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H I G H L I G H T S

• A clustering analysis on net meter energy data collected from 2779 solar households.

• K-means clustering and random forest are used for data extrapolation.

• Through clustering net meter energy data, a battery sizing model is developed.• The proposed battery sizing model shows robustness to limited input data.• More seasonal clusters result in more accurate battery sizing results.
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A B S T R A C T

The high upfront costs of batteries have limited the investment in retrofit residential energy storage systems for
solar customers. Battery size is one of the most important factors that impact the financial return since it de-
termines the major operational capabilities of the solar-coupled storage system. To select the optimal battery size
for a photovoltaic solar customer, it is important to perform an analysis taking account of the customer’s on-site
generation and consumption characteristics. However, in most cases there are insufficient pre-existing data of
the required quality making it difficult to perform such analysis. In this paper, we propose a model that can
achieve satisfactory battery sizing results with a limited amount of net meter electricity data. The model uses K-
means clustering on customer net meter electricity data to discover important information to extrapolate limited
input net/gross meter energy data and uses this in a techno-economic simulation model to determine the optimal
battery size. The approach is validated using a set of 262 solar households, two tariff structures (flat and Time-of-
Use) and a naive forecasting method as a comparison to the proposed model. The results indicate that the
proposed model outperforms the alternative baseline model and can work with as little as one month of net
meter energy data for both of the evaluated tariff structures. On average, the model results in 0.10 normalised
root mean squared error in yearly battery savings and net present values, 0.07 normalised root mean squared
error in annual electricity costs and a r-squared value of 0.717 in finding the optimal size of batteries. Moreover,
this study reveals a linear correlation between the used clustering validity index (Davies-Bouldin Index), and
errors in estimated annual battery savings which indicates that this index can be used as a metric for the de-
veloped battery sizing approach. With the ongoing rollouts of net meters, the proposed model can address the
data shortage issue for both gross and net meter households and assist end users, installers and utilities with their
battery sizing analysis.

1. Introduction

In recent years, driven by the technology cost reductions and gov-
ernment incentives, the industry has witnessed rapid rollouts of rooftop
Photovoltaics (PV) systems in the residential sector. Australia leads the
world in residential PV penetration, as of the end of 2015 with 15.22%

of households owning a rooftop solar system [1] and this number has
increased to 21.1% at the end of 2017 [2]. Several European countries
also have considerable amounts of residential solar penetration, such as
Belgium (7.45%), Germany (3.72%) and the UK (2.52%) [1].

Although the generous feed-in tariffs have accelerated the adoption
of residential PV, most have been cancelled or reduced in various
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countries and regions due to the reduction in technology costs [3].
Different to gross meters where all the solar generation is exported to
the grid, solar generation of customers with net metering schemes is
first used on site and the excess energy is then exported. Since the solar
feed-in tariffs are now lower than the general import tariffs in many
regions, net metering scheme is considered as a viable option to reduce
the electricity costs for PV consumers. As a result, the net metering
scheme has been adopted in many different countries such as Australia
[4], most states in the USA [5] and Germany [6], etc. Net metering also
brings opportunities to the energy storage market as batteries can now
provide more benefits such as peak shaving, increasing PV self-con-
sumption and price arbitrage.

Despite all the potential benefits that an energy storage system
could offer to a net meter customer, the penetration of storage systems
is still low mainly due to the high upfront costs of installing a battery
system [7]. Besides, installing an energy storage system would also
require a purchase of a multimode inverter to replace or add on top of
the most commonly used current grid-connected inverters which fur-
ther increases the upfront investments [8]. Hence, before going ahead
with purchasing a battery, the financial returns or other metrics in re-
gards to the battery capabilities need to be carefully evaluated.

Although many techno-economic simulation models have been
proposed, the practicability of these approaches remains questionable
due to two main reasons:

1. Many studies use synthetic household PV or load data which may
result in misleading simulation results [9]. Individual households
could have various consumption profiles and solar systems with
different orientations, tilts or shading conditions. Moreover, it is
important to use both generation and consumption data of actual
solar customers as their consumption behaviours may change after
the PV installations [10]

2. In order to build a robust model, a minimum amount and high
quality of input PV/weather and load data is often required whereas
in practice, such data might not be available.

One potential solution for the above issues is to perform data ex-
trapolation using a customer’s consumption and generation patterns
extracted from the limited amount of historical data. Generally the
knowledge of users’ electricity consumption patterns is applied to de-
velop tariff structure [11], demand response strategies [12], load
forecasting and planning models [13,14]. Clustering is often considered
as an effective tool to obtain valuable information about customer
consumption behaviours and it has drawn the attention from many
researchers. However, to date, the applications of this technique have
mainly focused only on the electricity consumption data, ignoring the
solar generation data despite the significant growth of residential solar
customers. In reality, in order to gain a good understanding of the
consumption and generation profiles for solar customers, it is important
to conduct the clustering analysis on both the generation and con-
sumption data.

Motivated by these facts, in this work, we introduce a battery sizing
model for residential PV customers using net meter energy data clus-
tering. The contributions of this paper are to:

1. Perform a clustering analysis on residential PV customers using net
meter energy data. To the authors’ knowledge, this is the first work
performing a clustering analysis on net meter energy data. With the
ongoing worldwide adoption of net meters, we hope our work could
illustrate a new direction to load clustering research as gross load
data will no longer be collected from net meter customers.

2. Present the first application of net meter clustering which is a bat-
tery sizing model that can be used for customers with net/gross
meter data and is robust to limited amount of historical data and site
information. To the authors’ knowledge, this is the first study ad-
dressing the insufficient net meter data problem in battery size op-
timisation and the first work with validation of a real-time dataset
and an alternative model.

3. Adopt a whole year of real-time solar and consumption data col-
lected from a large group of 2779 solar households. To the authors’
knowledge, this is the first study in the battery optimisation

Nomenclature

ch charging efficiency
d discharging efficiency
j n, the jth parameter for estimating Yi n,

i n, error term
bt

ch energy transferred to battery during interval t (kWh)
bt

d energy transferred from battery during interval t (kWh)
bcostt yearly cost after installing a battery (AUD)
cbatt costs of battery, inverter in (AUD) per kWh
cinstall fixed installation costs (AUD)
Ctotal total battery size (kWh)
cost0 total capital costs including costs of battery, inverter and

installation
costt

batt electricity cost during interval t (AUD) for a PV system
with installed battery

costt
pv electricity cost during interval t (AUD) for a PV system

with no battery
en mean 30min net meter energy (Wh) for an interval n
fd a decision tree trained by Xd and Yd
gt

export grid export during interval t (kWh)
gt

import grid import during interval t (kWh)
loadenergy gross load energy value
m number of intervals in one year
N number of decision trees in the random forest model
nlifetime battery lifetime
netenergy net energy value
pseason

n
i cluster percentage for season i with n clusters

pfit flat feed-in tariff rate
pflat flat import tariff rate
Pmax rated maximum charging and discharging power (kW)
poffpeak off-peak import tariff rate
ppeak peak import tariff rate
pshoulder shoulder import tariff rate
pt

export export tariff during interval t AUD/kWh
pt

import import tariff during interval t AUD/kWh
pcostt yearly cost before installing a battery (AUD)
pvenergy gross PV energy value
pvsize PV system size (kW)
ratediscount discount rate
scode state code
savingt yearly saving (AUD)
savingdegr degradation factor
SOCmin minimum value for state of charge
SOCstart state-of-charge when we start our simulation
soct state of Charge at start of interval t (kWh)
Xd a random subset of the training data
Xi j, the jth feature we use for a sample i
Xtest vector representation of the test data
Xtrain vector representation of the training data
Yd a random subset of the training labels
Yi n, the proportion of days clustered into seasonal cluster n for

a sample i
Ytest vector representation of the test labels
Ytrain vector representation of the training labels
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literature that uses a large quantity of real-time data collected from
residential solar customers. Previous studies either used much
smaller or synthetic data sets for their load/solar data.

The remaining parts of the paper is structured as follows. Section 2
discusses the literature review on relevant studies. Section 3 illustrates
our proposed battery sizing methodology using net meter data clus-
tering. Section 4 presents the experimental results. Section 5 concludes
this study and discusses some potential future works.

2. Literature review

Many studies perform the techno-economic analysis of PV-in-
tegrated battery systems where a lot of them focus on the battery size
determinations. These studies have adopted various economic, tech-
nical and environmental indicators to be optimised in their modelling
approaches [15]. The economic criteria includes levelised cost of
electricity (LCOE) [16–18], net present value (NPV) [19–21], return on
investment (ROI) [22] and cost-competitiveness with the grid import
rate [23]. The adopted technical indicators consist of voltage deviations
[18,24], energy losses [24] and frequency control [25]. Environmental
criteria is generally referred to CO2 emissions where levelised CO2
equivalent life cycle emissions and damage cost of CO2 emissions are
respectively considered in [18,26].

Different optimisation algorithms have been adopted to find the
optimal system configuration. In [27], mixed-integer linear program
(MILP) is performed to calculate the lower and upper bounds of the
optimal battery sizes for a grid-connected solar system where the
electricity costs stay the same when battery size exceeds the upper limit
and increase significantly when the storage size is below the lower
limit. MILP is also applied in a similar manner in [16,20] which opti-
mises the system configuration and operation schedule of a PV in-
tegrated battery system. Exhaustive search is adopted in [28] to look for
the battery system configuration with the lowest LCOE. A similar ap-
proach using exhaustive search is performed in [17], however the study
aims for battery sizing in off-grid renewable energy systems and it also
optimises battery control strategies. Stochastic mixed integer nonlinear
programming (MINLP) is applied in [29] to optimise sizes and power
schedules of a PV integrated battery system, with a Monte Carlo ap-
proach to model the uncertainties in PV production. A genetic algo-
rithm (GA) [24] is applied to optimise the sizes and locations of battery-
coupled distributed PV generators in distribution networks. GA is also
applied in [26] to transform the optimisation cost function into a linear
programming (LP) function, then the LP function is solved to find the

optimal placements, sizes and power schedules in a distribution net-
work. Reference [21] applied a dynamic programming approach to
optimise sizes and energy dispatches in lithium-ion battery integrated
commercial PV systems.

In summary, recent contributions in size optimisation research of
PV-integrated battery system can be grouped under one of the following
categories: 1. New type of optimisation criteria [23]; 2. More thorough
considerations of optimisation objectives [17,18,26]; 3. Optimisation of
battery control strategy or scheduling added on top of configuration
determination [16,21,22,29]. 4. New battery applications in renewable
energy systems [21,24]. Despite all these interesting progresses in
battery optimisation models, most of the studies still use synthetic PV or
consumption data. One exception, reference [19], where net meter
energy data from 79 solar households is adopted, however the dataset
has a considerable amount of missing data (68 days out of one year).
Although synthetic solar and load profiles might still be useful when
considering commercial systems, they may not be applicable for re-
sidential customers who have more diverse generation and consump-
tion patterns. A few studies have emphasised the importance of using
real-time load data in the system planning optimisation of PV battery
systems. Authors in [9] compare real-time and aggregated load profiles
and concludes that adopting aggregated load data may result in over-
estimated self-consumption and underestimated total costs. Studies like
[30,31] illustrate households with various consumption patterns may
result in quite different end net present values (NPVs) and self-suffi-
ciency rate (SSR) for battery integrated solar systems. The wide adop-
tion of synthetic data is likely due to the lack of high quality publicly
available generation and consumption datasets. Moreover, even in
practice, battery installers or utility who often have more direct con-
tacts with solar customers, suffer from the insufficient data during their
decision-making processes of battery system configuration. Very few
research considers the limited input data problem stated above. Re-
ference [32] uses a techno-economic model to compute the optimal PV
and battery configurations for various non-solar customers and use the
simulation results to develop a machine learning model that could
predict the optimal configuration, NPV and SSR using a limited amount
of load data. Although this model shows promising results, it still re-
quires weather data to generate synthetic PV data. Another possible
factor that could affect the practicability of the model is that a single
change in the techno-economic parameters would require re-simulating
and re-training of all the households in the training set.

Load clustering has been applied for many studies concerning the
analysis of electricity consumption data. A couple of papers have given
comprehensive reviews on the applications, techniques and evaluation

Fig. 1. The flowchart of the proposed battery sizing model using net meter clustering.
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metrics of clustering [33,34]. Load profiling, which is generally referred
as identification of typical consumption profiles over a certain period, is
one of the main applications of load clustering and it can be used for a
better understanding of consumer behaviours [35], tariff designs [11]
and demand strategies [12]. Customer classification also uses load
profile clustering to create cluster labels which can be related back to
household characteristics and demographic information [36,37].
Moreover, load clustering has also been applied to enhance the per-
formance of load forecasting algorithms [13,14].

A variety of load clustering techniques have been attempted in the
literature such as, hierarchical clustering [13,38], k-means [35,39],
fuzzy k-means [40], follow the leader [41], self-organizing map [42],
support vector clustering [11] and probabilistic neural networks [43].
The number of clusters needs to be defined manually for non-hier-
archical clustering models (e.g. k-means clustering) although this is not
required for hierarchical and follow the leader models [34].

Various clustering validity indicators have been applied to evaluate
the performances of clustering algorithms, most of them are defined
using Euclidean distance metrics [33]. Commonly used clustering va-
lidity indicators (CVIs) include Clustering Dispersion Indicator (CDI)
[11], Davies-Bouldin Index (DBI) [40], Mean Index Adequacy (MIA)
[33], modified Dunn Index [44] and Scatter Index (SI) [11].

Clustering research taking account of consumers with on-site gen-
eration remains limited. Reference [10] applied a self-organizing map
clustering model on 300 Australian households with installed PV sys-
tems which reveals a self-consumption behaviour within gross meter
solar customers. A case study is demonstrated in [45] which shows how
clustered consumption profiles can be used for the size planning of a PV
and energy storage system on a commercial building.

3. Methodology

The main purpose of this analysis is to develop a model for solar
customers with net meter arrangements and limited amounts of his-
torical consumption and generation data in order to decide on the most
optimal battery size. The methodology (shown in Fig. 1) can be sepa-
rated into four parts:

1. We prepare our dataset for net meter clustering and separate it into
a training set and an evaluation set. The training set is used for
fitting the parameters of the clustering and regression models
mentioned below and the evaluation set is used to evaluate the
performance of the proposed model.

2. K-means clustering is applied to cluster net meter energy data se-
parately for various seasons; summer, autumn, winter and spring.
For each household, we determine the seasonal cluster distributions
which specify each household’s percentages of seasonal net meter
profiles partitioned into each seasonal cluster.

3. Regression models are trained on the obtained seasonal cluster
distributions and used to extrapolate the seasonal cluster distribu-
tions of the new input net meter energy data at a given length.

4. The extrapolated data, battery and economic parameters are fed into
a battery simulation model which produces the optimal battery sizes
for the customers in the evaluation set.

For comparing our approach, an alternative naive prediction
method (see Section 3.4.1) is also implemented. To evaluate the per-
formances of the two methods, the battery sizing results are also de-
rived for the ideal case where a whole year’s real data is provided to the
battery simulation model instead of extrapolated data. This allows us to
determine errors in the battery sizing results for the two implemented
modelling approaches.

3.1. Step 1 – pre-clustering step

3.1.1. Data collection
The data used in this research was collected by Solar Analytics, an

Australian solar monitoring company [46] using Wattwatchers mon-
itoring hardware [47] that monitors both solar generation and elec-
tricity consumption. The dataset includes 5-min gross PV and con-
sumption data collected between December 2016 and December 2017
from 2779 Australian solar households. By using solar and load data
collected from the same households, we take account of potential im-
pacts of domestic solar generation on consumption behaviours. We
ensure these customers have adequate amounts of data: the overall
amount of missing data is less than 3% and the customer with the most
missing data has 7% of data missing. The DC solar system ratings of
these customers are also recorded and we ensure these rooftop PV
systems have been performing normally without any major system
faults within this period. For this study, in order to construct a net
meter dataset from gross meter data, we first convert the gross PV and
consumption data to net meter energy data using (1) and then resample
the net meter energy data to 30-min temporal resolution.

=net pv loadenergy energy energy (1)

Before applying any clustering, load curve normalisation has been ap-
plied in some previous load clustering studies [37,43,48,49], on the
other hand some consumption clustering studies just use raw con-
sumption data [10,42,50]. In this study, after carrying various simu-
lations, using normalised data did not produce as good results as the
raw data so it was decided to present results for only the raw data.

3.1.2. Data split
In order to properly evaluate our battery sizing model, we split our

dataset into a training set and an evaluation set. Clustering is only
performed on the training set which includes 2517 randomly-selected
customers, the remaining 262 households included in the evaluation set
were treated as new customers to evaluate the robustness of the pro-
posed battery sizing model against limited input data.

3.2. Step 2 – net meter clustering

As seasonality generally exists in both solar generation and con-
sumption data, we divide our dataset into four seasons and perform
clustering on each of them. Four seasons are defined as follows for
Australia [51]: Summer: December to February, Autumn: March to
May, Winter: June to August, Spring: September to November. Each
daily profile of the customers in the training set was used in clustering
so that most information is captured during the clustering process.

3.2.1. Clustering algorithm
We use K-means algorithm [52] for the net meter profiles as it has

been proven to be simple yet effective in previous load clustering stu-
dies [37,49] and furthermore it converges quickly which is a great
advantage for large datasets [53].

3.2.2. Clustering evaluation
In the previous clustering studies [11,42], clustering validity in-

dicators (CVIs) have been used to evaluate the performance of con-
sumption data segmentations and to find the optimal number of clus-
ters. On the other hand, the end use application of this study is choosing
the optimal battery size and approximating potential savings, therefore,
the number of clusters were chosen according to the minimum errors
obtained for these tasks. In the mean time, in order to see whether there
is any relationship between the CVI and errors obtained in battery
sizing results, Davies-Bouldin index (DBI) [54] is also computed.
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3.2.3. Seasonal cluster distributions
After separating the training data into four seasons, daily net meter

profiles are clustered into various seasonal clusters. As a result, the
distributions of each household’s clustered net meter profile are cal-
culated for these seasonal clusters. They simply describe each house-
hold’s percentages of seasonal net meter profiles assigned to each sea-
sonal cluster. It should be noted a seasonal cluster distribution does not
require the whole season of data to be computed, in fact, it can be
calculated for any period within the season. For instance, when a new
customer has 30 days of net meter energy data in summer where 18
daily profiles are grouped into cluster 1 and 12 days are in cluster 3.
Then the summer cluster distribution of this household is 60% (18/30)
in cluster 1, 40% (12/30) in cluster 3 and 0% for other seasonal clus-
ters.

Seasonal cluster distributions reveal the typical seasonal net meter
patterns and their occurrences for a household at a given period.
Therefore, when two households have similar seasonal cluster dis-
tributions within a period, they show similar net meter profiles in the
same period. Moreover, the seasonal cluster distributions can be used as
extracted features to predict seasonal distributions of other unknown
periods which will be shown in following sections.

3.3. Step 3 – predict seasonal cluster distributions

This step trains a machine learning model to predict the seasonal
cluster distributions for new customers with limited net meter energy
data. In this work, multivariate linear regression and random forest
regression techniques were compared. Feature selection and hyper-
parameter tuning are adopted to enhance the performance of regression
models. The main steps to train the machine learning model are shown
in Fig. 2. For both regression techniques, feature selection is applied
using the regression model with default hyper-parameters and then
parameter tuning is performed to select hyper-parameters that lead to
superior regression results, after that the tuned model and selected
features are used for model training. Finally, after training, the trained
model is used to predict seasonal cluster distributions. For each pre-
dicted season/period, we search for a customer which shows the most
similar seasonal cluster distributions and has full length of data. In
particular, this is done by finding a customer in the training set with the
shortest Euclidean distance in terms of seasonal cluster distributions in
the predicted season/period. This customer’s data is then used as the
seasonal extrapolated data for the new customer.

In terms of the length of data from the new customers, we experi-
ment three options; a single month, a single season or two random
seasons. Also to evaluate the impacts of applying different months/
seasons as inputs, we test all the input data scenarios in Table 1. Finally,
the model output values are the seasonal cluster distributions for the
remaining period of a year.

3.3.1. Features
The input features used for predicting seasonal cluster distributions

are listed in Table 2, which contains each household’s: DC solar system
size, state code, the daily averaged 30min net meter energy and the
seasonal cluster distributions of the net meter energy data for the given

period. To compute the averaged daily net meter energy, we simply
calculate the averaged energy within the known data period for each
30min interval of a day. Our dataset includes customers from 6 Aus-
tralian states/territories: Australian Capital Territory, New South
Wales, Queensland, South Australia, Victoria and Western Australia.
They are converted to integers from 1 to 6.

If the input data has overlapping period between different seasons,
for example if the given input data has 60 days which include 20 winter
days and 40 spring days, the input seasonal cluster percentages would
include both winter and spring cluster percentages for the provided
data. The predicted values would be the seasonal cluster distributions in
summer, autumn and the remaining periods of winter and spring.

3.3.2. Multivariate linear regression
Multivariate linear regression [55] is a machine learning approach

where multiple independent variables are used to predict multiple de-
pendent variables. The regression problem in this study can be for-
mulated by (2) using this technique. The ordinary least square method
which minimises the squared differences between training labels and
predicted values, is applied to estimate the parameters in (2).

= + + + + + +Y X X X Xi n n n i n i n i p n i p i n, 0, 1, ,1 2, ,2 3, ,3 , , , (2)

where Yi n, is the predicted proportion of days clustered into seasonal
cluster n for a sample i, Xi j, is the jth feature we use for a sample i, j n, is
the jth parameter for estimating Yi n, and i n, is the error term. In this
paper we use the Python implementation of this model [56].

3.3.3. Random forest regression
Random Forest (RF) is an ensemble machine learning method which

trains multiple decision trees on different random subsets of the
training data [57]. The adopted RF model uses bootstrap aggregating
(bagging) technique for training, where random subsets are drawn with
replacements and each subset has the same sample size as the original
training set [58]. Given the training data Xtrain and the output label
Ytrain, by using bagging, N random subsets are generated from Xtrain and

Fig. 2. Main steps of the regression model training.

Table 1
Tested input data scenarios.

Input Data Length Tested Input Data Scenarios

One month Month number in {1–12}
One season Seasons in [Summer, Autumn, Winter, Spring] {1–4}
Two seasons Two-season combinations in {1&2, 1&3, 1&4, 2&3, 2&4, 3&

4}

Table 2
Features used for regression.

Feature Name Symbol

seasonal cluster percentages of season i with n
clusters

…p p p, , ,seasoni seasoni seasoni
n1 2

mean 30min net meter energy (Wh) …e e e, , ,1 2 48
PV system size (kW) pvsize

state code scode
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Ytrain (denoted as Xd and Yd). For each sampled subset, we train a de-
cision tree fd using Xd and Yd. Then when making a prediction for a new
sample after training, the RF model will aggregate the predictions from
these decision trees. For regression tasks, the aggregation function takes
the mean of the predictions by various decision trees (shown below in
(3)).

=
=

Y
N

f X1 ( )test
d

N

d test
1 (3)

where Ytest denotes predicted labels of the test set, Xtest is the input test
data.

As a result, compared to a single decision tree trained with the
whole dataset, RF generally has a better performance as it reduces the
model variance whilst resulting in similar bias errors [59]. In this study
we use the Python implementation of this model [56] and we set N to
100 which means results from 100 decision trees are aggregated within
the RF model.

3.3.4. Feature selection
For the linear regression model, we applied a Lasso (Least Absolute

Shrinkage and Selection Operator) regression analysis [60] which
performs both L1 regularisation and feature selection. It penalises the
absolute sum of coefficients, as a result, the regression coefficients for
some features shrink towards zero and hence they are filtered out from
the model.

The Boruta algorithm [61] is applied to select features for the RF
model as it previously outperformed other RF feature selection ap-
proaches [62]. The algorithm randomly performs permutation on all
features and train the RF model using both the original and shuffled
features [61]. For each original feature, a statistical test is conducted
which computes the confidence towards a better importance value
compared to the maximum importance value of the shuffled features.
Features with significantly higher importances are marked as important
features whereas features with smaller importances are removed. Then
the process will re-iterate until all features are categorised as con-
firmed/rejected or until a certain number of iterations is reached. In
this study, we used the Python implementation of Boruta [63] and set
the maximum number of iterations to 30. It is also suggested in [63]
that the original threshold where a real feature needs to have better
importance than all the shuffled features can sometimes be too strin-
gent so we set the percentile parameter to 80% which means true
features will pass the statistical test when its importance is higher than
80% of the shuffled features.

3.3.5. Parameter tuning
In order to achieve better performances from our regression models,

we optimise the hyper-parameters of the models by using random

search along with 10-fold cross validation (CV). Compared to other
hyper-parameter optimisation approaches such as grid search and
manual search, random search has proven to be more efficient in terms
of computational costs [64]. The hyper-parameters tuned for the linear
regression and RF models are shown in Table 3. Some of the default
parameters are selected from their default values set by sklearn [56]
and the others are selected by experience to create a loosely tuned
default model for feature selection.

In a 10-fold CV, it randomly splits the training set into 10 equal
sized subsets. 9 subsets are used as training data and the remaining
subset is evaluated once as a test set. This validation process is repeated
10 times where each time a different subset is used as a test set, after
that we compute the averages and standard deviations of the mean
squared error (MSE) in seasonal cluster proportions. We then choose
the hyper-parameters that yield the lowest averaged MSEs.

3.4. Step 4 – battery sizing model

After predicting the seasonal cluster distributions for all the listed
input data scenarios in Table 1 and extrapolating the net meter energy
data for the unknown period, we determine the battery sizing results by
feeding the extrapolated net meter profiles for the entire year to a
battery simulation model which is described below in detail.

3.4.1. Alternative approach for data extrapolation
For comparing our net meter clustering approach, an alternative

method is adopted. In this method, instead of performing clustering on
the new customers, a naive forecasting approach is applied which finds
another customer from the training data that has the most similar net
meter profile in the known period, measured by finding the shortest
Euclidean distance between net meter profiles. Then for predicting re-
maining periods of the year for the new customer, we just use the net
meter energy data of the closest site as a naive prediction. Furthermore,
in order to evaluate the performances of these two prediction models,
the battery sizing results are also derived for the ideal case; where a
whole year of real monitored net meter energy data is provided to the
battery simulation model. This ideal case allows us to compute the
errors in optimal battery sizes, net present values, yearly battery sav-
ings and electricity costs for the net meter clustering case and the naive
forecasting approach.

To properly assess these three approaches, the battery sizing results
are only computed for the evaluation set as it has not been used for
fitting the parameters of the clustering and regression models.

3.4.2. Model parameters
Key parameters used in the battery simulation model are listed in

Table 4. The model simulates annual realistic battery operations and
computes battery sizing results using the listed battery and economic

Table 3
Tuned Parameters for Lasso model and RF model [56].

Parameter in sklearn Parameter Tuning Default
Description Range Value

Lasso Regression Model

alpha constant to multiply the L1 regularisation term float in {0–1} 1.0

RF Model

max_features the number of randomly drawn input features when considering the best split n, n , or 1/3n (n is the number of all features) n
max_depth The maximum depth of the decision trees integer in {2–12} 6
min_samples_leaf The minimum number of required samples at a leaf node integer in {1–12} 2
min_samples_split The minimum number of required samples to make an internal split integer in {2–12} 2
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parameters for the three approaches discussed above: our net meter
clustering approach, the naive prediction method and the ideal case
where the whole year’s data is provided.

3.4.3. Rule-based (RB) model
We assume the battery charging/discharging follows a simple rule-

based algorithm in Algorithm 1 that has the main objective of max-
imizing solar self-consumption. This modelling approach has previously
been implemented for some studies [65,66] and also used in practice at
many installed battery sites due to its simplicity and ease of im-
plementation.

Algorithm 1. Pseudo Code for the rule-based model

1: Input net energy P C SOC p p SOC_ , , , , , ,t max total min t
import

t
export

start
▷Input parameters

2: Input ,ch d ▷ Import charging/discharging efficiencies
3: soc SOCo start ▷Set initial SOC to SOCstart
4: for t in (1, 2, …, m)do ▷ for loop starts
5: ×soc C SOC(1 )t

usable
total min

6: if >net energy_ 0t then ▷when there is excess solar, charge battery until full

7: b min net energy P soc soc( _ , , ( )/ )t
ch

t max t
usable

t ch1

8: g net energy b_t
export

t t
ch

9: ×cost net energy p_t
pv

t t
export

10: ×cost g pt
batt

t
export

t
export

11: + ×soc soc bt t t
ch

ch1
12: else ▷when there is excess demand, discharge battery until depleted
13: × ×b min net energy P soc( _ , , )t

d
t max d t d1

14: g net energy b_t
import

t t
ch

15: ×cost net energy p_t
pv

t t
import

16: ×cost g pt
batt

t
import

t
import

17: soc soc b /t t t
d

d1

18: Output = =cost costt
m

t
pv

t
m

t
batt

1 1

3.4.4. Determine optimal battery size
We determine the optimal battery size by searching for the value

which maximises the Net Present Value (NPV) at the end of the battery
lifetime, shown below in (4). The current residential batteries in the
market is between 1 and 15 kWh [67] so we use this range for our grid
search (i.e. 16 values in total including 0 kWh which means no battery
is installed). The averaged warranty provided by manufacturers is
around 10 years [67] however adopting a 10-year lifetime makes it
infeasible to install batteries for the majority of solar customers even
with a low battery price scheme. We therefore adopt 15 years for the
maximum lifetime of a battery in our simulation model so it would be
easier to compare errors in optimal battery sizes for the two tested
approaches.

Table 4
Battery simulation parameters.

Parameter Definition Values

Battery Specifications

Ctotal Total Battery Size (kWh) 1–15 kWh
Pmax Rated maximum charging/discharging

power (kW)
× C0.4 total

SOCmin Minimum value for state of charge 20%
SOCstart SOC when simulation starts 0%

ch Charging efficiency 90%

d Discharging efficiency 90%

Economic Parameters

nlifetime battery lifetime 15 years
ratediscount discount rate 0.03
savingdegr yearly reduction in saving due to battery

degradation
0.05

Tariffs (in AUD/
kWh)

pflat flat import tariff rate $ 0.30/kWh
ppeak peak import tariff rate $ 0.45/kWh

pshoulder shoulder import tariff rate $ 0.25/kWh
poffpeak off-peak import tariff rate $ 0.15/kWh

pfit flat feed-in tariff rate $ 0.11/kWh

Fig. 3. Davies-Bouldin Index for adopting various numbers of clusters each season using raw data.
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= +
×
+

= × + +
×

+

=

=

NPV cost
saving saving

rate

c size c
pcost bcost saving

rate

(1 )
(1 )

( )
( ) (1 )

(1 )

t

n
t degr

t

discount
t

batt batt install

t

n
t t degr

t

discount
t

0
1

1

lifetime

lifetime

(4)

where cost0 is the total capital costs including costs of battery, inverter
and installation. We assume costs of a battery and a new multimode
inverter increase by cbatt when adding 1 kWh of battery capacity and
installation costs (cinstall) remain the same. savingdegr is a degrading
factor on yearly battery savings, we assume savings will reduce an-
nually by 5% due to battery degradation to save our computational
costs, this is an arbitrary estimated parameter determined by the gen-
eral guaranteed end lifetime usable capacity which is 60%

(1 5%)10[68]. Yearly saving (savingt) is simply derived by sub-
tracting the yearly cost (pcostt) without installing a battery and annual
costs after the battery installation (bcostt).

4. Results and discussion

4.1. Clustering results

For each season, the Davies-Bouldin Index (DBI) is calculated for
adopting various numbers of clusters to cluster the training set of 2517
customers where a smaller value of DBI indicates better clustering
outcome. As shown in Fig. 3, seasonal DBIs improve as the numbers of
seasonal clusters increase. However, as making too many clusters could
result in clustering results that are not desirable for the post clustering
applications hence user inspection is often required. Authors in [34]
suggested locating the “elbow points” in a DBI curve as the numbers of
clusters in terms of segmentation quality since DBI improves little be-
yond these points. We adopted the same approach in this work, as a
result, Fig. 4 illustrates the seasonal cluster centroids using the optimal
numbers of seasonal clusters determined by DBI.

For Summer clustered groups, cluster 1 and 5 have similar peaks of
grid import and export whereas in cluster 4, evening load is much
higher than the export around noon. Customers who have majority of
the net meter profiles in cluster 3, 8 and 10 have higher solar genera-
tion compared to night-time and early morning consumption.

Electricity import and export are both at low levels in cluster 2, on the
other hand in cluster 6, 7 and 9, on average there is no export mainly
due to higher levels of daytime consumption. Overall, net meter profiles
in cluster 2, 3, 8, 10 are more likely to benefit from small-size batteries
as their have low level imports whereas larger batteries are more sui-
table for profiles in cluster 1, 4, 5 which have considerable amounts of
imports and exports. For cluster 6, 7 and 9, energy storage is not a good
option as on average there is no excess PV generation.

In Autumn, high export and low night time grid import is observed
in cluster 4, 5 and 9 where cluster 4 has a lower export compared to
cluster 5 and 9. Cluster 2, 3, and 7 all show considerable amount of
import and export however cluster 3 has a higher night time load
compared to the other two. Centroids of cluster 6 and cluster 8 both
have zero net export with a morning and a evening consumption peaks
whereas cluster 1 has small amounts of import and export. Small-size
batteries seem to be beneficial for net meter profiles in cluster 1, 4, 5, 9
where small amount of energy is required from the battery to cover the
consumption in non-solar periods. cluster 2, 3, and 7 will get more
savings from larger battery sizes whereas it would be hard to utilise
batteries for profiles in cluster 6 and 8 as there is no excess generated
energy.

For Winter, a few groups (cluster 4, 8 and 9) have low night-time
consumption and noticeable amounts of exports, on the other hand
three cluster centroids (5, 7, 11) have zero net generation. Low export
and high import is observed in cluster 1, 3, 6 and 10 where cluster 1 and
3 show higher night-time consumption while cluster 6 and 10 have
higher morning load. Relatively high export and import are shown in
cluster 2. Overall, most net meter profiles can only utilise a small
amount of battery capacity as they either have low net consumption
(cluster 4, 8 and 9) or their generation is low (cluster 1, 3, 6 and 10).
Net meter profiles in cluster 5, 7 and 11 have insufficient energy to
charge batteries whereas cluster 2 can fully utilise a medium or large
size residential battery.

In Spring, centroids of cluster 1, 4 and 10 show zero export, how-
ever cluster 2, 3 and 9 have significant grid exports. Three clusters (5, 6
and 8) have considerable exports and imports whereas the levels of
import and export are both low in cluster 7. Small batteries can be more
beneficial for net profiles in cluster 2, 3, 7 and 9 whereas larger bat-
teries can be fully utilised for cluster 5, 6 and 8. On the other hand,
energy storage cannot be utilised at all in cluster 1, 4 and 10.

Fig. 4. Seasonal unnormalised cluster centroids in (a) Summer, (b) Autumn, (c) Winter, and (d) Spring using optimal numbers of clusters.
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4.2. Regression results

4.2.1. LR model vs RF model
Figs. 5–7 illustrate the mean squared errors (MSEs) in predicted

seasonal cluster proportions for various evaluated input data lengths
using 5 seasonal clusters for each season as an example. 10-fold cross
validation is performed to generate MSEs for each randomly selected
subset of the training set, this allows us to generate boxplots to display
the distributions of MSEs. The results indicate Random Forest (RF)
model outperforms the Multivariate Linear Regression (MLR) model for
all the evaluated scenarios therefore we will adopt this model for the
data extrapolation process.

When using monthly or seasonal data as input, Autumn tends to
produce the best regression results and has much smaller MSEs com-
pared to the scenarios using Winter or Summer. This is likely due to the
fact that Autumn has a more balanced generation and consumption
whereas winter and summer have either dominant generation or con-
sumption.

For predicting new households net meter profiles by applying single
monthly data as inputs; Winter seasonal cluster proportions seem to be
the hardest seasonal cluster distributions to predict while it is much
easier to determine these values in Autumn and Spring. This is likely
caused by low irradiance in winter which causes the winter cluster
distributions to be heavily influenced by household consumptions
whereas the solar generation is more dominant within the input data
period.

January seems to be the worst month for predicting other seasons as
it generates the highest MSEs in predicted cluster proportions. It is in-
teresting to note that to predict cluster distributions in Spring, April
produces the best results whereas for other three seasons, the months
adjacent to the predicted seasons have the lowest MSEs.

It is also interesting to note that in some cases when months ad-
jacent to the predicted seasons are used (e.g. using May to predict
cluster distributions in Winter), predicting with one month of data re-
sults in lower MSEs compared to one whole season of input data. The
reason for that is probably months adjacent to the predicted season
have quite similar consumption and generation patterns to the pre-
dicted season, adding other months actually results in worse input
features (i.e. the seasonal cluster distributions and mean net meter
energy values).

4.2.2. MSE vs number of clusters
For each input data length, we average the MSEs for each tested

scenario and plot them against various number of seasonal clusters. The

same number of clusters are applied in each season to avoid creating
too many combinations. As shown in Fig. 8, the RF model still out-
performs the LR model when using other numbers of seasonal clusters.
MSEs in predicted seasonal cluster distributions are reduced when we
increase the number of clusters in each season. After the number of
seasonal clusters reaches 30, the improvements in the averaged MSE
slow down significantly.

4.2.3. Feature selection and parameter tuning
Feature selection and parameter tuning both have improved the

regression results. For example for the specific case where we input
data in summer to predict seasonal cluster distributions in Spring and 5
clusters are used for each season. 42 features are selected after applying
the Boruta algorithm on the default RF model, then parameter tuning is
performed. As a result, compared to the original RF model with default
features that produced 10-fold cross-validation MSE of 0.01412
(mean) ± 0.00154 (standard deviation), the MSE derived after feature
selection and parameter tuning is 0.01389 (mean) ± 0.00139 (stan-
dard deviation).

4.3. Battery sizing results

4.3.1. Errors in yearly costs and savings
Figs. 9 and 10 show the normalised root mean square errors

(NRMSEs) in yearly savings and costs against the number of seasonal
clusters for both naive forecasting case and net meter clustering case
with different input data lengths. The evaluated range for the number of
seasonal clusters is from 3 to 40, we use equivalent numbers of clusters
for each season to avoid creating too many combinations for our ana-
lysis. Various battery sizes range from 1 to 15 kWh along with different
input data scenarios listed in Table 1 are all tested and averaged for
each analysed number of cluster. For the plot labels, we use prefix “net”
and “naive” to represent the two tested methods: the net meter clus-
tering approach and the naive forecasting method. The suffix is used to
differentiate various input data lengths (i.e. “one_season” indicates
applying one season of input data to extrapolate data in other seasons).
It should also be noted that Fig. 10 illustrates errors for two types of
costs, one is the yearly electricity costs before installing a battery
(“pre_cost”) and the other one is the costs after installing a battery
(“batt_cost”).

By comparing errors in yearly savings, it is clear that the net meter
clustering approach outperforms the naive method for both Time-of-
Use (ToU) and flat tariffs. Especially for the flat tariff case, using one
month of data and the net meter clustering model actually produce

Fig. 5. Mean Squared Error (MSE) in predicted seasonal cluster distributions using one month of input net meter energy data for the adopted (a) linear regression
model, (b) random forest model.
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smaller errors than applying one season of data with the naive fore-
casting approach for all the evaluated numbers of seasonal clusters.
Another obvious trend is that as the number of seasonal clusters in-
crease, the NRMSEs in yearly savings are reduced for all the analysed
input data lengths. Moreover when low numbers of clusters are adopted
for net meter clustering method, the errors in savings are lower for flat
tariff compared to ToU however as the number of clusters increases, the
NRMSE drops more quickly for ToU. As a result, at high number of
seasonal clusters, they both have similar NRMSEs in estimated yearly
savings.

Errors in yearly costs seem to present similar trends as the errors in
savings, the net meter clustering approach tends to have much smaller
NRMSEs in yearly electricity costs before and after installing batteries
and the differences between the net meter clustering approach and the
naive method get larger when we increase the number of seasonal
clusters. When the net meter clustering model is applied, one month
input data outperforms the naive forecasting method using one season
of data for both tested tariff structures and applying one season input
data result in similar NRMSEs as the naive forecasting approach with

two seasons of input net meter energy data.
This means by applying net meter clustering, we could make better

estimations in yearly electricity costs and battery savings when a lim-
ited amount of net/gross meter data is provided. Not only this can
improve the battery sizing procedures of installers or utility, potentially
it can also better assist the end-users to select the best tariff offers to
reduce their energy costs with a small amount of historical data for
their home energy systems. As shown in Fig. 10, the NRMSEs in costs
before and after installing a battery are both much lower using the net
meter clustering approach for both evaluated tariff structures. There-
fore, the solar customers could apply different tariff structures on their
data extrapolated by the net meter clustering model and expect much
smaller errors in estimated electricity costs compared to the baseline
naive forecasting method, regardless of whether future battery pur-
chase decisions are considered.

Another aim of the study was to explore whether the DBI is corre-
lated to the battery sizing results. Fig. 11 shows the errors in yearly
battery saving against averaged seasonal DBI values. We can see a
linear correlation between DBI and NRMSEs in yearly savings for all the

Fig. 6. Mean Squared Error (MSE) in predicted seasonal cluster distributions using one season of input net meter energy data for the adopted (a) linear regression
model, (b) random forest model.

Fig. 7. Mean Squared Error (MSE) in predicted seasonal cluster distributions using two seasons of input net meter energy data for the adopted (a) linear regression
model, (b) random forest model.
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evaluated tariff structures and input data lengths. This indicates DBI
can potentially be used as a metric for our end application. Hence,
when a new dataset is provided, instead of going through different
numbers of seasonal clusters and comparing the end results, the mean
seasonal DBI values can potentially be used to directly select the best
number of seasonal clusters which heavily reduces the computational
costs.

4.3.2. Errors in NPVs and optimal sizes
NRMSEs in NPVs at the end of a battery’s lifetime against the

number of seasonal clusters for both naive forecasting case and net
meter clustering case with different input data lengths are displayed in
Fig. 12. Again the net meter clustering method has better performances
compared to the naive forecasting approach for almost all tested sce-
narios except for one case where two-season input data and three

Fig. 8. MSEs vs no seasonal clusters when applying (I) one month of input data and LR, (II) one month of input data and RF, (III) one season of input data and LR, (IV)
one season of input data and RF, (V) two seasons of input data and LR, and (VI) two seasons of input data and RF.

Fig. 9. Errors in estimated yearly savings
under (a) a flat and (b) a ToU tariff when
applying the proposed net meter clustering
method with (I) one month, (III) one season
& (V) two seasons of input data and the
naive forecasting method with (II) one
month, (IV) one season & (VI) two seasons
of input data vs number of seasonal clusters
per season.

Fig. 10. Errors in estimated yearly costs
before and after a battery is installed under
(a) a flat and (b) a ToU tariff when applying
the proposed net meter clustering method
with (I, III) one month, (V, VII) one season &
(IX, XI) two seasons of input data and the
naive forecasting method with (II, IV) one
month, (VI, VIII) one season & (X, XII) two
seasons of input data vs number of seasonal
clusters per season. (Note “pre_cost” and
“batt_cost” respectively indicate yearly costs
before and after a battery install.)
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seasonal clusters are applied. The differences in NRMSEs between the
two methods are extremely large when only one month of data is used
to extrapolate other data in a year. As a result, this shows the net meter
clustering produces much better estimations on the profitability of

installing a battery system compared to the naive forecasting model.
This indicates that with a small amount of gross/net meter data, the net
metering clustering approach is able to help the customers to have
better ideas of whether they would make a profit or loss at the end of

Fig. 11. Errors in estimated yearly savings under (a) a flat and (b) a ToU tariff when applying the proposed net meter clustering method with (I) one month, (II) one
season & (III) two seasons of input data vs mean seasonal DBIs.

Fig. 12. Errors in estimated end NPV under (a) a flat and (b) a ToU tariff when applying the proposed net meter clustering method with (I) one month, (III) one
season & (V) two seasons of input data and the naive forecasting method with (II) one month, (IV) one season & (VI) two seasons of input data vs number of seasonal
clusters.

Fig. 13. Under (a) a flat tariff or (b) a ToU tariff, the mean optimal battery size derived using a full year of data.
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the battery lifetime.
Figs. 13–15 illustrate the mean true optimal battery size derived by

the ideal case where all the data is provided, the mean absolute error
(MAE) and r-squared value (R2) in optimal battery sizes for the net
meter approach and naive forecasting method under various battery
price ranges. We also assume a constant installation price of $ 400. Both
tariff structures (flat and ToU) are evaluated. We use 40 seasonal
clusters for the net meter clustering approach and average the results
for all the input data scenarios in Table 1. The net meter clustering
model outperforms the naive forecasting method in terms of MAEs and
r2 values for most battery and installation cost ranges, except for the
cases where the true optimal sizes are quite close to zero. For the low
battery price range ($200 per kWh), the developed model achieves r-
squared values of 0.72 and 0.68 using a month of input data under the
specified flat and ToU tariff, which is a quite good level of accuracy. At
a lower cost range, both methods show better r2 values compared to
medium battery costs. This is expected as the price increases, the op-
timal size tends to shift towards zero which means its variance will be
much smaller compared to the residual sum of squares. Overall for the
medium and large price ranges ($400-$600/kWh), the optimal battery
sizes computed for ToU are larger compared to flat tariff. This means for
these customers, ToU is a better option in terms of financial returns if
they decide to install a battery as it will probably take a while for
battery costs to drop to $200 per kWh.

Overall, by applying our proposed model with net meter energy
data clustering on the test set of 262 Australian solar customers, we

have obtained much better results in terms of estimated annual savings,
costs before and after battery installations, end NPV and optimal sizes
compared to the baseline naive forecasting approach. Furthermore,
with a limited amount of net/gross meter energy data, the model still
produces results with satisfactory accuracies.

For end-users who do not have easy access to enough historical
smart meter data, the net metering clustering approach could be used to
predict their annual electricity costs and battery profitability under
different tariff structures. As a result, our proposed model could be
implemented as a feature of a home energy recommendation tool to
help residential customers make better tariff selection and battery
purchase decisions with loose requirements on the length and quality of
the input data. Moreover, installers and utilities who are likely to deal
with customers with insufficient net meter data during the ongoing net
meter rollouts, could utilise this technique as a recommendation service
for their customers. They could also gain valuable insights on the im-
pacts of tariff offers and battery prices on the electricity bills of their
customers and make better predictions of the solar/battery market
trends with a small amount of net/gross meter energy data.

5. Conclusion and future work

In this study, we perform a clustering analysis on net meter energy
data and demonstrate that we could apply the correlations between
seasonal cluster distributions to develop a battery sizing model that is
quite robust to limited amount of input net meter energy data. As net

Fig. 14. Under (a) a flat tariff or (b) a ToU tariff, the MAE in estimated optimal battery sizes using the net meter clustering approach and naive forecasting method for
different battery price ranges and input data lengths.

Fig. 15. Under (a) a flat tariff or (b) a ToU tariff, the mean R-squared value in estimated optimal battery sizes using the net meter clustering approach and naive
forecasting method for different battery price ranges and input data lengths.
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meters will eventually replace gross meters, we hope our approach
could assist the techno-economic assessments of PV-integrated battery
systems for households, installers and utilities, who often do not have
sufficient historical generation and consumption data.

For future work, as we only use a single optimisation objective of
maximising self-consumption, it would be interesting to see how well
our approach could perform for other optimisation goals such as battery
degradation reduction, peak demand reduction or price arbitrage.

The dataset we use is from solar customers in Australia so it would
be worthwhile to apply our model to a dataset with customers in other
countries to see how well our approach generalises in a different region.

The temporal resolution adopted in this study is half-hour net meter
energy data, it could be interesting to explore what data granularity
optimises the trade-offs between computations and performances of our
proposed model.
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