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Abstract—Random projections have recently emerged as a
powerful technique for large scale dimensionality reduction in
machine learning applications. Crucially, the projection can be
obtained from sparse probability distributions, enabling hard-
ware implementations with little overhead. In this paper, we
describe a Field-Programmable Gate Array (FPGA) implemen-
tation alongside a kernel adaptive filter (KAF) that is capable of
reducing computational resources by introducing a controlled er-
ror term, achieving higher modelling capacity for given hardware
resources. Empirical results involving classification, regression
and novelty detection show that a 40% net increase in available
resources and improvements in prediction accuracy is achievable
for projections which halve the input vector length, enabling us to
scale-up hardware implementations of KAF learning algorithms
by at least a factor of 2. An implementation on a FPGA-based
network card allows novelty detection of an 8× 24-bit input
vector with latency of 404 ns, this being a 26-fold reduction
compared to an Intel Core i5-2400 processor.

I. INTRODUCTION

For many machine learning applications, the original input
variables are transformed into a new space in which the
problem is easier to solve. This may occur because the
discriminative characteristics are more prominent in the new
space or the application itself is constrained by computational
necessity. Over the last decade, examples of the latter case
have become more frequent as data is generated and acquired
at increasing rates. With this trend likely to continue, interest
has grown in matrix algorithms for scalable factorisation and
dimensionality reduction. Most methods are based on the
mathematical properties of principle components or eigenvec-
tors, which are relatively expensive to implement [1]. This is
a deterrent for real-time machine learning systems, and can
limit field programmable gate array (FPGA) implementations
to problems with only a modest number of features. To
address this issue and scale to higher dimensional inputs,
improved techniques are desirable. In this paper we propose
a hardware architecture for random projections, which has
several advantages over analytical methods, such as principal
component analysis (PCA) [2], for dimensionality reduction:
• Randomness can obtain high quality approximations

while avoiding unnecessary computational complexity.
• Hardware implementations can be very efficient since

they only involve static data structures; are highly par-
allelisable; only require multiplication by -1, 0, and +1;
have minimal logic and memory requirements; and can

be integrated more compactly on the same FPGA as the
downstream learning algorithms.

Kernel adaptive filters (KAF) are a class of online learning
algorithms which are highly suitable to FPGA implementa-
tions and can be adapted to perform different tasks, such
as regression, classification and anomaly detection [3] [4].
However, the main limitation of KAFs is the evaluation of
an inner product in the input space which consumes most of
the FPGA’s computational resources and limits applications to
small input sizes. This can be addressed using conventional
techniques to compress the input, but such an approach can
impact performance in latency critical applications, especially
if the data needs to be compressed on a central processing
unit (CPU). Our random projection architecture overcomes
this problem because it allows the pre-processing stage to be
moved onto the FPGA alongside the KAF and occupies mini-
mal resources. This is advantageous for a range of applications
which require high data rates and low power consumption
such as machine prognostics, network monitoring and remote
hyperspectral image recognition.

While the primary focus in this paper is online machine
learning, where practical applications are constrained by ex-
ecution time or resource requirements, random projections
should be equally effective for batch learning problems.

The key contributions of this paper are:

• To the best of our knowledge, this is the first known study
in which random projections are used to scale up hard-
ware implementations of machine learning algorithms.
Without loss of generality, we only consider the online
case as opposed to batch learning.

• The benefits and trade-offs of an FPGA implementation
are demonstrated for examples involving classification,
regression and novelty detection. We find that dimension-
ality reduction via random projections can better leverage
the available hardware resources for increased modelling
capacity and achieve similar performance.

• We describe a system-level implementation of the
Naive Online regularised Risk Minimisation Algorithm
(NORMA) on a low-latency PCIe network card that
reduces latency by a factor of 26 over a single core CPU
implementation.
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This paper is organised as follows: Section II describes
random projections and summarises previous work in the area.
A brief summary is also given for a selected KAF algorithm;
Section III describes the proposed architecture; Section IV
discusses the results and describes a PCIe bus-based system
implementation; lastly, Section V draws conclusions from our
work.

II. BACKGROUND

A. Random Projections

In this section, the required theory of random projections for
dimensionality reduction is summarised. Particular attention is
given to sparse random projections for which highly efficient
hardware implementations are achievable.

Dimensionality reduction is a process for reducing the
number of input variables (or features) from m to k, where
m > k, yielding a problem which requires less time and/or
resources to compute. Care must be taken to ensure that
features extracted in the lower dimension preserve the dis-
criminatory information contained in higher dimensions. The
principal component analysis (PCA) approach which finds
the optimal squared error, low-rank approximation of the
original data is widely used for achieving both these goals
[2]. However, PCA’s O(nm2 +m3) complexity [5] limits its
utility in real-time applications. Techniques which find sparse
solutions are more suitable, and include sparse PCA (SPCA)
and orthogonal matching pursuit (OMP), the latter having
O(nm) time complexity [6].

In a random projection, the original m-dimensional data
are projected to a lower k-dimensional space via a single
multiplication of a randomly generated matrix Rm×k.

Xn×k
new = Xn×mRm×k

Surprisingly, random mappings are capable of maintaining
the pair-wise distances of points in the original high dimen-
sional space. This finding is a key result of the Johnson-
Lindenstrauss lemma [7] and forms the basis of the present
work, and that of others [8] [9] [10], [11]. A proof of the
Johnson-Lindenstrauss lemma is given in reference [12].

Generating the random matrix is itself a straightforward
process. The elements rij of R are often chosen as Gaussian
distributed, but for streaming applications or massively high-
dimensional problems, simpler distributions are preferred such
as those described by Achlioptas [8] and Li et al. [11].
These introduce sparsity and significantly reduce computa-
tional requirements. In fact, the requirement for preserving
pair-wise distances is that the entries of R are independent and
identically distributed (i.i.d) with zero mean [13]. We followed
Li et al. [11] in choosing rij according to the following
distribution:

rij =

√
s

k
×

 1 with prob. 1/(2s)
0 with prob. (1− 1/s)
− 1 with prob. 1/(2s)

(1)

where s controls the sparsity of the projection, and k is
the reduced number of dimensions. This distribution can be
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Fig. 1: Accuracy of VSRP compared with other techniques for
dimensionality reduction

implemented efficiently in hardware because for large values
of s, matrix R is mostly sparse, and multiplications with

√
s
k

can be delayed or avoided. In Li et al. [11], the authors showed
that random projections were robust for s =

√
m but for

increasing s, variances for sparse random projections increased
and larger errors could be expected.

In this work, we choose s = k, which makes it easy to
compute

√
s
k but introduces more sparsity than suggested by

Li et al. [11]. In subsequent sections we refer to this technique
as VSRP, or very sparse random projection.

To assess the accuracy of VSRP, its performance is com-
pared with sparse random projection (SRP) [11], PCA and
truncated singular value decomposition (TSVD) [14] on a
small subset of the MNIST dataset for image classifica-
tion. The sklearn.decomposition module, from the Scikit-learn
Python package [15], was used for the PCA and TSVD im-
plementations. The input matrix, A, consisted of 1257 images
containing 64 features, with rank(A) = 61. This means that
every data point can be expressed as a linear combination
of 61 independent vectors. A linear Support Vector Machine
(SVM), from the sklearn.svm module [15], was trained fol-
lowing dimensionality reduction, and the accuracy plotted as a
function of k in Figure 1. The VSRP technique was found to be
competitive with other methods for dimensionality reduction.

B. NORMA

In online applications, one does not have a priori access to
the data so models must be updated incrementally. Many train-
ing algorithms, including SVM, Gaussian processes and neural
networks, require multiple passes over the entire dataset. In
contrast, KAFs can be incrementally updated and are highly
amenable to online implementations. KAFs employ the kernel
trick to enable non-linear problems to be solved efficiently
using linear techniques, via an implicit mapping of the input
vector into a high-dimensional feature space [16], [4]. An
example of a KAF is the Naive Online regularised Risk
Minimisation Algorithm (NORMA) [17], which is used in this
paper to learn a function, f(x), which maps some input vector
x ∈ IRm to a scalar output y. The learning algorithm is a
stochastic gradient descent technique in which, for each new



x, the instantaneous predictive error is minimised [16]:

ft+1 = (1− ηλ)ft − ηtl′(ft(xt+1), yt)κ(xt+1, ·) . (2)

where η is the learning rate (or step size), (1−ηλ) is the decay
factor, κ(xt+1, ·) is some kernel function and l′(ft(xt+1), yt)
represents the partial derivative of the loss function, or the
instantaneous error function. By defining an appropriate loss
function, NORMA can be used to solve classification, novelty
detection and regression problems using equations 3, 4 and 5
respectively:

l(f(x) + b, y) = max(0, ρ− y(f(x) + b))− νρ (3)
l(f(x), y) = max(0, ρ− f(x))− νρ (4)
l(f(x), y) = max(0, |y − f(x)| − ε) + νε (5)

where η, λ and ν are hyperparameters, b is an offset for the
classification loss function, and ρ and ε are the threshold and
tolerance values for training f(x).

NORMA’s capacity to model arbitrary functions comes from
a suitable representation of f(x). The kernel trick is employed
to evaluate f(x) as follows:

f(x) =< w,φ(x) >=

|D|∑
i=1

αiκ(x, di) (6)

where αi are the weights, κ is the kernel function, D is the
dictionary which is a small subset of the input data, di ∈ D
and |D| is the total number of entries. The update steps are
obtained by differentiating the loss functions and substituting
them into equation 2. The update equations for classification
(7), novelty detection (8) and regression (9) are as follows:

(αi, αt, b, ρ) =

{
(Ωαi, 0, b, ρ+ ην) if y(f(x) + b) ≥ ρ
(Ωαi, ηy, b+ ηy, ρ− η(1− ν)) otherwise

(7)

(αi, αt, ρ) =

{
(Ωαi, 0, ρ+ ην) if f(x) ≥ ρ
(Ωαi, η, ρ− η(1− ν)) otherwise

(8)

(αi, αt, ε) =

{
(Ωαi, 0, ε− ην) if |y − f(x)| ≤ ε
(Ωαi, δη, ε+ η(1− ν)) otherwise

(9)

where Ω = (1 − ηλ) ≤ 1 is the decay factor, and
δ = sign(y − f(x)).

NORMA limits the size of the dictionary to the last |D|
dictionary entries. A new input, xt, is added to the dictionary
and the oldest one dropped, if it does not satisfy the condition
of the appropriate update equations (Eq. 7, 8, or 9). The update
of D is therefore:

[d1, · · · d|D|]→ [xt, d1, · · · d|D|−1] (10)

A sufficiently large |D|, and appropriate choice of hyperpa-
rameters gives the best prediction results. However, hardware
implementations are often be limited to small |D|. We show
that a random projection can be used to leverage greater model
capacity and increase |D| for high dimensional problems.

C. Literature Review

Efficient hardware implementations of dimensionality re-
duction is a well studied problem and several implementations
for real-time applications and large-scale problems have been
reported. Das et al. [18] describe an implementation of the
PCA algorithm for network intrusion and anomaly detection.
Rouhani et al. [6] proposed SSketch, a parallel implementation
of the OMP algorithm for streaming hyperspectral images.
OMP takes a dictionary and a signal as inputs and iteratively
approximates the sparse representation of the signal by adding
the best fitting element in every iteration. The relatively high
complexity of the algorithm means that significant FPGA
resources are required for its implementation. As a result,
an implementation alongside NORMA (or another regres-
sion/classification algorithm) would be difficult to achieve.

In Bouganis et al. [19] a probabilistic framework is de-
scribed for optimising algorithmic design choices for the
Karhunen-Loeve Transform (KLT), which is a dimensional-
ity reduction algorithm similar to PCA in performance and
complexity. In particular, their work addresses the trade-off
between prediction accuracy and resource utilisation. In our
work, we make similar arguments but base our conclusions
on empirical results for the random projection algorithm.

Other work in FPGA research have used random projections
to improve modelling capacity by increasing the dimension-
ality. For example, Wang et al. [20] use a projection into a
high-dimensional hidden layer to generate a large number of
spatial-temporal patterns and train spiking neural networks.
Despite this work, there is little evidence to suggest that
random projections have been identified for hardware-friendly
dimensionality reduction. Our work aims to fill this void.

Aside from FPGA research, the use of randomisation as a
technique is gaining momentum in data science and machine
learning communities [1], and recent work, such as the random
encoding scheme described by Coates and Ng [21] and Rahimi
and Recht [22], show surprisingly good results for training
neural networks and large-scale kernel machines respectively.
Earlier work involves improving performance of matrix fac-
torisations specifically. Halko et al. [23] show how randomness
can be used to find approximate solutions to computationally
demanding problems in linear algebra, such as the Singular
Value Decomposition (SVD) and the Least Squares (LS)
problem, while Clarkson and Woodruff [24] show how these
algorithms can be applied in a streaming model. This work
describes strict bounds in terms of error-performance and
computational cost, and is the primary motivation for our work
in random projections.

Bingham et al. [9] and Dasgupta [10] have documented
results for random projections on various real-world datasets,
while sparse and very sparse implementations in Achlioptas
et al. [8], Kane and Nelson [25] and Li et al. [11] have been
shown to further reduce computational space and time. We
build on this work and show that very sparse projections can
be implemented with low overhead on an FPGA.
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III. ARCHITECTURE

In this section, our random projection architecture is de-
scribed. We explore areas which are suitable for optimisations
and discuss the scalability of our design. We also give a brief
summary of the NORMA architecture, described in Tridgell
et al. [4], to highlight constraints of the entire design.

A. Random Projection Module

A block diagram illustrating the data path for our “very
sparse random projection (VSRP)” module is given in Figure
2. This corresponds to a dimensionality reduction IRm → IRk

via a projection by a sparse random, trinary matrix, e.g.

x0
x1
x2
...

xm−1
xm



T

1×m



0 −1 · · · 0
1 0 · · · 0
0 0 · · · −1
...

...
. . .

...
0 1 · · · −1
−1 0 · · · 0


m×k

=


xnew0

xnew1
...

xnewk


T

1×k

We take a data stream as input, which is compatible with
most sampled data and PCIe bus-based interfaces, and com-
pute the dot product of an m-length input vector and a random
matrix distributed according to Equation 1. Since the matrix

can be generated independently from the input, the indices
of the non-zero entries for each column are computed off-
line, loaded to memory, and streamed for each input variable.
This means that only m bits are required for each Block
RAM (BRAM ), and m × k bits are required for the entire
matrix, where k is the number of reduced dimensions or
columns. Each non-zero entry is either +1 or -1 and indicates
whether the input is accumulated via addition or subtraction.
We generate this randomly using a single bit from the output
of a Linear Feedback Shift Register (LFSR) which determines
whether the CTRL block performs a two’s complement on
the input. We use 16-bit LFSR’s, which are reinitialised after
the last variable of each input has been streamed. This ensures
the random matrix is the same for each new input vector. The
state of the projection for a single dimension is given by RegS,
which is accumulated for each feature by the adder block and
the output of the CTRL block. The enable signal, en, which
is streamed from a BRAM , either writes the result to the new
state or disables any change in state. When the first variable
of a new input is observed, the state and LFSR reset, and
a valid output is retrieved in 1 clock cycle. This means that
dimensionality reduction is achieved in m + 1 clock cycles.
As shown in Figure 2, this simple configuration is replicated
for each reduced dimension. Therefore, VSRP area scales as
O(k).

B. NORMA Module

Figure 3 shows a block diagram of our integrated VSRP and
NORMA design. NORMA is treated as a black box module
with the following characteristics:

• NORMA accepts a vector, x, and a scalar, y, as input
and returns a scalar, out, in a clock cycles, where a is
determined by the number of pipeline stages.

• NORMA is parameterised by 4 hyperparameters, γ, Ω, η
and ν, which are loaded once at run-time.

• NORMA requires memory for the dictionary, D, and
learning weights, α. The number of dictionary entries and
weights are equivalent, and this is chosen at compile-time.



TABLE I: Classification results for VSRP+NORMA for pro-
jections of varying size in Fixed vs Floating point

Dataset Artificial Classification (iw = 8)
k = 30 25 20 15 10 5

Floating NORMA 0.973 0.894 0.903 0.839 0.828 0.625
Fixed 18 bits 0.862 0.865 0.860 0.727 0.712 0.593
Fixed 24 bits 0.992 0.958 0.946 0.903 0.870 0.617
Fixed 30 bits 0.991 0.951 0.948 0.909 0.880 0.639
Fixed 36 bits 0.993 0.951 0.945 0.901 0.880 0.639

The resources required for the evaluation of the kernel function
scales as O(k|D|), available DSPs being the main constraint
for large |D| or k [4].

IV. RESULTS AND DISCUSSION

This section describes the resource utilisation, performance
and accuracy of our random projection implementation by
testing a pre-existing design of the NORMA algorithm on
three machine learning problems. In Subsection IV-A, we
discuss the utility of random projections using a classification
learning example. The benefits and typical design trade-offs
are explained using a regression problem in Subsection IV-B,
and in Subsection IV-C we describe our system-level imple-
mentation by considering the application of novelty detection
in high-speed networks.

Our implementations were written in CHISEL [26], a hard-
ware description language embedded in Scala. The NORMA
implementation was derived from a design by Tridgell et
al. [4], available from their Github repository. The de-
signs were synthesised and implemented using Xilinx Vi-
vado 2014.4. The target platform for IV-A and IV-B was
a Xilinx Virtex-7 XC7VX690TFFG1930-2 FPGA. For the
system-level implementation in IV-B, our target platform
was an Exablaze ExaNIC X4 network card which uses a
Xilinx Kintex-7 XC7K160TFBG676-2 [27] containing 600
DSPs, 25350 Slices and 325 Block RAMs. We benchmark
performance against a single core C implementation running
on an Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz and
compiled with the ’-O3’ flag. Our code is freely available at
https://github.com/sfox14/chisel-rp.

A. Performance and Resource Utilisation: Classification

We benchmark performance and utilisation on an artificial
dataset which was generated using the Scikit-learn Python
package [15]. The dataset contained 2000 samples, binary
classes, and a high-dimensional input space with 30 features. A
floating point implementation of VSRP+NORMA was written
in Python and 1000 iterations of a particle swarm optimisation
was run to obtain the hyperparameters. This was used as a
reference for our fixed point CHISEL implementation, the
results of which are presented in Table I. We used the
area under the receiver operating characteristic (ROC) curve
(AUC) [28] to measure classification accuracy. AUC scores
are often preferred over percentage accuracy because they
compensate for skewed datasets and biased models. An AUC
which is close to 1 is optimal while scores near 0.5 indicate

TABLE II: Performance of VSRP+NORMA for 8.16 Fixed,
m=30 and |D|=45 on a Virtex 7

k = 30 25 20 15 10 5
NORMA

DSPs (/3600) 3600 3239 2669 2069 1509 949
Freq (MHz) 90.1 90.9 94.3 95.2 97.1 98.0

Latency (Clocks) 12 12 12 11 11 11
Slices (/108300) 56484 35844 29844 21613 16346 9939

VSRP
DSPs (/3600) * 0 0 0 0 0

Freq (MHz) * 344.8 347.2 350.9 363.6 392.1
Latency (Clocks) * 31 31 31 31 31
Slices (/108300) * 1025 795 571 392 182

VSRP + NORMA
DSPs (/3600) * 3239 2669 2069 1509 949

Freq-N (MHz) * 83.3 84.7 87.7 88.7 89.3
Freq-RP (MHz) * 333.3 339.0 350.9 354.6 357.1
Slices (/108300) * 35887 30076 21841 16485 10080

a random decision boundary. As discussed earlier, |D|, is the
key parameter controlling accuracy and resource utilisation.
In Table I, we do not consider any particular system-level
constraints, but rather, as a proof of principle, use a very large
dictionary size, |D| = 200, to discover the empirical bounds
on classification performance for this example. As expected,
prediction accuracy is reduced when projecting to increasingly
lower dimensional spaces. It is interesting to note that halving
the feature space (i.e. from 30 to 15) yields less than a 10%
error for 24-bit fixed point (denoted as iw.if where iw = 8 is
the integer width and if = 16 is the fractional width). Even
though the results seem to show fixed point outperforming
floating point for more than 24 bits of precision, this is a
noise effect, likely due to the small number of samples used
for training and testing (train=1600 and test=400). Despite
this observation, the errors introduced by the VSRP module
remains relatively consistent, varying between 8-13% for a
projection from k = 30 to k = 15. While a 10% error
may be too large for some applications, random projection
enables a massive savings in computational resources which
can be re-allocated for improved accuracy (Section IV-B), and
it also provides a potential solution for processing otherwise
intractable high-dimensional datasets in real-time.

In Table II, we show resource usage and clock frequency
statistics for an 8.16-bit fixed point design with |D| = 45.
The table shows decreasing usage of both NORMA and VSRP
modules for projections to increasingly lower dimensions. Col-
umn 1 only contains results for NORMA because a projection
into the same dimensional space gives no practical benefit.
Here, NORMA’s modelling capacity is constrained because all
DSPs are used. We use this as a reference point while the rest
of the table shows the extent to which reductions in the feature
space can provide additional computational resources. This is
possible because the number of multiplications in NORMA
scales linearly with both |D| and k.

To illustrate this point, consider the projection from 30 to 15
features (Table II): A reduction of nearly 43% in DSPs (3600
to 2069) and 62% in slices (56484 to 21841) is achievable for
only 571 additional logic slices (or 1%). How these results are
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used depends on the practitioner and problem. In Subsection
IV-B we give an example where we can achieve both improved
accuracy and lower utilisation. The small overhead in logic
also means the random projection module can operate at a
significantly higher frequency than NORMA. This broadens
the scope of possible applications to domains which are
latency sensitive, such as network monitoring. However, since
VSRP takes 30+1 clock cycles to generate a valid output and
NORMA’s operating frequency is about a quarter of VSRP,
an additional 8 NORMA cycles are required. This outcome is
mainly because our architecture only streams one feature per
cycle, i.e. 24-bits, which doesn’t optimise the input bandwidth
of most systems. Double data-paths are an easy solution and
involve adjusting each block in Figure 2 to handle two features
in parallel.

B. Trade-Off and Benefits: Regression

Our second experiment involves the Mackey-Glass bench-
mark, which involves predicting the time series generated
by the chaotic differential equation dx(t)/dt = ax(t) +
bx(tτ)/(1 + x(tτ)10) with (a = 0.1, b = 0.2 and τ = 30).
Our dataset contains 5000 examples from the KAFBOX [29]
implementation, and we set up our model to predict the next
time step given the previous 16 inputs. We use Mean Square
Error (MSE) to measure performance and our results are given
in Figure 4. Twin y-axes are preferred so that we can analyse
the key trade-off between MSE and resources, given by
DSP utilisation. We give plots for NORMA (continuous) and
NORMA+VSRP (dashed), where our VSRP module reduces
the input from 16 to 8 features. The MSE line indicates there is
only a small additional predictive error using VSRP, whereas
approximately 30-45% of DSPs can be saved at any point.
This can be crucial for hardware platforms constrained by
resources and creates an opportunity to take advantage of
trade-offs between resources for increased dictionary items and
reduced error. In fact, for 2000 DSPs, NORMA has capacity
for only 40 dictionary elements on our hardware, whereas
VSRP+NORMA can operate with twice as many elements
(approximately 80) and achieve 5× better accuracy.

C. System-Level Implementation: Novelty Detection

The VSRP+NORMA core was implemented on an ExaNIC
X4 low-latency network card. The platform has four 10 GbE
interfaces on a PCIe based host and can connect to four
SFP (Small Form-Factor Pluggable) ports. We used a Chisel
interface that is different from most hardware interfaces to
integrate with the ExaNIC X4. The use of Scala allows very
complex and parameterised structures to be expressed easily
by taking advantage of the power of modern programming
such as data structures and inheritance. Our interface exploits
Scala inheritance by allowing any user module to inherit its
IO structure from the CHISEL ExaNIC interface which is
simply a wrapper for the ExaNIC FPGA Development Kit.
This provides a clean way to import and use the interface
instead of modifying an example project. It is our view that
hardware with inheritance has the potential to improve code
reusability and simplify user projects. As a proof of concept,
our CHISEL interface is available at https://github.com/da-
steve101/chisel-utils.git.

Our target application is novelty detection. We base our
results on an artificial dataset which was generated using the
Scikit-learn Python package [15]. The dataset contains 635
examples and only 8 features. We could only experiment with
8 features, m = 8, and 14 dictionary elements, |D| = 14,
due to resource constraints. As a consequence of having few
dictionary entries, NORMA only achieves an AUC score of
0.58, which indicates that the predictions are only slightly
better than chance. Using the VSRP module to reduce the
dimensionality to k = 4, we can increase the number of
dictionary entries by 1.8×, to |D| = 25, for the same
resources, which improves AUC to 0.65. If random projections
is combined with a larger FPGA then significantly better
predictive performance is expected.

The latency of our novelty detector is tested using the
configuration given in Figure 5, where network traffic is
received by a host on port 1. To simulate this setup, we use
a single CPU as both the host and user, and send a single m
length input vector, containing 24-bit words, from the user
at Tx0 to the host at Rx1. The ExaNIC development kit
automatically pads the data so that a minimum of 64 bytes
is sent, which is a standard for Ethernet frames. The data
path either loops back via the CPU host, or novelty detection
is performed on the FPGA. In both cases, our system is
designed to send the output back to the user immediately after
completion. This is achieved on the FPGA by sending an initial
8 byte word which asserts the start of frame sequence. When
the output is valid, we can immediately assert the end of frame
and transfer a second word containing the 1-bit result from
our novelty detector. The ExaNIC transmission logic appends
an extra 4 bytes for error correcting capabilities. Therefore,
20 byte frames are sent from Tx1 in total. We use hardware
timestamps in the ExaNIC to capture the time taken from when
the first byte of data arrives at Rx1 to when the first byte is
received at Rx0. We refer to this as the latency for one input
vector.



TABLE III: Comparison of FPGA and CPU based novelty detectors on an ExaNIC X4 for one input vector

Impl. m k |D| Slices
(/25350)

DSPs
(/600)

Total
La-

tency
(us)

Reduc-
tion
(×)

Core
(us)

NORMA
CPU (C) 8 - 14 - - 10.20 - 0.502

FPGA 8 - 14 14058 526 0.376 27.13 0.176
VSRP+NORMA

CPU (C) 8 4 25 - - 10.51 - 0.805
FPGA 8 4 25 14115 558 0.404 26.01 0.204

  

PCIe

SFP

Tx0 Rx0 Tx1 Rx1

FPGA

HOSTUSER

ExaNIC
X4

Fig. 5: Block diagram of the system implementation on a
ExaNIC X4 network card
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Fig. 6: Latency of the VSRP+NORMA system-level imple-
mentation in cycles

A summary of our latency results is given in Table III, and
a breakdown of the latency of the VSRP+NORMA core is
illustrated in Figure 6. The number of cycles is based on the
ExaNIC’s main clock frequency of 250 MHz. As described
in Section III, the VSRP module completes in m+ 1 cycles,
where m = 8 is the input vector length. For k = 4 and |D| =
25, the NORMA module has 11 cycles of latency on a slower
104.2 MHz clock. This translates to approximately 27 cycles
on the 250 MHz clock. The remaining latency is attributed to
several pipeline registers for meeting place and route timing
requirements as well as two asynchronous FIFO blocks for
crossing clock domains. In the latter case, we used the Xilinx
FIFO36E1 primitive. This added 3 and 2 cycles on the slower
clock, for stepping down and up respectively. The Rx and Tx
interfaces contribute an additional 60 ns and 140 ns, or 15 and
35 cycles, respectively. The CPU implementation has a total
latency of 10.51 µs, this being 26× higher than the FPGA
implementation.

The bottleneck to system throughput in this implementation
is the random projection module since it is not fully pipelined.
This consumes a single 24-bit word each clock cycle at
250 MHz, and is equivalent to a throughput of 6.0 Gb/s which
is approximately 60% of the data rate on the I/O ports of the
ExaNIC. In contrast, the NORMA module can process 192-bit
input vectors each cycle on a 104.2 MHz clock (for m = 8

k=m k=m/2 k=0

Random Projection
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40
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80

100

R
el

at
iv

e 
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Fig. 7: Summary of results based on relative percentages for
varying sized random projections

and 24-bit words), corresponding to a throughput of 20 Gb/s.
Even though NORMA can easily keep up with 10GbE line
rates, our integrated design must wait for the VSRP module
to finish computing the random projection.

The throughput of VSRP+NORMA could be further im-
proved in two ways. Firstly, only a single feature is transferred
per clock cycle (i.e. 24 bits). This does not optimise the
bandwidth of the ExaNIC X4 which can support 64 bit
transfers with a 250 MHz clock. For best efficiency, our
VSRP architecture could utilise triple data paths to saturate
the bus. This would produce an output in fewer cycles, having
the potential to increase throughput by 2.67×. Also, FPGA
implementations of NORMA and VSRP are far better suited to
high dimensional problems due to increased parallelism. While
our system-level implementation provides a useful proof of
concept, more significant performance gains can be obtained
on larger FPGAs that can tackle bigger problems.

D. Summary

Figure 7 gives a summary of the VSRP+NORMA results
(not including the system interface). We aggregated the out-
comes for each experiment and extracted an average trend for
the two key performance indicators. The accuracy curve of
VSRP+NORMA refers to a percentage of NORMA’s accuracy
alone (k = m), and resource savings are given as a percentage
increase in DSP blocks. We can see that a random projection
which halves the input dimension, k = m

2 , can generate
an additional ±40% of computational resources for a small,
±10%, error term. The savings in resources can be re-applied
for increased model capacity and improved performance, as
in Section IV-B. In the general case, random projections offer



an effective dimensionality reduction technique with efficient
hardware implementations. Our experiments are based on
datasets which have highly correlated variables and are hence
well suited to this technique. Of course, the size, sparsity and
error tolerance of the projection must be chosen in a problem-
specific manner.

V. CONCLUSION

This paper demonstrated the utility of employing random
projections for dimensionality reduction. Such an approach
can be used to improve as well as trade off model capacity,
processing time and hardware requirements for kernel adaptive
filters. A very sparse random projection module was described
which only involved multiplications by +1, 0 and −1. This
module has a very efficient FPGA implementation involv-
ing only adders, shift registers and bit operations. Results
involving classification, regression and novelty detection show
that it is possible to simultaneously improve performance and
reduce resource utilisation with little reduction in accuracy.
Our baseline system level novelty detector achieved latency of
376 ns without random projection. A design having similar
resource utilisation and operating frequency but employing
random projections allowed the dictionary size to be increased
from 14 to 25, and the area under the receiver operating
characteristic curve (AUC) to be improved from 0.58 to 0.65,
with a degradation in latency to 404 ns.
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