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A computational model of auditory localization resulting in performance similar to humans is
reported. The model incorporates both the monaural and binaural cues available to a human for
sound localization. Essential elements used in the simulation of the processes of auditory cue
generation and encoding by the nervous system include measured head-related transfer functions
~HRTFs!, minimum audible field~MAF!, and the Patterson–Holdsworth cochlear model. A
two-layer feed-forward back-propagation artificial neural network~ANN! was trained to transform
the localization cues to a two-dimensional map that gives the direction of the sound source. The
model results were compared with~i! the localization performance of the human listener who
provided the HRTFs for the model and~ii ! the localization performance of a group of 19 other
human listeners. The localization accuracy and front–back confusion error rates exhibited by the
model were similar to both the single listener and the group results. This suggests that the simulation
of the cue generation and extraction processes as well as the model parameters were reasonable
approximations to the overall biological processes. The amplitude resolution of the monaural
spectral cues was varied and the influence on the model’s performance was determined. The model
with 128 cochlear channels required an amplitude resolution of approximately 20 discrete levels for
encoding the spectral cue to deliver similar localization performance to the group of human
listeners. ©2000 Acoustical Society of America.@S0001-4966~99!04411-2#

PACS numbers: 43.64.Bt, 43.64.Ha, 43.66.Qp@RDF#
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INTRODUCTION

Humans can locate the source of a sound with rema
able accuracy using a variety of acoustic cues~Carlile,
1996!. The location-dependent information contained in t
sounds at each ear results from the interaction between
auditory periphery and the incident sound. The binaural
calization cues include the interaural time difference c
~ITD! and the interaural level difference cue~ILD ! ~Middle-
brooks and Green, 1991!. The ITD operates principally a
low frequencies and, conversely, the ILD is a reliable loc
ization cue for the middle to high frequencies. Because of
relative symmetry of the ears on the head, a set of point
space can have the same binaural time or level values.
is, a binaural cue defines a ‘‘cone of confusion’’ centered
the interaural axis which leads to ambiguities in the verti
position of the sound source and front–back confusi
~Oldfield and Parker, 1986!. The auditory system most prob
ably uses the spectral cues provided by the locati
dependent filtering of the outer ear to resolve the cone
confusion~Middlebrooks, 1992; Carlile, 1996!.

The head-related transfer function~HRTF! is defined as
the acoustic transformation function from a point in space

a!Electronic mail: simon@physiol.usyd.edu.au
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the outer ear and describes the location-dependent filterin
a sound by the auditory periphery. The HRTF captures b
the frequency domain and time domain aspects of the cue
a sound’s location. Various models of the peripheral proce
ing by the auditory system suggest that the fidelity of t
acoustical information encoded by the nervous system
considerably degraded in the frequency domain when c
pared to the fidelity with which the HRTF is routinely me
sured~see Carlile and Pralong, 1994!.

In the work reported here, we were interested in dev
oping a model of localization that combined biological
plausible processing of the acoustical input with the inpu
output mapping provided by an artificial neural netwo
~ANN!. There were several key motivators for this approa

First, preprocessing the input to the ANN in a biolog
cally plausible manner would ensure that the mapping p
vided by the ANN would be a more reasonable model,
performance terms, of human localization performan
Thus, our first objective was to develop a model with a nu
ber of biologically plausible constraints that would provide
similar performance level as that found in humans. This
cessitated the degradation of the model over the best
could be achieved without these constraints.

Second, a model with human-like performance cou
432/107(1)/14/$17.00 © 2000 Acoustical Society of America



FIG. 1. Localization model architecture.
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then provide the basis for exploring aspects of preproces
to the ANN by varying biologically constrained paramete
and observing the impact on the subsequent localization
formance. In this way we could explore the limits of th
‘‘biological resolution’’ of inputs to the model that are ne
essary to sustain human levels of localization performan
In addition, benchmarking the model’s performance aga
human localization performance would provide some
sights into the likely biological relevance of various enco
ing and output parameters of the model.

Third, the output of the ANN was postprocessed usin
spatial interpolator that attempted to model the behavior
neuronal population of spatial location detectors. Previ
neurophysiological studies of auditory space maps in
deep layers of the Superior Colliculus of mammals and
MLD of Owls have demonstrated significant difference
the size of the auditory spatial receptive fields of neurone
these nuclei@see King~1994! for review#. It has been pro-
posed that some aspects of localization behavior may we
mediated by the output of the population of these neuro
@for example, see Middlebrooks~1984!#, in which case, the
neuronal point image, or extent of the nucleus which w
activated by a single point stimulus in space, would va
significantly between these species. We were intereste
varying the ‘‘point image’’ of the output layer in our mode
to see what effect this may have on the subsequent loca
tion accuracy of the model.

The preprocessing components of the model descr
in this report attempts to account for~i! the spectral smooth
433 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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ing of cochlear encoding,~ii ! the frequency-dependent varia
tion in auditory sensitivity,~iii ! the encoding of acoustica
information as spike trains, and~iv! the parallel streaming o
interaural timing information and spectral amplitude info
mation. Once a combination of parameters had been de
mined that produced human-like localization performan
two main experiments were conducted using the mod
First, we explored the fidelity of the spectrum amplitu
quantization of the input required to sustain human locali
tion performance. Second, the impact of the size of
‘‘point image’’ of the ANN output was explored by varying
the extent of the ANN output layer over which the spat
interpolator took its input. A third control experiment wa
also carried out to ensure that the behavior of the ANN w
not limited by the information encoding capacity of the ne
work architecture. In this case the effects of varying t
number of hidden layer neurones on localization perf
mance was examined.

I. STRUCTURE OF THE LOCALIZATION MODEL

A. Model overview

The model consists of three parts. First, a broadb
sound in free field space was simulated using white no
@Fig. 1~a!#. The noise was filtered by the filter function of th
outer ear, or head-related transfer function~HRTF!, adjusted
using the frequency sensitivity function of the auditory sy
tem and then used as input to the Patterson–Holdsworth
chlear model~Slaney, 1994!. The monaural and binaural lo
433Chung et al.: Performance model for auditory localization
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lcu-
calization cues~left and right monaural spectral cue and IT
cue! were extracted from the cochlear output@Fig. 1~b!#. An
artificial neural network~ANN! was trained to classify thes
localization cues@Fig. 1~c!#. The model was developed usin
the Matlab scripting language~version 4! and the C program-
ming language. In this model, the direction of a sound sou
with respect to the listener is given using the vertical, sing
pole coordinate system with azimuth 0 degrees and eleva
0 degrees indicating the position directly ahead of the s
ject. Locations above the audio-visual horizon and to
right of the anterior of the midline are indicated by positi
degrees elevation and azimuth, respectively~Carlile, 1996!.

B. Stimulus generation and localization cue encoding

Due to the various level-dependent nonlinearities in
ditory encoding, the capacity of the system to encode sp
tral shape is dependent upon the overall input level~Sachs
and Young, 1979!. This will also be modified by the fre
quency dependency of auditory sensitivity that reflects,
part, the acoustical transmission properties of the audi
periphery~the pinna, concha, ear canal, and middle ear!. The
minimum audible field~MAF! describes the minimum de
tectable pressure level determined at the position of the
ject’s head for a free-field, pure tone stimulus located on
median plane~ISO R.226; see also Glasberg and Moo
1990!. This variation of sensitivity should affect the audib
ity of different frequency components of a complex soun
In this context, the MAF will weight the spectral cues a
cording to the human audiometric sensitivity so that some
the features of the HRTF will be more salient than the othe

Carlile and Pralong~1994! argued that the neural exc
tation pattern for a spectrally flat broadband noise directly
front of a subject~azimuth 0 degrees, elevation 0 degree!
could be estimated by passing the inverted MAF throug
cochlear model. This study extended this method to estim
the neural excitation pattern for a sound at any location
which the HRTF had been determined. The MAF used in t
model was taken from Glasberg and Moore~1990! and was
assumed to correspond to the human sensitivity for a so
located at~0 degrees, 0 degrees! in our system. The MAF
curve was extrapolated with a low-order spline to estim
the low- and high-frequency tails of the sensitivity functio
not covered by the original measurements. The neural e
tation pattern for a location~az, el! was then estimated b
passing a weighted spectrumWs~az,el! for a broadband sound
source at~az, el! to the cochlear model whereWs~az,el! was an
approximation of the MAF at~az, el!. The magnitude re-
sponse ofWs~az,el! was estimated using the HRTFs measu
at ~az, el! and ~0 degrees, 0 degrees! using Eq.~1!:

uWs~az,el!~ f !u5U k* HRTE~az,el!~ f !

HRTF~0°,0°!~ f !* MAF~0°,0°!~ f !
U. ~1!

Equation ~1! computes the magnitude response
Ws~az,el! by adjusting the MAF at location~0 degrees, 0 de
grees! by the difference between the HRTF at~az, el! and~0
degrees, 0 degrees!. The constantk adjusts the weighted
spectrum to a reasonable level corresponding to a spec
amplitude of 30 dB~i.e., k531.6) ~see also Carlile and Pra
434 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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ong, 1994!. Since no phase information was included wi
the published MAF, it was assumed that the phase
HRTF~az,el! andWs~az,el! are identical@Eq. ~2!#:

arg„Ws~az,el!~ f !…5arg~HRTF~az,el!~ f !…. ~2!

A randomly generated white noise was filtered w
Ws~az,el! and produced the input to the cochlear model nee
to predict the neural excitation pattern for location~az, el!.
The duration of the noise stimulus was 100 ms.

The Patterson–Holdsworth cochlear model provided
simulation of the auditory transduction model using
gamma-tone filter bank and the Meddis hair cell mod
~Slaney, 1994!. The output of the gamma-tone filter ban
was connected to an array of Meddis hair cells. The co
pressive nonlinearity of the Meddis hair cell model limite
the output of the cochlear model. The output of the hair c
gives the firing probability at each sampling interval. Ea
cochlear model contained 128 Meddis hair cells. The num
of hair cells in the model is a trade-off between spect
resolution and computational efficiency and our choice w
influenced by the model of Netiet al. ~1992! who used the
same number of channels to represent a spectral cue.

C. Extraction of ITD cues

Figure 1~b! shows the circuit for the extraction of th
ITD and the left and right monaural spectral cues encode
the output of the cochlear model. Figure 2 shows the circ
that extracts the ITD cue from the left and right cochle
outputs. This design was based on the silicon model of
time-coding pathway of the owl described in Lazzaro a
Mead ~1989! which operates on binary pulse/trains. Th
modified ITD circuit calculates the cross-correlation coe
cients from the profile of the left and right inputs to th
circuit.

The output of the hair cells in the left and the rig
cochlear outputs with the same center frequency were pa
through a pair of time delay lines. Assuming that the ears
two points on a spherical head, the path differenced between
the two ears is approximated byd5r (u1sinu) where r is
the radius of the head andu is the direction of the sound
source measured from the median plane in radians~Wood-
worth, 1938!. The maximum path length-occurs atu5p/2.
From this equation the maximum path differenced is 0.26 m
for r 50.1 m and corresponds to a time delay of 780ms. This
defines the maximum time delay to be modelled for a sig
to propagate from the start to the end of the delay line. T
time delay elements updated their output by copying the o
put of the preceding time delay element to its own outpu
a rate of 40 kHz~i.e., Dt525ms). Each time delay line
contained a chain of 32 determined by the relationship
tween the maximum output rate of the cochlear model~40
kHz! and the need for the number of time delay elements
span the maximum ITD~i.e., N540 0003780ms'32). In
addition, 32 delay elements would quantize the ITD to a
proximately 25ms which is similar to the human just notice
able difference~JND! for an ITD of 10ms ~Yost, 1974!. The
output of all hair cells propagated through the time de
elements at the same rate. The cross correlation was ca
434Chung et al.: Performance model for auditory localization



FIG. 2. The ITD cue extractor.
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lated by multiplying the output of cochlear models pass
through the two time delay lines@Eq. ~3!#, wherecgml and
cgmr are the left and right cochlear outputs andN is the
number of delay elements in a delay line:

xcorrk~ t !5 (
f 5100 Hz

1.4 kHz

cgml~ f ,t2kDt !

3cgmr„f ,t2~N2k21!Dt…

for 0<k,N. ~3!

The ITD cue extractor summed the cross-correlation
efficients for all hair cells with center frequency below 1
kHz as described in Eq.~3!. A ‘‘winner takes all’’ function
converted the cross-correlation coefficients into a binary v
tor ITD(t), where thei th component of this vector, ITDi(t),
was computed using Eq.~4!:

ITD i ~ t !

5H 1 if xcorri~ t !>xcorrj~ t ! for all 0< j ,N,

0 otherwise. ~4!

Bit i in the binary vector ITD (t) was set to one if it
corresponded to the maximum cross-correlation coeffici
otherwise it was set to zero. The binary versions of the
stantaneous ITD cues were accumulated@Eq. ~5!# to estimate
the normalized ITD cue@Eq. ~6!#. In most cases when th
model was stimulated by a broadband stimulus, only o
component in ITDnorm was set to one while the other com
ponents were close to zero:
435 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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100 ms

ITD i ~ t ! for 0< i ,N, ~5!

ITDnorm5S ITD0

ITDmax
,

ITD1

ITDmax
,... ,

ITDN21

ITDmax
D

where ITDmax5~max ITD0,...,ITDN21!. ~6!

Within a particular frequency channel, the ITD inform
tion corresponded to the phase relationships between the
nals received from the left and right ears. As a result, o
frequencies with a wavelength greater than the distance
tween the ears offer an unambiguous ITD.

D. Extraction of spectral cues

The monaural spectral cue for the model was the ti
average of the cochlear output from 25 to 100 ms. The fi
25 ms of output was discarded to allow the cochlear out
to reach a steady state. Note that the left and right mona
spectral cues were extracted simultaneously and present
the ANN together. This arrangement allowed the ANN
derive binaural cues such as the interaural spectral differe
cue or the interaural level difference cue using the two m
aural spectral cues.

E. Artificial neural network classifier and feature
vector coding

A two-layer artificial neural network~Rumelhart and
McCelland, 1986; Lippmann, 1987! was trained to transform
the localization cues to a two-dimensional output matrix t
indicated the direction of the sound source. A feed-forwa
435Chung et al.: Performance model for auditory localization



gree
FIG. 3. Examples of ANN outputs.~a! A single clear peak for an estimated source located at~240 degrees, 0 degrees!. ~b! A single clear peak for a source
estimated to be at~140 degrees, 40 degrees!. ~c! Output of ANN which led to elevation confusion with source located at~80 degrees,240 degrees!. ~d! Output
of ANN which led to front–back confusion with source located at~40 degrees, 20 degrees!. Data points were interpolated at 10 degrees rather than 1 de
as described in Sec. I E for clarity of this illustration.
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back-propagation algorithm was used to train the network
neural network simulator, NevProp~Goodmanet al., 1993!,
was used to implement the neural network.

The ANN contained 288 input neurones: 128 neuro
to receive the left spectral cue, another 128 neurones to
ceive the right spectral cue, and 32 neurones to receive
normalized ITD cue. The model used in the experiment t
was described in Sec. III A contained eight hidden layer n
rones. The output layer contained 162 neurones wh
formed a 9318 neurone matrix. Each neurone in the mat
was associated with a point~az,el!, where 2180<az
,180 degrees and280<el<80 degrees, with a 20
degrees step size. The neurones in the input and the hi
layer were fully interconnected, and likewise for the ne
rones in the hidden layer and the output layer. There were
assumptions about how the network would use the local
tion cues. Although the two poles~north and south! were not
represented directly by any neurones, the localization mo
could still specify these directions by passing the ANN o
puts to a space-map interpolator~described below!.

Each training vector presented to the ANN consisted
two parts: the ANN input vector and the target output vect
The input vector consisted of the left and right spectral c
and the ITD cue for direction~az,el!. The left and right spec-
tral cues in each input vector were scaled by the normal
tion factor 1/m, wherem was the maximum value in eac
pair of left and right spectral cues. The target output vec
specified the output activity of the output layer neurones d
ing training. When the neurone output activity is plotted ov
436 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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its associated coordinates, the profile of the plot resembl
double Gaussian distribution. The coordinates with the hi
est output activity was taken as the source direction. Eq
tion ~7! was used to calculate the output activity for an o
put neuronedi j located at position (20i degrees, 20j
degrees) where29, i<9 and24, j <4 for a sound source
located at~az, el!. The variables is the standard deviation o
the double Gaussian distribution. A large value ofs causes
more output neurones to respond to an input stimulus.
value of s was set to 30 degrees in all model experime
unless otherwise stated:

di j 5e2@~20i °2az!/„s/cos~20j ° !…21„~20j °2el!/s…2# . ~7!

The single pole representation of space used in the s
has the disadvantage that as elevation diverges from
greater circle indicating the equator, there is a decrease in
area of space corresponding to one degree azimuth. A sca
factor, 1/cos(20j ) ~where 20j is the elevation associated wit
the output neurone! has been included in Eq.~7! to adjust the
spread of the activity to compensate for the change in den
of neurones under a fixed area at different elevations.

The ANN output was interpolated using the Matla
function griddata to give the final location estimate. Th
algorithm interpolates the ANN outputs from a 20-degr
grid to a 1-degree grid. The most active output neurone w
identified and the interpolation operation was applied to
local 333 output neurone matrix centered on the most act
output neurone. Figure 3 illustrates four examples of
436Chung et al.: Performance model for auditory localization
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ANN outputs. The plots show the pattern of activity of th
output layer which reflects stimulation at four differe
points in space. Note that the maximum output activ
shown in Fig. 3~a! and~b! is close to 1, whereas in Fig. 3~c!
and ~d! the maximum output activity is lower. In the latte
two cases, the ANN had difficulty in estimating the sour
location, and generated output activities for two regio
which indicates an increase of elevation@Fig. 3~c!# or front–
back confusion@Fig. 3~d!# errors.

II. EXPERIMENT

A. Psychophysical test setup

Since the model was designed to deliver human le
performance, it was necessary to assess the model pe
mance against the free-field localization performance of
human listener who provided the HRTFs to the model. T
free-field localization tests have been described in detail e
where ~Carlile et al., 1997! but are briefly outlined below
All localization tests that involved human listeners were c
ried out in the same anechoic chamber that was used fo
HRTF recording~Carlile et al., 1997!. A 150-ms broadband
stimulus was played through a loudspeaker mounted o
computer-controlled, semi-circular hoop~1-m radius! cen-
tered on the listener’s head. The listener was asked to p
his/her nose toward the perceived location of the so
source. An electromagnetic tracking device was mounted
the listener’s head which measured the position of the he
This procedure was repeated for all 76 locations with fo
trials per location. The localization estimates were analy
using the same procedures applied for the model’s results
comparison.

B. Data analysis

The azimuth and elevation systematic errors, the sph
cal angular error of localization estimates, and the ove
spherical correlation coefficient~SCC! were calculated for
the model results to assess the performance of the mo
The randomness in the stimuli supplied as input to the mo
would certainly cause some variations in the estima
source location, and therefore multiple estimates for e
source location were collected. The difference between
source position and the mean direction of the distribut
gives the systematic error in azimuth and elevation directi
~referred to asEaz andEel , respectively! ~Leong and Carlile,
1997!. For the set of estimates made for the same sou
location, the spherical angular error is defined as the ave
of the angle between the line joining the center of the hea
listener to the mean direction and the line joining the head
the listener to each of the estimates.

The spherical correlation coefficient is a measure of
correspondence between the actual location of the target
the location indicated by either the human subjects~Carlile
et al., 1997! or the model. Consistent with other studies w
have used this coefficient as a global metric of localizat
accuracy ~for methods of calculation see Wightman a
Kistler, 1989; Fisheret al., 1993; Carlile et al., 1997!.
Front–back confusion errors were processed separately
ing data analysis. An estimate was considered front–b
437 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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confused if the source and the estimate were on differ
sides of the interaural axis and greater than 5 degree from
vertical plane through the interaural axis. In addition, an
timate was considered front–back confused only if it l
within 620 degrees azimuth of the mirrored source locati
This operation was employed to separate the large azim
errors from front–back confusion errors. All data analy
was performed using the Matlab toolbox,SPAK ~Leong and
Carlile, 1997!.

C. Vector generation

The HRTFs were used to simulate sound sources loc
at different positions in space. The HRTF library of a hum
subject was recorded using the procedures described in
ong and Carlile~1996!. A total of 724 pairs of HRTFs were
recorded for equally spaced stimulus positions.

Localization cue vectors were generated by passing
tered noise stimuli through the cue coding and extract
components of the model as described in Sec. I. A rang
input levels were prepared: 40, 50, 60, 65, 70, 80, and 90
In addition, at each input level, ten samples were genera
for each pair of HRTFs contained in the 724-point HRT
library. This provided a vector pool that contained a total
50 680 localization cue vectors. Training and testing vec
sets were formed by selecting localization cue vectors fr
this large pool that corresponded to the particular stimu
characteristics of interest. Humans are most likely trained
localize on a wide range of stimulus levels. This was sim
lated in the training of the model by using training cue ve
tors generated at different input levels. The training vec
set was composed of one sample per point in the HR
library for each input level. This gives a total of 5068 cu
vectors in the training set. The testing vector set was co
posed of a subset of 76 positions that were used in the tr
ing, with ten samples of localization cue vectors generate
65-dB input level. The performance of the model on this t
set was compared with the localization results of human
teners using the same set of 76 stimulus locations. The
man psychophysical experiments were performed at a fi
65-dB sound pressure level~SPL! and used the same set o
stimulus locations as that used in the generation of the t
ing vector set.

III. RESULTS

A number of parameters were available to control t
performance of the model which was then compared to
performance of the single subject who provided the HRT
used in the model as well as the performance data po
from a population of 19 other subjects. Localization perfo
mance was measured in terms of the spherical correla
coefficient of the localization estimates against the actual
get locations and the percentage of front–back confusion
rors. We have included comparisons of both the single s
ject and the population response as it is likely that
performance of the single human subject also contains i
syncrasies that reflect factors other than the sensory inp
Therefore, a more robust comparison of the model per
mance might be against the population response where
vidual effects should have been cancelled out to some ex
437Chung et al.: Performance model for auditory localization



-
TABLE I. Localization performance of individual listener~Human!, a group of 19 human listeners~Group!, and the reported model with different configu
ration ~E1 to E14!. The test stimuli were generated at 65 dB SPL.

Result Trial no.
Quantization

levels
Cochlear
channels

Hidden
neurone s ~degrees!

SCC
~no MAF!

% fb
~no. MAF! SCC ~MAF!

%
fb ~MAF!

Human 304 n/a n/a n/a n/a n/a n/a 0.957 1.0%
Group 6909 n/a n/a n/a n/a n/a n/a 0.983 3.2%
E1 780 10 128 8 30 0.958 8.1% 0.884 7.5%
E2 780 20 128 8 30 0.966 3.7% 0.944 3.3%
E3 780 40 128 8 30 0.962 5.9% 0.972 0.8%
E4 780 100 128 8 30 0.970 5.4% 0.975 1.5%
E5 780 20 64 8 30 0.934 7.6% 0.950 4.1%
E6 780 20 256 8 30 0.969 3.3% 0.974 2.7%
E7 780 20 128 6 30 0.883 7.2% 0.823 6.7%
E8 780 20 128 10 30 0.964 4.7% 0.956 3.7%
E9 780 20 128 8 5 0.274 33.7% 0.477 12.1%
E10 780 20 128 8 10 0.925 9.9% 0.886 4.6%
E11 780 20 128 8 20 0.957 4.1% 0.984 0.4%
E12 780 20 128 8 40 0.969 6.5% 0.968 1.6%
E13 780 20 128 8 60 0.955 3.1% 0.941 2.1%
E14 780 20 128 8 90 0.939 3.1% 0.948 0.0%
ts
in
E5
s
d
N

n
-

AF

t
er
fre

be
re
iti
p
th
a
2
a

em
al
da

e
on

d
ti
th

as

ong

s-
ined
ion
ual
In Table I the summary results for all 28 experimen
with the model are presented. Experiments E1–E4 exam
the variation of the spectral cue amplitude resolution; E2,
and E6 examined the effects of varying the frequency re
lution of the input to the ANN; E2, E7, and E8 examine
variation in the number of neurones contained in the AN
hidden layer; and E2 and E9–E14 examined the variatio
the size of the neural ‘‘point image’’ of the output. All ex
periments were conducted both with and without the M
correction.

A. Broadband localization

The objective of the first series of experiments was
develop a model with the most human-like localization p
formance. In this series, we systematically varied the
quency resolution@64 ~E5!, 128 ~E2!, and 256~E6! cochlear
channels# and the size of the neural point image~5, 10, 20,
40, 60, and 90 degrees: E9–14!. The SCC provides only a
rough guide for comparisons of localization accuracy
tween the subject group and the model as this measu
sensitive to the number of samples. Therefore, as an in
screening of performance, we sought a combination of
rameters that provide a SCC that was close to that of
individual listener and a front–back confusion rate that w
closer to the group. This was provided by a model with 1
channels and a neural point-image of 30 degrees. For e
model we also examined the azimuth and elevation syst
atic errors and the spherical angular error and these
demonstrated the best fit to the human data for our stan
model. These measures have more explicit and detailed m
sures of localization performance, offering more informati
than the SCC.

The ‘‘standard’’ model result and the individual an
group human results were analyzed and plotted as a func
of the azimuth of the sound source. The plots include
azimuthal and elevational systematic errors~Figs. 4 and 5!,
the spherical angular error~Fig. 6! of the localization esti-
mate distributions at640-,620-, and 0-degrees elevation,
well as the distribution of the front–back confusions~Fig. 7!.
438 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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On average the error magnitudes were very similar am
the three sets of results.

The azimuthal systematic errors for the individual li
tener showed more abrupt changes than the data obta
from the group. For instance, Fig. 4 shows that at elevat
40 degrees, the azimuthal systematic error for the individ
listener~circles! changed from 10 degrees at azimuth2150

FIG. 4. Eaz of the estimate distribution of the model~dot!, the human lis-
tener whose HRTFs are used by the model~circle!, and the group of 19
listeners~cross!.
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degrees to215 degrees at azimuth2110 degrees, then back
to 20 degrees at270 degrees.

The elevational systematic error is shown in Fig. 5 an
indicates that the magnitudes for the elevational systema
error were similar for the three sets of data. At higher elev
tions, for example at 40 degrees, the magnitude of the ele
tional systematic error of the model~dots! was generally
lower than those of the listener~circles! and the group results
~crosses!. The individual listener gave greater elevationa
systematic error at640 degrees elevations than at620 de-
grees and 0 degrees elevations, and often had positive ele
tional systematic errors when the source was on the rig
hemisphere. This feature was not found on the left hem
sphere, and also not obvious in the model or the group res
This may represent a bias related to the response mea
rather than the perception of the location.

Figure 6 shows the magnitude of the average spheri
angular error of the estimates for the model, single subje
and group. The spherical angular error between the mo
~dots! and the individual listener results~circles! are similar
at 20,220, and240 degrees elevation. The spherical ang
lar error of the group~crosses! is generally greater than tha
of the model and the individual listener at all elevations. Th
average spherical angular error of the model remained wit
the limits defined by the individual listener and group resu
at most test locations.

The magnitude of systematic errors shown in Figs. 4 a
5 indicate that the individual listener exhibited performanc

FIG. 5. Eel of the estimate distribution of the model~dot!, the human lis-
tener whose HRTFs are used by the model~circle!, and the group of 19
listeners~cross!.
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that was close to the group results, and that the distribu
of estimates were usually within the range of the group
sults. The model gave similar systematic errors for most
cations to that shown for the single and group results.

The distribution of front–back confusion errors in th
three sets of results with data collapsed across elevation
illustrated in Fig. 7. In the model result@Fig. 7~a!#, the front–
back confusion errors occurred more often with source lo
tions on the left hemisphere. However, for the results of
group@Fig. 7~c!#, the front–back confusion errors were mo
equally distributed for the right and left hemispheres.

B. Effects of frequency resolution

Increasing the number of cochlear channels from
~E5! to 128 ~E2! resulted in only minor differences in th
performance of the model, but that an increase to 256~E6!
channels resulted in a substantial increase in accuracy. In
event, the model with 128 cochlear channel provided the b
match to the human performance.

C. Effects of amplitude resolution

To explore the role played by the fine structure of t
spectral cues in localization performance, the spectral am
tude components of the monaural spectral cues were
jected to a linear quantization operation. The magnitude
the quantization step applied to the monaural spectral c
was varied and four models were trained using spectral c

FIG. 6. Spherical angular error of estimate distribution of the model~dot!,
the human listener whose HRTFs are used by the model~circle!, and the
group of 19 listeners~cross!.
439Chung et al.: Performance model for auditory localization
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that were quantized to 10, 20, 40, and 100 levels over
total dynamic range of the normalized spectral cues. For
stance, when the quantization parameter was set to 40 le
a normalized monaural spectral cue was approximated b
equally spaced discrete values between 0 to 1~inclusive!.
Each analog value of spectrum amplitude was rounded to
closest quantization level. The azimuth and elevation s
tematic errors~Figs. 8 and 9!, spherical angular error~Fig.
10!, and the front–back confusion errors~Fig. 11! have been
plotted for 10, 20, and 40 quantization levels. E1–E4
Table I correspond to the models trained with spectral c
quantized to 10, 20, 40, and 100 quantization levels, res
tively.

The pattern and magnitude of the systematic errors d
onstrated by the different models showed only margi

FIG. 7. Front–back confusions of the~a! model,~b! human listener, and~c!
the group of 19 listeners. Front–back confused data are plotted using e
circles and non-front–back confused data are plotted using dots.
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changes with variation in the number of quantization lev
~azimuth: Fig. 8 and elevation: Fig. 9!. The random errors of
localization indicated by the extent of the distribution of t
estimates showed clear changes when the number of qu
zation levels were changed~Fig. 10!. At all elevations, the
model that used spectral cues with higher amplitude res
tion ~greater number of quantization levels! gave smaller av-
erage spherical angles for the distributions. For the directi
close to~0 degrees, 0 degrees!, however, all three models
had similar spherical angular error. In addition, the extent
the front–back~FB! confusions were also negatively corr
lated to the number of quantization levels~10 to 40 levels!.
From Fig. 11, the model with 10 quantization levels pr
duced the most front–back confusion errors among the th
models; the model with 40 quantization levels gave alm
no front–back confused estimates.

The levels of performance with 20 quantized levels w
closest to that exhibited by the human subjects~Figs. 4, 5,
and 6!. Increasing the number of quantized levels beyond
produced only a slightly higher SCC and more front–ba
confused estimates.

D. Effects of number of hidden layer neurone

The number of hidden layer neurones will affect t
information storage capacity of the ANN~Baum and Haus-
sler, 1989!. As a control experiment, it was important in th
study to demonstrate that the ANN architecture we were e
ploying was not a limiting factor in the performance of th
model. In experiments E7, E2, and E8, the number of hid

pty

FIG. 8. Eaz for models trained with spectral cues quantized to 10~dot!, 20
~circle!, and 40~cross! levels.
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layer neurones was six, eight, and ten, respectively. With
hidden layer neurones, there was a substantial decrease
SCC and a twofold increase in the number of FB confusi
when compared to the model with eight hidden layer n
rones. In contrast, an increase to ten neurones had on
marginal effect on the SCC and a similar number of
confusions. We concluded from this experiment that the p
formance of our standard model was not bound by capa
of our ANN with eight hidden layer neurones required
carry out an effective input–output mapping.

IV. DISCUSSION

A. Broadband localization

The localization performance of the model was co
pared with the individual listener from whom the HRTF
were obtained and with a group of 19 human listeners~Car-
lile et al., 1997!. Although there is a good match between t
three sets of data, there are some characteristic differen
Some of these differences can probably be attributed to
differences in the sample sizes for each group. This is p
ticularly evident with the sharp variations in the azimuth
systematic errors~Fig. 4! for the individual human data com
pared to the group data and to a lesser extent the mode

A second source of difference is likely to originate fro
the response measures. In testing human localization pe
mance, the listener was asked to point his or her nose in
direction of the source~Carlile et al., 1997!. Although turn-
ing to face towards a sound source is a highly ecolog

FIG. 9. Eel for models trained with spectral cues quantized to 10~dot!, 20
~circle!, and 40~cross! levels.
441 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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process, there are at least two types of errors that may
present in the estimates. First, for sound locations that
quire very small or large movements of the head to the m
chanical limits of motion, there is a tendency for the listen
to point towards the source using a combined movemen
the head and the eyes, rather than only the movement o
head. As the method of detecting the perceived location
the sound source involves tracking the position of the h
~rather than the eyes!, the ‘‘eye capture’’ of the perceived
target location may produce systematic errors in estima
the perceived location. This type of systematic error is cl
sified as a motor error~for a full discussion see Carlileet al.,
1997!. In addition to motor error, there are also spatia
dependent variations in the localization performance fou
in experiments that have minimized the presence of mo
errors~Gilkey et al., 1995; Carlileet al., 1997! which can be
attributed to sensory error. Since the model used the HR
of the individual listener, one would expect similar featur
to be found in their results if the behavior of the model w
constrained similarly to that of the human even though
magnitudes of the model systematic errors were close to
individual listener and the group results. The systematic
rors ~Figs. 4 and 5! made by the model were more symmet
cal about the median plane than that of the individual
tener. The asymmetry in the single listener’s errors mi
have resulted from motor errors or other response biases
have not attempted to include any of these latter kinds
errors in our model.

FIG. 10. Spherical angular error for models trained with spectral cues q
tized to 10~dot!, 20 ~circle!, and 40~cross! levels.
441Chung et al.: Performance model for auditory localization
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For instance, both the systematic error and the size
the error distributions were observed to increase with
azimuth of the sound source. In localization experiments
involved a human listener, when the sound source was
hind the listener, the listener was unable to swivel his/
head towards the back without body movement to point th
nose at the perceived sound location. The judgment of
azimuthal angle traveled may well be less accurate than r
tively smaller azimuth movements accomplished by the h
alone. This is consistent with observations that for the hum
listeners, the azimuthal localization error was smallest w
the source was on the median plane and close to the au
visual horizon. The slightly greater accuracy demonstra
by the model for more lateral and posterior location may
due to the absence of motor error in the model’s result.

FIG. 11. Front–back confusions for models trained with spectral cues q
tized to ~a! 10, ~b! 20, and~c! 40 levels.
442 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
of
e
at
e-
r
ir
e

la-
d
n
n
io-
d
e

The close similarities between the average spherical
gular error and systematic error close to the median plan
the results collected from the model and the human listen
also suggests that localization cue features used by the m
were similar to those used by human listeners. This in t
provides support for the notion that the model parame
were set to psychophysically plausible values.

B. Effect of amplitude quantization on localization
performance

There was no significant change in the pattern of
systematic errors with the variations in the number of qu
tization levels applied to the monaural spectral cues. Rat
the more significant changes were in the magnitude of
distribution of the estimates. In general, the spherical ang
error of the distribution of estimates increased as the num
of quantization levels was decreased. This indicates that
detail in the monaural localization cues can provide inform
tion important for accurate localization performance. It w
interesting that even with a quantization level of only t
steps, the extent of the systematic errors was similar to
other models, and the distribution of estimates was o
slightly greater than models with higher quantization. Ho
ever, with ten-step quantization, there was a significant
crease in front–back confusions.

This strongly suggests that the detail in the spectral c
could contribute to the processes involved in resolv
front–back confusions. Of interest, the model with 100 qu
tization levels showed slightly more front–back confusio
than the model with 40 quantization levels although t
SCCs at 40 and 100 were the same. This may indicate
the fine detail in the spectral cues caused by the random
of the white noise had an undue influence on the deve
ment of the network during training. As a result the mod
became more sensitive to such random detail which resu
in increased front–back confusions.

This result suggests that the auditory system may
need to exploit the full detail of the spectral cues available
perform accurate localization. Alternatively, the audito
system may be unable to encode or resolve high resolu
changes in amplitude that are characterized by the meas
acoustical HRTF. From the experiments, the model that u
spectral cues with 20 discrete levels produced a performa
most similar to that of the human, which implies that t
auditory system might only require about 4 bits of resoluti
on the spectral amplitude cues to perform reliable locali
tion.

C. Effect of MAF correction on model performance

An initial design decision in the model front end was
include the frequency sensitivity function of the audito
system in the form of the minimum audible field~MAF!
function in line with earlier excitation pattern estimates
Carlile and Pralong~1994!. The underlying rationale was
that the MAF weighting should affect the saliency of vario
spectral components of the broadband sound. The coch
model itself does not have a frequency dependence in thr
old sensitivity; however, the use of the MAF, determin

n-
442Chung et al.: Performance model for auditory localization



TABLE II. Model architecture summary.

Neti et al. ~1992! Jankoet al. ~1995! Chau and Duda~1995! This work

Spectral analysis n/a FFT FFT and gamma-
tone filter bank

Patterson–Holdsworth
cochlear model

Spectral cues Yes Yes Yes Yes
Interaural time
difference cue

No Yes Yes Yes

Interaural level
difference cue

No Yes Yes No

ANN 128 input 1 to 23 input No 288 input
8 hidden 50 hidden 8 hidden
187 output 30 output 162 output

Azimuth and
elevation range

275<az<75 degrees
230<el<90 degrees

2180,az<180 degrees
254<el<54 degrees

Not stated 2180,az<180 degrees
280<el<80 degrees

Distortion on No Amplitude and No Quantization and MAF
localization cues time jitter
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psychophysically, lumps together all of the threshold sen
tivity components of the auditory system. To test wheth
this weighting was relevant at the simulated stimulus lev
used in this model we repeated the experiment using
standard model in the absence of MAF filtering. In the a
sence of MAF weighting, the SCC in experiment E2 i
creased from 0.944~with MAF! to 0.966~without MAF! but
the front–back confusion weights were largely unchang
~3.3% with MAF to 3.7% without MAF!. This suggests that
at the simulated stimulus levels used in training and tes
the current model, the MAF has only a minor effect on t
quality of the information available to the ANN. It is a ma
ter for future investigation to explore the impact of the MA
at higher and lower input levels where the nonlinearity
cochlear encoding would more likely result in distortions
the encoded spectra.

D. Comparison with previously reported models

Several previously reported models have been revie
~Searleet al., 1976; Lazzaro and Mead, 1989; Middlebrook
1992; Neti et al., 1992; Horiuchi, 1994; Chau and Dud
1995; Lim and Duda, 1995; Jankoet al., 1995!. Neti et al.
~1992!, Chau and Duda~1995!, and Jankoet al. ~1995! em-
ploy models with a similar architecture to the model repor
in this paper. Table II summarizes the architecture of th
model and the model reported in this paper. Apart from
models by Lazarroet al. and Horiuchi which extracted only
the ITD cue, the other models reviewed together with t
work used separate processing streams to extract the l
ization cues~e.g., spectral cues and ITD cue!.

All the models also used the HRTF to filter the acous
cues into neural excitation patterns. Netiet al. ~1992! used
the HRTF measured in anaesthetized cats, and assumed
the HRTF and the neural excitation pattern had the sa
profile. Chau and Duda~1995! estimated the neural excita
tion pattern by filtering a broadband noise with the HR
and passing the result through a cochlear model. Howe
neither model used the MAF to adjust the amplitude of
inputs to the model. All of the previously reported mode
used the full precision of the estimated neural excitation p
tern, although Lim and Duda~1995! noted that the spectra
fine structures were not necessary for accurate localizatio
443 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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their model. In contrast, we have explicitly examined the r
of amplitude features using a quantization parameter wh
determines the number of equally spaced quantized le
available to code the monaural spectral cues.

The model reported by Netiet al. ~1992! used an ANN
for the transformation of auditory cues into a tw
dimensional output map to indicate the position of the sou
source. An important point of departure with this study w
that Neti et al. employed HRTFs measured from cats. T
ear of the cat is a quite different in acoustical structure to t
of the human and is well modelled as a truncated con
horn ~Calford et al., 1984! whereas the human outer e
demonstrates more complex acoustic behavior~Shaw, 1974;
Carlile, 1996, Chap. 2!. As a consequence, the nature of t
spectral cues to localization are likely to be quite differe
between these species. For instance, the HRTF of the
displays a number of middle frequency notches whose ce
frequencies vary systematically with location~Rice et al.,
1992! where similar systematic changes in notches are
evident in the human HRTF~Carlile and Pralong, 1994!. Not
withstanding these differences in what is being modelled,
model itself provides important insights in the approach a
we have adopted much of the architecture for the model
ported here. For instance, all neurones in successive la
were fully connected, and the ANNs were trained to gener
output activities which resemble a double Gaussian distri
tion when mapped to the two-dimensional output map. Six
four spectral channels were used as monaural inputs in N
model although we settled on 128 cochlear channels a
exploring this parameter experimentally. Additionally w
have included an ITD analysis stream which was not
cluded by Netiet al. Their model with ten hidden layer neu
rones which was trained using both left and right monau
spectral cues gave the best results. This is consistent with
findings reported here.

The model reported by Jankoet al. ~1995! provided an
amplitude and time jitter operator which is not found in oth
models. After filtering a sound with the HRTF, each point
the left and right channels were multiplied by a norma
distributed amplitude jitter factor and subjected to a norma
distributed time delay. The standard deviation of the am
tude jitter was 0.25 and the standard deviation of the ti
443Chung et al.: Performance model for auditory localization
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jitter was 20ms. Application of quantization is similar to th
addition of noise to the signal. When a neural excitat
pattern is rounded to one of the closest ten equally spa
discrete amplitudes, the equivalent ‘‘amplitude jitter’’ is 5
of the maximum value, compared with 25%~0.25 standard
deviation! used in Janko’s model. The model by Jankoet al.
also used an ANN to classify the localization cues and p
vide location estimates. In contrast, the ANN used in Jank
model contained 50 hidden layer neurones although no
put interpolator was used. The estimated azimuth was i
cated by 1 of 24 output neurones and the estimated eleva
by 1 of 6 output neurones.

E. General discussion of the model

This model has attempted to simulate the processe
localization cue encoding and extraction using a physiolo
cally and psychophysically plausible preprocessor and a t
layer neural network. This model exhibited very similar l
calization performance to human listeners when the mo
parameters were set to a particular range of values.

When constrained using physiologically realistic para
eters, the model described here achieved localization pe
mance close to that of human listeners. Increasing the am
tude resolution of the monaural spectral cues beyond
quantized steps resulted in only small improvements in
model’s performance. It was also found that the model’s p
formance was positively correlated with the number of c
chlear channels for a given number of quantization lev
The model with 256 cochlear channels and using a M
correction showed a greater SCC than that found for
human listener. Together, these results indicate that the m
el’s localization performance is at human levels using m
aural spectral cues with relatively low amplitude and f
quency resolution when compared to the level of resolut
that is commonly employed in recording the HRTFs. T
results indicate that the model can operate on monaural s
tral cues with lower amplitude resolution and still deliv
similar performance if the cues have sufficient frequen
resolution. The important implication here is that, even w
considerable ‘‘degradation’’ of the input by the preprocess
the fidelity or quality of the localization cue information
still very high.

In the reported model, there was no assumption on h
the monaural cues~left and right spectral cues! and binaural
cues were combined to estimate the source direction.
model was free to select a combination that minimized
error measure. The model was free to determine the limi
localization performance accuracy when there were no
strictions on the usage of localisation cues. Although we
pect strong evolutionary pressures to maximize the use o
available localization cues, it is likely that other biologic
constraints ensure that the central nervous system is no
free in its processing. An ANN that uses a topology whi
reflects the structure of the central nervous system and in
porates other ‘‘realism constraints’’~Zipser, 1992! into the
design may give further insights into the usage and effec
the auditory cues.
444 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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