sample scenarios based
on the models, which are then given to the quadratic programming (QP)
solver to obtain the optimal hedging action H by minimizing (18) subject to
the constraints of Section 4.2. The positions are hedged by h(0), which adds
to the transaction costs. At the next time-step, FX volatility may change
the rates and bid-ask spreads, and consequently the value of dealer’s open
positions, thus generating profit or loss. The process is then repeated from
its first step, and continues until the end-of-trading time is reached.

5. Scenario generation and data models

In this section, we describe several statistical models which are used to
generate synthetic scenarios for in-depth testing of the proposed hedging
system.
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As we are also interested in scenario generating models with different
degrees of predictive modeling accuracy, we define an oracle such that it
generates scenarios by perturbing observations with alternative scenarios:

x(p)(t) = αe−βtx(t) + (1− αe−βt)x′(t) (21)

Here, x(p)(t) is the oracle generated (ie, perturbed) scenario used in opti-
mizations, x(t) is the actual future data used for backtesting, x′(t) is an
alternative scenario sampled from the models’ statistical distribution, and
0 ≤ α ≤ 1 and β ≥ 0 are initial accuracy and oracle decay rate parame-
ters. To generate extreme cases, α = 1 and β = 0 are used for prescient
hedging, while α = 0 tests the quality of data models with ordinary scenario
generation. Furthermore, α > 0 and β > 0 create an exponentially decaying
accuracy, simulating a more realistic signal decay model.

Each scenario consists of three correlated items: FX rate returns, client
flow volume and market impact coefficients. Each of these components are
parametrized differently for every currency in a multi-currency scenario.

5.1. FX rate and volatility model

The FX logarithmic price process can be expressed as a continuous-time
jump-diffusion process (Evans, 2011),

dp(τ) = µp(τ)dτ + v(τ)dW (τ) + k(τ)dq(τ) (22)

where p(τ) is the FX rate for the continuous time τ , µp(τ) (the drift coeffi-
cient) is risk free interest, W (τ) is the Wiener process, v(τ) is the diffusion
coefficient (the volatility), k(τ) measures the jumps’ intensity and q(τ) is a
counting process which is determined by the scheduled time of macroeco-
nomic announcements. Here, we assume µp ≈ 0 as the optimization horizon
is too short for the interest rate to be effective.

Figure 4 shows an example of different FX rate scenarios generated for
an event occurring at 12:00.

We model the discrete-time returns r(t) using

r(t) = p(t∆τ)− p((t− 1)∆τ) (23)

where ∆τ is the time-step used in optimization.
The discrete-time form of volatility, v(t), is modeled using an M-shaped

pattern to account for daily pattern of liquidity variation (McGroartya et al.,
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Figure 4: Simulated FX rate scenarios with an announced event at 12:00 PM.

2009):

v(t) = ν

(
1 +

ρ− 1

2

(
1 + cos

(
2π
t+ N−w

2
− tmin

N − w

)))
(24)

Here, ν is the minimum daily volatility, ρ is the ratio of maximum daily
volatility to its minimum, N is the number of time-steps in the day, tmin
is the time of volatility minima (ie, maximum liquidity) and w determines
width of the M-shape peaks. Figure 5 presents an example of daily volatility
scenarios generated using (24) and their average.

This model can be extended to a multivariate form, accounting for cor-
relation between different FX rates. For a given correlation matrix C, the
following equation will generate correlated stochastic variables (Glasserman
(2003, Chapter 2)):

W = Wi.i.d.L (25)

Here, L is obtained from a Cholesky decomposition C = LL∗, Wi.i.d. is a
matrix of independent and identically distributed stochastic variables, and
W is the resulting matrix of correlated stochastic variables.
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Figure 5: Simulated M-shaped volatility during the day.

Correlated Wiener processes generated using (25) are then used in (22).
Addition of events or drift are performed in a manner analogous to the uni-
variate case.

5.2. Transaction cost model

The main component of transaction cost, as defined in (5), is the bid-ask
spread, which in (4) was modeled as an affine function of trade size.

In addition to the size of trade, the bid-ask spread is also affected by
liquidity. The liquidity increases during mid-trading hours, based on the
geographic distribution of currency traders, and is reduced in non-trading
hours (McGroartya et al., 2009).

We model this time-varying liquidity effect with a U-shaped market im-
pact coefficient:

δ(t) = δ

(
1 +

ρ− 1

2

(
1 + cos

(
2π
t+ N

2
− tmin
N

)))
(26)

Here, δ(t) is the time varying market impact coefficient, δ is the coefficient’s
daily minimum, ρ is the ratio of maximum daily market impact coefficient to
its minimum, N is the number of time-steps in the day, and tmin determines
the time of maximum liquidity.
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Figure 6: Simulated U-shaped bid-ask spreads during the day.

Figure 6 shows an example of scenarios for daily bid-ask spread and their
average generated by (26).

5.3. Client flow model

The choice of client flow model is a dealer dependent task. Cerrato et al.
(2011) noted that in response to price moves, corporate and private clients
act more as liquidity providers while profit-motivated traders (eg, hedge fund
investors and asset managers) display a directional behavior as a result of
being more informed. Furthermore, Chen et al. (2012) found significant rela-
tionship between volatility, spreads and the order flow of speculative traders.
This information can be used by dealers to better model their client flow.

In this paper, we model private domestic clients who mainly trade during
their own country’s working hours. These clients exhibit a certain periodicity,
eg, more trades happen mid-day rather than at the end-of-day hours. Also
the dealers expect a bias in buys versus sells in a certain direction relative to
their home currency, which is not influenced by price movement. Therefore
the client flow is modeled as a heteroskedastic process, with a time-dependent
mean µf and variance σ2

f :

f(t) ∼ N (µf (t), σ
2
f (t)) (27)
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Figure 7: The synthetic client flow standard deviation versus time.

Figure 7 shows an example of σf (t) for a dealer trading from 7:00 to 23:00,
with the assumptions presented earlier.

6. Results

Several tests using synthetic and real-world data were performed to vali-
date and measure the performance of the proposed hedging algorithm.

The experiments were implemented in R programming language (R Core
Team, 2014) and used the quadprog package (Weingessel, 2013) for quadratic
programming. Run-time of the hedging algorithm for each trading ses-
sion with 50 scenarios on a 3.4 GHz Intel Core i7-2600 processor was mea-
sured to be less than 250 ms, making it suitable not only for backtest-
ing, but also for deployment in online hedging systems. The source codes
to our program are available from https://sydney.edu.au/engineering/

electrical/cel/farzad/JoR2016.

6.1. Test data

6.1.1. Synthetic data

The synthetic data was generated according to the models described in
Section 5. The dealer is assumed to work from 7:00 to 23:00 and hedge at 30
minute steps.
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Client flow was generated with standard deviation σf as depicted in Fig-
ure 7 and a positive mean µf = 1

4
σf .

For the FX rate volatility and market impact coefficients, each currency
was assigned different δ, ν, ρ, ω and tmin parameters. At the start of each
trading session, the asset correlation matrix C, and number, time and impact
of announced events k(t) were regenerated randomly.

6.1.2. Real-world data

For real-world tests, 16 weeks of actual FX client transaction data sup-
plied by Westpac institutional bank was used1. AUD was chosen as the home
currency and USD, EUR, NZD and JPY were selected as foreign assets. This
data was filtered and aggregated to create 32 half-hourly values per day, from
7:00 to 23:00 Australian Eastern Daylight Time (AEDT). The first six weeks
(30 days) of data was used to obtain model parameters as described in Sec-
tion 5.3 and the rest (ie, 50 days) were used for out-of-sample backtesting.

Accordingly, half-hourly values of historical FX rates were fit to the model
defined in Section 5.1. Individual variances ν and correlation matrix C were
computed from covariances of the previous day, and jump component tim-
ings were extracted from the publicly available DailyFX.com event calendar.
Jump intensity was set to k = 5ν. Only events classified in DailyFX.com as
high impact were considered in this simulation and the rest were discarded.

As the interbank market impact data was not available, U-shaped daily
seasonality was generated synthetically. The market impact coefficient δ was
selected as the square of average spread, 0.5, 1, 2 and 1 per 10000 for USD,
EUR, NZD and JPY respectively. The time of maximum liquidity was chosen
as the 12:00 PM according to each market’s geographic distribution, ie, New
York, Frankfurt, Auckland and Tokyo respectively.

6.2. Benchmark strategies

We used three benchmark hedging strategies to compare against the pro-
posed hedging method. The first strategy limits the dealer’s position to xmax:

hk(t) =


xmax − (xk(t) + fk(t)) xk(t) + fk(t) > xmax

−xmax − (xk(t) + fk(t)) xk(t) + fk(t) < −xmax
0 otherwise

(28)

1This data was anonymized to protect Westpac client confidentiality.
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As this limit changes, the strategy sweeps the cost-risk profiles from minimum
risk (xmax = 0, ie, holding no risk) to minimum cost (xmax →∞, ie, letting
the incoming client buy and sell orders neutralize each other).

Despite its simplicity, this strategy has major shortcomings. It does not
utilize client flow and volatility information, nor it models the market impact.
As a result, not only the hedging is far from optimal, but also the dealer could
be left with a large open position at the end-of-trading session, imposing
additional transaction costs.

The second benchmark strategy distributes the hedging actions required
to close the current positions over the remaining trading time-steps, thus
gradually closing all positions in order to avoid market impact effects and
additional transaction costs. This strategy is further parametrized by λ as a
risk aversion parameter, resulting in actions determined by

hk(t) = −(xk(t) + fk(t))
(N − t)λ+ 1

N − t+ 1
(29)

where λ = 1 gives the minimum risk by instantly closing all positions, and
λ = 0 results in equally sized hedging actions, seeking the minimum cost by
avoiding market impact.

For the third benchmark, a receding horizon control methodology was
applied on a single-period form of (20), ie, H = h(0); consequently, Ȳ =
E[y(0)] = y(0) and Ψ becomes an identity matrix. It is assumed that the
same h(t) = h(0), t > 0 is used in the next N − 1 time-steps to close the
expected final position ȳ(N + 1); as a result, the transaction cost coefficients
are modeled by δ̄ = E[δ], D̄ = diag(δ̄), ∆̄ = (N − 1)diag(δ̄) and Υ is set
to the scalar value of N − 1. The risk covariance matrix Σ is computed as
the volatility of log price returns from t = 0 to t = N , ie, pk(N) − pk(0).
Therefore for each time-step, the optimization cost function (20) transforms
to

J =HT
(
(N2 −N)D̄ + λΣ

)
H+

2HT
(
(N − 1)D̄ȳ(N + 1) + λΣy(0)

)
.

(30)

For λ = 0, the solution of H = −ȳ(N+1)
N

results in the minimum transaction
cost and for the λ→∞, H = −y(0) gives the minimum risk, similar to the
second benchmark strategy.

It must be noted that while minimum risk is universal for all strategies
(ie, hk(t) = −fk(t) results in xk(t) = 0 and therefore Lk(t) = 0 according
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to (7)), the actual minimum cost is only obtainable by minimizing (18) with
λ = 0 and full knowledge of future client flow and spreads. Therefore results
of minimizing (18) using future data for different parameterizations of 0 ≤
λ <∞ are included in comparisons as the prescient hedging Pareto frontier.

6.3. Single-asset tests

To test the correctness of the proposed hedging scheme, first a simple test
with one foreign currency asset for one trading session was performed. Data
was synthetically generated, as described in Section 6.1.1. FX rate returns
were created with only one announcement event occurring at 12:00, as shown
in Figure 4.

Figure 8 compares the accumulation of positions in absence of hedging
against different stochastic paths. Figure 9 and Figure 10 show the hedged
positions and hedging actions respectively using the SRHC hedging with
λ = 0.01. Figure 9 and 10 also show results of open-loop optimization in gray;
each line represents the results if the hedging actions were not recalibrated
again at each time-step according to Algorithm 1.

It can be seen from Figure 10 that the proposed method has gradually
reduced the positions to zero at the end of trading session, therefore reducing
market impact and costs. Furthermore, comparing hedged and unhedged
positions in Figure 11 reveals that by using the knowledge of the announced
event at 12:00, the open positions were gradually minimized before the event
to reduce the possibility of losses in case of a major unfavorable FX rate
movement.

6.4. Multi-asset tests

To measure the hedging performance in a multi-asset portfolio, back-
testing was performed with four foreign currencies using both synthetic and
real-world data.

A total of 50 different trading sessions were backtested for the three
benchmark strategies, scenario based SRHC hedging and prescient hedging.
To generate cost-risk profiles, each run included different parametrizations
of xmax in (28) for the first benchmark strategy and λ for other strategies.
The end-of-trading costs and profits were computed according to (3) and (7)
respectively and normalized by the daily total value of transactions

∑
|f(i)|

to basis points (bps). The normalized values were then converted to cost-risk
profiles.
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Figure 8: Dealer’s unhedged position y(t) through the trading session in the single-asset
test. Each gray line shows a stochastic scenario estimated at various times of trading
session, with later scenarios colored darker. The vertical line marks the location of the
announcement event.

Figure 12 shows the cost-risk profiles for synthetic data test, while real-
world data’s profiles are reported in Figure 13. It is shown that SRHC
hedging outperforms all benchmark hedging strategies by offering a lower
cost for any given risk in the synthetic test. For selected levels of risk, Table 1
presents quantified values of the normalized cost and the percentage of cost
savings scaled between the second benchmark and the prescient hedging. It
is observed that the SRHC technique can improve costs up to 47.6%.

It was noted that in the real-word experiment, the cost saving improve-
ments are noticeable only compared to the first two benchmarks which do
not employ any information about the future. For example, for risk = 10
bps, the SRHC improvement is merely 2.4% better than single-stage hedg-
ing. Furthermore, there is considerable room for improvement compared
to the prescient hedging frontier. This problem can be traced to scenario
generation, where the simple models of Section 5 are unable to capture cer-
tain features such as the fat-tailed distribution of data, correlation between
FX rate and client flow, and variation of transaction cost around events for
real-world data test.

To confirm the superiority of the proposed algorithm over the single-
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Figure 13: Risk-cost profiles for the real-world data experiment.

Table 1: Costs of different hedging strategies for selected levels of risk in the real-world
data experiment. The costs and risk levels are normalized and presented in basis points.
The values in percentage denote cost saving improvements, scaled between the gradual
closing strategy and prescient hedging.

Hedging strategy
Normalized cost for

Risk = 5 bps Risk = 10 bps Risk = 20 bps

bps % bps % bps %

Gradual closing 1.336 0% 0.834 0% 0.445 0%
Single-stage RHC 0.909 47.2% 0.584 42.3% 0.367 26.1%
SRHC (proposed) 0.905 47.6% 0.570 44.7% 0.347 32.4%
Prescient 0.432 100% 0.244 100% 0.143 100%

stage method regardless of the data model quality, the real-world test was
repeated with prescient data in Figure 14. A comparison shows that the
proposed method significantly outperforms other strategies when its input
scenarios are accurate.
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Figure 14: Risk-cost profiles for the real-world data experiment with prescient data.

6.5. Scenario quality and oracle tests

In the previous experiments, the impact of scenario generation accuracy
on hedging was demonstrated. It this section, this impact is quantified using
the oracle model of (21).

Figure 15 and Figure 16 compare hedging using the scenarios generated
by the oracle with α = 0.5, β = 0.9 and α = 0.9, β = 0.5 for all scenario
components, against ordinary scenario generation and prescient hedging for
synthetic and real-world data respectively. As expected, improved scenario
generation (ie, increasing initial accuracy α and reducing decay rate β) results
in less cost for any chosen level of risk.

The effect of improving accuracy for individual components on risk man-
agement is compared in Figure 17 for synthetic and in Figure 18 for real-world
data. Here, a high degree of accuracy (α = 1, β = 0.2) is used to generate
different scenarios for client flow, volatility and market impact coefficients
separately.

In Table 2 and Table 3, this test is repeated with a wider range of α and
β’s for synthetic and real-world data respectively. The results were averaged
over the number of backtesting sessions and the normalized costs for risk
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Figure 15: Effect of oracle accuracy on risk-cost profile improvement in the synthetic data
experiment.
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Figure 16: Effect of oracle accuracy on risk-cost profile improvement in the real-world
data experiment.
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= 10 bps were reported, scaled to denote 0% for the single-stage hedging
strategy (ie, the third benchmark) and 100% for prescient hedging. For
both tests, it is observed from the tables that improving scenario generation
produces better hedging profiles. Yet, hedging enjoys the most improvements
with better client flow modeling, while any further market impact coefficient
model enhancements have minor effects on the final results. For example in
the synthetic test, the ordinary scenario generation reduces costs by 26.7%,
and using a perfect market impact model and a perfect volatility model
improves this to 28.5% and 38.6% respectively. In comparison, a perfect client
flow modeling boosts the cost savings up to 87.8%. A similar phenomenon
is noticeable for real-world data, improving cost reduction by 1.2%, 27.3%
and 73% with perfect transaction cost, volatility and client flow modeling
respectively. A similar trend is also present in Figure 17 and Figure 18.

These differences are the result of using more definite models for market
impact and FX rate, versus a less precise model for describing client flow.
Most of the actual market impact and FX rate variations are captured by
the ordinary scenario generation, with not much left to be improved by the
oracle. On the other hand, the simple model of Section 5.3 does not produce
accurate client flow scenarios, hence major improvements are observed using
the oracle.

Furthermore, Figure 18 shows an interesting effect: improving volatility
scenarios offers a better cost versus risk compared to improving client flow for
the low risk region (ie, the left side) of the plot. Comparably, in the low cost
region (ie, the right side), the cost-risk profile converges with the ordinary
scenario generation curve while the client flow only oracle gives a considerably
better cost versus risk, converging with the prescient hedging frontier. This
is a direct effect of λ’s influence on minimizing the hedging cost function
(18); when λ → 0 (ie, only minimizing transaction cost), the effect of client
flow modeling error is more evident, and when λ → ∞ (ie, only minimizing
risk), the client flow modeling errors become negligible compared to FX rate
modeling error. In conclusion, the dealers can choose to invest only on better
client flow or volatility modeling depending on their risk preference.

7. Discussion and Future Work

In this paper, a quadratic formulation was devised for minimizing FX
hedging transaction costs, resulting in a numerically efficient quadratic pro-
gramming problem. Here, the bid-ask spread approaches zero as the size of
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Figure 17: Effect of using the oracle for individual scenario components on synthetic data
experiment’s risk-cost profiles.
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Figure 18: Effect of using the oracle for individual scenario components on real-world data
experiment’s risk-cost profiles.
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Table 2: Cost savings for different oracle accuracies in the synthetic data experiment. The
values show costs for risk = 10 bps, scaled as percentage between the single-stage strategy
and prescient hedging results.

Oracle β = 1 β = 0.8 β = 0.6 β = 0.4 β = 0.2 β = 0

α = 0 26.7%

Market impact:
α = 0.2 27.4% 26.8% 26.6% 27.2% 27.4% 27.6%
α = 0.4 27.3% 27.0% 28.0% 28.4% 27.1% 28.3%
α = 0.6 27.3% 28.0% 28.1% 26.9% 26.8% 27.7%
α = 0.8 26.4% 26.9% 28.0% 27.0% 27.5% 28.0%
α = 1 28.6% 27.6% 28.0% 29.0% 27.5% 28.5%

Volatility:
α = 0.2 28.1% 28.2% 29.0% 28.1% 29.3% 28.8%
α = 0.4 32.5% 32.6% 33.0% 34.5% 34.4% 35.2%
α = 0.6 37.1% 36.7% 36.5% 39.3% 38.3% 38.3%
α = 0.8 37.2% 38.1% 38.0% 39.5% 38.9% 38.4%
α = 1 38.8% 39.3% 38.2% 38.5% 39.2% 38.6%

Client flow:
α = 0.2 33.6% 34.7% 38.0% 41.2% 44.2% 49.1%
α = 0.4 41.1% 43.8% 48.3% 52.8% 59.2% 67.1%
α = 0.6 47.2% 51.0% 56.3% 62.9% 70.7% 78.8%
α = 0.8 51.9% 57.5% 64.5% 71.3% 78.8% 85.7%
α = 1 57.4% 63.1% 70.3% 76.3% 84.1% 87.8%

All components:
α = 0.2 35.4% 37.2% 38.8% 42.4% 45.3% 50.4%
α = 0.4 46.7% 50.8% 53.7% 58.3% 64.6% 71.8%
α = 0.6 56.1% 59.9% 65.2% 71.5% 78.6% 87.6%
α = 0.8 62.5% 67.7% 72.8% 80.3% 88.2% 96.7%
α = 1 66.9% 73.1% 79.5% 87.0% 94.2% 100.0%

the trade is reduced. In practice, minimum bid-ask spread is limited by a
constant term. A consequence of adding this constant to the bid-ask spread
is the appearance of absolute value terms in the transaction cost and there-
fore the optimization cost function. Although no longer quadratic, the cost
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Table 3: Cost savings for different oracle accuracies in the real-world data experiment.
The values show costs for risk = 10 bps, scaled as percentage between the single-stage
strategy and prescient hedging results.

Oracle β = 1 β = 0.8 β = 0.6 β = 0.4 β = 0.2 β = 0

α = 0 5.2%

Market impact:
α = 0.2 5.4% 5.5% 5.5% 5.6% 5.4% 5.4%
α = 0.4 5.8% 5.8% 5.9% 5.8% 5.6% 5.8%
α = 0.6 6.1% 6.0% 5.9% 6.1% 6.1% 6.0%
α = 0.8 6.3% 6.2% 6.2% 6.3% 6.3% 6.3%
α = 1 6.4% 6.4% 6.4% 6.4% 6.4% 6.4%

Volatility:
α = 0.2 6.0% 5.5% 5.2% 5.2% 5.4% 5.3%
α = 0.4 15.5% 15.6% 15.7% 16.1% 17.5% 20.3%
α = 0.6 24.1% 24.6% 25.1% 26.3% 28.3% 30.8%
α = 0.8 27.6% 28.0% 29.0% 29.9% 31.6% 32.8%
α = 1 28.2% 28.7% 29.6% 30.5% 31.4% 32.5%

Client flow:
α = 0.2 13.6% 15.9% 18.0% 21.5% 25.6% 31.2%
α = 0.4 20.9% 24.7% 29.0% 34.7% 42.0% 50.6%
α = 0.6 27.7% 32.6% 38.6% 45.5% 54.5% 64.8%
α = 0.8 33.7% 39.5% 46.3% 54.9% 64.4% 73.8%
α = 1 39.0% 45.7% 53.2% 62.0% 71.1% 78.2%

All components:
α = 0.2 11.0% 12.8% 14.9% 17.7% 21.5% 26.6%
α = 0.4 31.4% 34.7% 38.9% 44.6% 52.7% 64.0%
α = 0.6 44.1% 48.5% 54.4% 62.2% 72.8% 86.4%
α = 0.8 50.4% 55.9% 62.9% 72.1% 84.0% 96.8%
α = 1 54.3% 60.5% 68.5% 78.6% 90.7% 100%

function remains convex, and can be solved using other numerical optimiza-
tion techniques. This requires higher computational power and reduces the
system’s overall performance; therefore its use has to be justified in terms of
cost-risk improvements versus speed reduction in backtesting.
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In future work, we also intend to improve hedging by using better sce-
nario generation approaches. Machine learning techniques will be employed
to capture the intrinsic but hidden relationships between client flow, FX rate
and transaction costs, thereby increasing the quality of scenarios compared
to model based scenario generation or bootstrapping from historical obser-
vations.

8. Conclusion

In this paper, a novel strategy for hedging FX dealer’s short-term risk was
presented. The approach utilizes stochastic receding horizon control (SRHC),
with stochastic models to describe client flow, FX rate and transaction costs,
and dynamic updates to realign misspecified models with real-world observa-
tions. Using a Monte Carlo approach for approximating the stochastic pro-
gramming problem to quadratic programming resulted in a fast algorithm,
optimizing and backtesting a daily trading session under 250 ms.

The hedging strategy was verified using both synthetic and real-world
data. SRHC hedging was shown to significantly outperform benchmark hedg-
ing strategies, with up to 47.6% improvement in reducing costs for the same
level of risk using real-world data. Additionally, the performance of the
SRHC with different predictive accuracy of models was quantified, and it
was shown that the proposed volatility and transactions cost models captured
most of the underlying stochastic processes properties. The shortcomings of
the client flow model were noted and solutions for improving its precision
were discussed.
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Gilli, M., Këllezi, E., and Hysi, H. (2006). A data-driven optimization heuris-
tic for downside risk minimization. Journal of Risk, 8(3):1–19.

Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering, vol-
ume 53 of Stochastic Modelling and Applied Probability. Springer.

Gondzio, J., Kouwenberg, R., and Vorst, T. (2003). Hedging options under
transaction costs and stochastic volatility. Journal of Economic Dynamics
and Control, 27(6):1045–1068.

Herzog, F., Keel, S., Dondi, G., Schumann, L., and Geering, H. P. (2006).
Model predictive control for portfolio selection. In American Control Con-
ference (ACC), pages 1252–1259.

Infanger, G. (2006). Dynamic asset allocation strategies using a stochastic
dynamic programming approach. Handbook of asset and liability manage-
ment, 1:199–251.

Jabbour, C., Peña, J., Vera, J., and Zuluaga, L. (2007). An estimation-free,
robust CVaR portfolio allocation model. Journal of Risk, 11(1):1–22.

36



Josephy, N., Kimball, L., and Steblovskaya, V. (2013). Alternative hedging
in a discrete-time incomplete market. Journal of Risk, 16(1):85–117.

Lyons, R. K. (1998). Profits and position control: A week of FX dealing.
Journal of International Money and Finance, 17(1):97–115.

McGroartya, F., ap Gwilymb, O., and Thomasc, S. (2009). The role of
private information in return volatility, bidask spreads and price levels in
the foreign exchange market. Journal of International Financial Markets,
Institutions and Money, 19(2):387–401.

Meindl, P. J. and Primbs, J. A. (2008). Dynamic hedging of single and
multi-dimensional options with transaction costs: A generalized utility
maximization approach. Quantitative Finance, 8(3):299–312.

Noorian, F. and Leong, P. H. W. (2014). Dynamic hedging of foreign ex-
change risk using stochastic model predictive control. In IEEE Conference
on Computational Intelligence for Financial Engineering & Economics
(CIFEr), pages 441–448.

Primbs, J. A. (2007). Portfolio optimization applications of stochastic re-
ceding horizon control. In American Control Conference (ACC), pages
1811–1816.

Primbs, J. A. (2009). Dynamic hedging of basket options under proportional
transaction costs using receding horizon control. International Journal of
Control, 82(10):1841–1855.

Primbs, J. A. (2010). LQR and receding horizon approaches to multi-
dimensional option hedging under transaction costs. In American Control
Conference (ACC), pages 6891–6896.

R Core Team (2014). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

Ranaldo, A. (2009). Segmentation and time-of-day patterns in foreign ex-
change markets. Journal of Banking & Finance, 33(12):2199–2206.

Römisch, W. (2011). Scenario generation. In Wiley Encyclopedia of Opera-
tions Research and Management Science. John Wiley & Sons, Inc.

37



Schildbach, G., Fagiano, L., and Morari, M. (2013). Randomized solutions
to convex programs with multiple chance constraints. SIAM Journal on
Optimization, 23(4):2479–2501.

Scholtus, M., van Dijk, D., and Frijns, B. (2014). Speed, algorithmic trading,
and market quality around macroeconomic news announcements. Journal
of Banking & Finance, 38:89–105.

Skaf, J., Boyd, S., and Zeevi, A. (2010). Shrinking-horizon dynamic
programming. International Journal of Robust and Nonlinear Control,
20(17):1993–2002.

Topaloglou, N., Vladimirou, H., and Zenios, S. A. (2008). A dynamic stochas-
tic programming model for international portfolio management. European
Journal of Operational Research, 185(3):1501–1524.

Ullrich, C. (2009). Forecasting and Hedging in the Foreign Exchange Markets,
volume 623 of Lecture Notes in Economics and Mathematical Systems.
Springer.

Volosov, K., Mitra, G., Spagnolo, F., and Lucas, C. (2005). Treasury manage-
ment model with foreign exchange exposure. Computational Optimization
and Applications, 32(1-2):179–207.

Weingessel, A. (2013). quadprog: Functions to Solve Quadratic Programming
Problems. R package version 1.5-5.

38


