An Architecture for solving boolean satisfiability using runtime configurable
hardware

C. K. Chung and P. H. W. Leong
Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

Abstract

An architecture is proposed for a forward checking tree
search which is used for solving satisfiability problems.
In this design, the FPGA on-chip RAM feature is used to
achieve a large improvement in density over a straight for-
ward implementation using configurable logic blocks, en-
abling much larger problems to be solved. In addition, the
boolean function to be satisfied is runtime configurable. A
prototype implementation of the design operated success-
fully at 10MHz for a 50 variable, 80 clause 3-SAT prob-
lem.

1 Introduction

A conjunctive normal form (CNF) formula on m bi-
nary variables ¢, z,, ..., Zr; is the conjunction (AND) of
n clauses 1, ..., Cy, each of which is the disjunction (OR)
of one or more literals, where a literal is the occurrence of
a variable or its complement. Such a formula denotes a n-
variable Boolean function f(z1, ..., zra). The boolean sat-
isfiability problem (SAT) is concerned with finding a vari-
able assignment so that f(1, ..., 2m) = 1 or proving that
no solution exists.

The SAT problem appears in many fields, such as au-
tomatic test pattern generation, timing analysis, logic ver-
ification, etc. Algorithms for solving SAT can be com-
plete or incomplete. Complete algorithms, by definition,
can find all of the solutions to a problem and typically in-
volve pruned tree searches. However, since SAT belongs
to the class of NP-complete problems, in practice the long
execution iimes involved make it difficult to find any solu-
tion.

The simplest method of solving SAT is a brute force
search where all possible sclutions are generated and
tested. This method, of course, is grossly inefficient. A
more efficient way is backtracking tree search [4], which
performs a depth-first search of the space of the potential

0-7695-0353-5/99 $10.00 © 1999 IEEE

solutions. The performance of backtracking, although bet-
ter than generate-and-test, is still poor. A better method
is to employ forward checking, which will backtrack and
change the values of the committed variables, if no possi-
ble solution can be found. This method can avoid searching
subtrees which cannot have a solution and hence signifi-
cantly reduces the search space.

This paper presents our application of field pro-
grammable custom computing machines to the accelera-
tion of the forward checking tree search to SAT problems.
In our approach, the indexes of the variables and the nega-
tion information can be specified at runtime so the very
costly process of generating a bitstream tailored to a spec-
ified problem is avoided.

Fully parallel designs [5, 6], although extremely fast
compared with serial software implementations cannot be
used for large computational problems due to limitations
on hardware resources. In our approach, we tradeoff the
parallelism for increased clock rate and circuit density. Ad-
vanced search methods such as the Davis—Putnam method
[6] can significantly reduce the search time, and although
we use a simple forward checking search, other more so-
phisticated techniques can be used with the evaluation
technique presented. The benefits of our architecture are
that it uses FPGA RAM to achieve a 16x reduction in
hardware and the design is runtime configurable for dif-
ferent SAT problems.

The rest of the paper is organized as follows. Section 2
describes the tree search algorithm. Section 3 describes
the implementation. Results are presented in Section 4 and
finally, conclusions are drawn in Section 3.

2 Algorithm

The algorithm we have implemented uses depth first
search with forward checking. Figure 1 shows a tree rep-
resentation of the search for a problem with 4 variables.

To illustrate the concept of forward checking, consider
an example with 4 variables and 3 clauses, An array ={p)

Figure 1: The tree representation of 4-variable SAT prob-
lem

is used to keep the current state of each variable. A Global
Pointer, GPointer, is used to index into array ¢ and a
Global Counter, GCounter, iterates through the variables
for the purpose of evaluation.

clause 1 x1 + 22+ 3
clause 2 T1+x2+ 23
clause 3 T2+ 23+ Ta

Initially, all variables are free and G Pointer is reset to
0. The system will fetch the previous assignment of vari-
able 1 (initially free) and generate the new assignment 0’
for it. Then, the value of the 4 variables will be fetched in
4 consecutive cycles and tested in the Evaluator (see Sec-
tion 3) to determine if any constraints are violated. In this
example, clause 2 is satisfied and the remaining clauses are
undetermined. The next two steps assign ‘0’ to variables 2
and 3. During the evaluation step, after the values of vari-
ables 21 — z3 have been fetched, clause 1 is determined but
is ‘0’, Therefore, clause 1 is not satisfied and backtrack-
ing should be executed to search the next subtree, further
searching being unnecessary.

The following pseudocode describes the search algo-
rithm.

search{)
{
while (true)
{
if (GPointer = 0 AND backtrack)
search completed;
end if;
out_val = previous assignment{GPointer);
in wal = generate(out_val};
GCounter = 0;
do {
out_val = fetch assignment (GCounter);
backtrack = evaluate(out_val);
GCounter = GCounter + 1;

353

b

while(GCounter < NO_VAR AND !backtrack):;

if {!backtrack)

CPointer = GPointer + 1;
else

GPointer = GPointer - 1;
end if;

if {all clauses are satisfied)
Solution found;
exit the loop:

end if;

3 Implementation

3.1 Overview

Stata Maohina

Evaluator

Figure 2: Block diagram of the search machine,

Figure 2 shows the block diagram of cur architecture.
The diagram consists of five modules, Solution Generator,
Solutions, Evaluator, AND/OR and State Machine. The
function of the Solution Generator module is to generate a
new variable assignment to test from the previous assign-
ment. The Selutions module stores the assignment of each
variable. The Evaluator module is used to evaluate a new
assignment to see if 1t violates constraints, The AND/OR
module is used to determine whether or not a solution has
been found as well as whether to backtrack. It receives out-
puts from the evaluator, output; and back;. The State Ma-
chine controls the execution of the forward checking algo-
rithm, It uses two global counters, namely Global Counter
and Global Pointer. The Global Pointer is used for storing
the indexes of current variable and the Global Counter is
used to count the number of cycles required for an evalua-
tion.

A DIMACS [2] 3-SAT benchmark problem (aim-50-
1_6-yesl-I) with 50 variables and 80 clauses will be used
as an example in this paper. The following sub-sections
will describe each module based on this problem. Expand-
ing our design to any sized problem is straightforward pro-
vided there are sufficient hardware resources.

3.2 Solutions

addres: 0> ——
in_val1:Gy ~——
we

elk

Solutions out_vak1:0»

-

Figure 3: Block diagram of the Solutions module.

Figure 3 shows the block diagram of the Solutions mod-
ule. It is built using the distributed RAM [3] feature of Xil-
inx 4000 series FPGAs. The assignment of each variable
consists of two bits, b;by. The bit by indicates whether the
variable is free or assigned. The bit b; stores the assigned
value, If the variable is free, the value of b, should be ‘0.
For 50 variables each 2-bits in size, 4 Xilinx 32 x 1 RAMs
are used.

3.3 Solution Generator

To determine the current index of the variable, a Global
Pointer is used. Based on this value, the previous assign-
ment, out_val, of that variable is copied from the Solutions
module to the Generator. The Generator will produce a
new assignment of that variable, in_val, and save it. When
the variable is free or ‘Q’, the Generator will produce a *0’
and ‘1’ respectively. If the value of the variable is ‘1°, no
next possible assignment is available. In this case, back-
tracking should be executed and the previous assignment
should be removed.

The following pseudocode describes the mechanism of
the Solution Generator.

generate ()
{

-- free to ‘0’

if out_wval = “00" then
in_val = *01";
jump to next state;
- 70' to ‘1l
elsif out_val = "0l1" then
in_val = *11*;

jump to next state;

354

-- 'l" to free, backtrack
elsif out_wval = "11*" then
in_val = "00*;

if GPointer = 0 then
finish searching;
Jump to idle state;
else

GPointer = GPointer - 1;

remain in current state;
end if;

end if;

}
3.4 Evaluator

b,

count<5:0> back

sel_val
sel_en

inv_val
Inv_en

O T
S

Figure 4: The gate level diagram of a 1-bit evaluator

Our implementation uses a serial evaluator for a clause.
Therefore, the Evaluator consists of 80 1-bit evaluators
shown in Figure 4. The evaluator consists of two inde-
pendent memory modules, Sel and Jnv. For the clause,
z; + F; + T3 the Sel memory is set to ‘1’ for the addresses
corresponding to variables 4, § and & and ‘0’ otherwise,
Since variables z; and ;. are inverted, the addresses of the
Inv memory corresponding to these variables is set to ‘¥’
and the other addresses set to ‘0’. The Sef and Inv memo-
ries each require 2 Xilinx 32 x 1s RAMs. The values of
the Sel and Inv memories are configured at runtime,

To evaluate each clause, a summation circuit is used.
The cutput is ‘1° if the value of any variable in the clause
is ‘1’, The boolean function computed in each cycle is
({x & &) A 5;) where b is the variable assignment de-
scribed in Section 3.2, S is the output of the Se! memory
and I is the output of the fnv memory. After n cycles have
been executed (where n is the number of variables in the
problem), the output of the evaluator is

(Leab)AS)+(Lab)rS)+...+(Jndbi)AS,)

A 2-bit counter is used to check whether the clause is
determined or undetermined. If the clause consists of a

variable that is free, the clause is undetermined. Otherwise
the clause is determined since all variables have been as-
signed a value. A counter is used to count the number of
variables that have been assigned to values (see Figure 4).
If, after iterating through all of the variables, this is equal
to the number of literals in the clause, the clause is deter-
mined, otherwise it is undetermined. If the clause is defer-
mined then back will be set to ‘1’ if the output is ‘0’, a ‘0’
output meaning the partial assignment of variables cannot
satisfy the clause.

Each evaluator requires 8 CLBs. Therefore, the to-
tal number of CLBs required for the Evaluator module is
80x 8 or 640 CLBs.

3.5 AND/OR

There are two outputs from the evaluator, back and
output. To see if backtracking should be executed, all the
outputs, back, are OR’ed together. If the result, namely
tot_back, is ‘1’, at least one clause is not satisfied. If
tot_back, is ‘0’, searching can continue and an assignment
is found for the next variable. 13 CLBs are required to
compute fot_back.

To check if a solution has been found, all the outputs,
output, are AND’ed together. If the result, namely tot_out,
is ‘1°, all the individual outputs are ‘1’ and the values of
the variables correspond to a solution to the problem. 13
CLBs are used to compute fot_out.

3.6 State Machine

There are three main parts of state machine. The first
part is used to configure the system for a particular SAT
problem and involves the host computer configuring the
Sel and Inv RAMs (see Section 3.4} with the appropriate
values. The second part implements the main evaluation
process and the third part writes the solution to an external
memory.

Figure 5 shows the state diagram for problem config-
uration, Initially, the FPGA sends an interrupt request to
the host to indicate that it is ready to receive data (state 0).
Before an interrupt acknowledge is sent by the host, the
host writes the data to a static RAM. Refer to the Figure 6
for the 2-way hand-shaking protocol. Following this, the
FPGA. requests an access to the local memory bus (state
1). After the FPGA has received the grant from the mem-
ory controller, it will fetch the data from the external static
memory and write them to the Xilinx RAMs, Sef and Inv,
inside the evaluator. The data arrives 2 cycles after the ad-
dresses are sent to the dual port memory controller (refer to
the Figure 7 for details). State 2 and 3 are wait states. The
state machine will remain in state 4 until 250 (2x83x50)

355

O

° Stats 0
State 1

State 2

State 3

State 4

6 State &
Stats &

: InterruptFrat
: Memdnt

: RdFretloc
: RaSecloc
: Read

: ADLstTwo
: ADLstOne

Figure 5: The state diagram for problem configuration

consecutive addresses have been sent to the memory con-
troller. The next two states, 5 and 6, receive the remaining
data. After that, all the relevant data have been written to
the Xilinx RAMs.

pepac [TN
S e W
-

PE_interruptReg_n

PE_IntermuptAck_n \ / 1

Figure 6: The timing diagram for the hand-shaking

S aipinipininipininly!

S | Y B
o L R

Figure 7: The timing diagram for consecutive memory read
accesses

Figure 8 shows the state diagram of the evaluation pro-
cess. Initialty, all the variables are free and reset to “00”.
In State 7, a new assignment to the current variable is gen-
erated. At the same time, the new assignment will be up-
dated in the Solutions modute. The search is completed if
the pointer points to the first variable and no possible as-
signment exists in which case it will jump to state 14 which
is a idle state. The system remains in state 8 for 50 cycles

during which time the variables are tested in the Evaluator.
During each these 50 cycles, the vatue of tot_back from the
output of the AND/OR module is checked. If the value is
‘1’, backtracking should be executed and the state machine
will change to state 9. In state 9, the pointer will be up-
dated if backtracking is not required. The system will also
check the value of fot_out from the AND/OR module. If
equal to ‘1°, a solution has been found.

D Counter =50

Solution

State 7 : Update_bit
found State8 : Evaluation
w1 Stale @ : Update_pointer
Stata 14 : Idle

Figure 8: The state diagram of the evaiuation

Figure 9 shows the state diagram of solution writeback
to the external memory. State 10 is the memory bus re-
quest. State 11 will 1ast for 30 cycles to fetch the assign-
ments, x;, of every variable. State 12 and 13 are the first
and second write cycles respectively, to the external mem-
ory. Only two cycles are required since the data bus width
is 32 bits.

':) Counter = 50

Stats 10 : MemGnt2
Stats 11 : Fetch
State 12 : WR1
State 13 : WR2

Figure 9: The state diagram of the solution write-back

3.7 Hardware Resource

To estimate the hardware resources required by our de-
sign, the equations in the following table can be used.

356

Modules Number of CLBs used

Solutions [remate] x 2

Solutions Generator | ~ 10

Evaluator clause x (2 x [raziobie] 4 4)

AND/OR ~ ([eapee] 4 [elatie]) ¢ o

State Machine state x 4

Interface ~ 200

Total (clause + 1) x [2e528E] 34
(e 4 [22 x 2
(clause + state) x 4 + 210

In the case of 50 variable, 80 clause 3-SAT problem,
the estimated number of CLBs using this equation is 956
compared with an actual value of 977 (see Section 4).

Table 1 shows estimates of CL.Bs for several standard
DIMACS benchmark SAT problems {2].

Problem Variables | Clauses | CLBs used
aim-50-1.6-yesl-1 50 80 9356
aim-50-2.0-yesl-1 50 100 1084
aim-100-2.0-yesl-1 100 200 2716
aim-100-6.0-yesl-1 100 600 7628
aim-200-1.6-yesl-1 200 320 6114
aim-200-6.0-yes1-1 200 6500 22242
dubois20 60 160 1580
dubois30 90 240 2724
holes 42 133 1358
iiga2 180 800 9838
ii32c? 225 1280 26226
par8-l.c 64 254 2358
pret60.25 60 160 1580
pret15025 150 400 5974

Table 1: Number of CLBs used for several DIMACS SAT
problems

4 Results

The SAT solving architecture was implemented on an
Annapolis Micro Systems Inc, Wildforce PCI beard {1].
The PCI bus runs at a clock speed of 33MHz and employs
a 32-bit data bus such that the peak bandwidth can be up
to 133MB/s. The board consists of one Control Processing
Element (CPE), a Xilinx’s XC4085XL. FPGA and 4 Array
Processing Elements (PEs), Xilinx’s XC4062XL FPGA.
The total gate counts can be vp to 333K equivalent gates.
Each PE consists of its own 4Mb dual ported SRAMs.

A C program generates the contents of the Sel and Inv
RAMs of the evaluator. Using this system we configured
the hardware to solve the DIMACS aim-50-1_6-yes1-1. In
fact we can solve any 3-SAT problem with size up to < 50
variables and < 80 clauses using only runtime configura-
tion.

The 50 variable and 80 clause 3-SAT problem described
in Section 3 was implemented using a single FPGA on the
Wildforce board using Xilinx 1.4 Foundation Tools with

the Foundation Express VHDL compiler. The number of
CLBs and 10Bs used in a Xilinx XC4062X1. FPGA were
977 and 77 respectively, corresponding to 42% and 39%
utilization. The Xilinx timing analyzer reported a maxi-
mum of 10MHz at room temperature and the implementa-
tion was successfully tested on the Wildforce board at this
frequency.

5 Conclusions

An architecture was presented which allows satisfiabil-
ity problems to be solved using reconfigurable hardware.
The problem is stored in memory and is hence runtime
configurable, avoiding costly synthesis and place and route
steps required by other approaches. Furthermore, paral-
lelism and speed were sacrificed for better utilization of
logic resources enabling very large problems to be solved
with modest hardware requirements. It is hoped that such
an architecture could be used to implement real-time sys-
tems with embedded constraint solving engines.

References

[1]1 In htzp:/fwww.annapmicro.com/wfhitm.html,

{21 Dimacs challenge benchmarks.
ftp://dimacs.rutgers.edu/pub/challenge.

[3] Xilinx Inc. The Programmable Logic Data Book.
1998,

[4] E. Tsang. Foundations of Constraint Satisfaction. Aca-
demic Press, 1993,

[51 M. Yokoo, T. Suyama, and H. Sawada. Solving satisfi-
ability problems using field programmable gate arrays:
First results. In Proceedings of the 2nd Inter. Conf. on
Principles and Practice of Constraint programming,
pages 497-509, 1996.

[6] P.Zhong, M. Martonosi, P. Ashar, and S. Malik. Accel-
erating hoolean satisfiability with configurable hard-
ware. In IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 186-195, 1998.

357

