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A computational model of auditory localization resulting in performance similar to humans is
reported. The model incorporates both the monaural and binaural cues available to a human for
sound localization. Essential elements used in the simulation of the processes of auditory cue
generation and encoding by the nervous system include measured head-related transfer functions
(HRTF9, minimum audible field(MAF), and the Patterson—Holdsworth cochlear model. A
two-layer feed-forward back-propagation artificial neural netw@®N) was trained to transform

the localization cues to a two-dimensional map that gives the direction of the sound source. The
model results were compared with) the localization performance of the human listener who
provided the HRTFs for the model arti) the localization performance of a group of 19 other
human listeners. The localization accuracy and front—back confusion error rates exhibited by the
model were similar to both the single listener and the group results. This suggests that the simulation
of the cue generation and extraction processes as well as the model parameters were reasonable
approximations to the overall biological processes. The amplitude resolution of the monaural
spectral cues was varied and the influence on the model’'s performance was determined. The model
with 128 cochlear channels required an amplitude resolution of approximately 20 discrete levels for
encoding the spectral cue to deliver similar localization performance to the group of human
listeners. ©2000 Acoustical Society of Amerid&80001-496609)04411-2

PACS numbers: 43.64.Bt, 43.64.Ha, 43.66 [@DF]

INTRODUCTION the outer ear and describes the location-dependent filtering of

Humans can locate the source of a sound with remark sound by the audi.tory periphery. The HRTF captures both
able accuracy using a variety of acoustic cu@arlile, the frequency d_omaln a_md time domain aspe(_:ts of the cues to
1996. The location-dependent information contained in the® S0Und’s location. Various models of the peripheral process-
sounds at each ear results from the interaction between tH@d by the auditory system suggest that the fidelity of the
auditory periphery and the incident sound. The binaural lo2coustical information encoded by the nervous system is
calization cues include the interaural time difference cueconsiderably degraded in the frequency domain when com-
(ITD) and the interaural level difference c(ieéD) (Middle- pared to the fidelity with which the HRTF is routinely mea-
brooks and Green, 1991The ITD operates principally at sured(see Carlile and Pralong, 1904
low frequencies and, conversely, the ILD is a reliable local-  In the work reported here, we were interested in devel-
ization cue for the middle to high frequencies. Because of theping a model of localization that combined biologically
relative symmetry of the ears on the head, a set of points iplausible processing of the acoustical input with the input—
space can have the same binaural time or level values. Thatuitput mapping provided by an artificial neural network
is, a binaural cue defines a “cone of confusion” centered onfANN). There were several key motivators for this approach.
the interaural axis which leads to ambiguities in the vertical  First, preprocessing the input to the ANN in a biologi-
position of the sound source and front—back confusiongally plausible manner would ensure that the mapping pro-
(Oldfield and Parker, 1986The auditory system most prob- vided by the ANN would be a more reasonable model, in
ably uses the spectral cues provided by the locationperformance terms, of human localization performance.
dependent filtering of the outer ear to resolve the cone ofhys, our first objective was to develop a model with a num-
confusion(Middlebrooks, 1992; Carlile, 1996 ber of biologically plausible constraints that would provide a

The head-related transfer functioHRTF) is defined as  similar performance level as that found in humans. This ne-
the acoustic transformation function from a point in space tq.ggsijtated the degradation of the model over the best that
could be achieved without these constraints.
dElectronic mail: simon@physiol.usyd.edu.au Second, a model with human-like performance could
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FIG. 1. Localization model architecture.

then provide the basis for exploring aspects of preprocessinigg of cochlear encodindji) the frequency-dependent varia-
to the ANN by varying biologically constrained parameterstion in auditory sensitivity (iii) the encoding of acoustical
and observing the impact on the subsequent localization peiformation as spike trains, arit/) the parallel streaming of
formance. In this way we could explore the limits of the interaural timing information and spectral amplitude infor-
“biological resolution” of inputs to the model that are nec- mation. Once a combination of parameters had been deter-
essary to sustain human levels of localization performancenined that produced human-like localization performance,
In addition, benchmarking the model's performance againstwo main experiments were conducted using the model.
human localization performance would provide some in-First, we explored the fidelity of the spectrum amplitude
sights into the likely biological relevance of various encod-quantization of the input required to sustain human localiza-
ing and output parameters of the model. tion performance. Second, the impact of the size of the
Third, the output of the ANN was postprocessed using d'point image” of the ANN output was explored by varying
spatial interpolator that attempted to model the behavior of dhe extent of the ANN output layer over which the spatial
neuronal population of spatial location detectors. Previousnterpolator took its input. A third control experiment was
neurophysiological studies of auditory space maps in thealso carried out to ensure that the behavior of the ANN was
deep layers of the Superior Colliculus of mammals and thenot limited by the information encoding capacity of the net-
MLD of Owls have demonstrated significant difference inwork architecture. In this case the effects of varying the
the size of the auditory spatial receptive fields of neurones imumber of hidden layer neurones on localization perfor-
these nucle[see King(1994 for review]. It has been pro- mance was examined.
posed that some aspects of localization behavior may well be
mediated by the output of the population of these neurones STRUCTURE OF THE LOCALIZATION MODEL
[for example, see Middlebrook4984], in which case, the .
S . A. Model overview
neuronal point image, or extent of the nucleus which was
activated by a single point stimulus in space, would vary ~ The model consists of three parts. First, a broadband
significantly between these species. We were interested isound in free field space was simulated using white noise
varying the “point image” of the output layer in our model [Fig. 1(a)]. The noise was filtered by the filter function of the
to see what effect this may have on the subsequent localisauter ear, or head-related transfer functigtiRTF), adjusted
tion accuracy of the model. using the frequency sensitivity function of the auditory sys-
The preprocessing components of the model describettm and then used as input to the Patterson—Holdsworth co-
in this report attempts to account foy the spectral smooth- chlear mode(Slaney, 199% The monaural and binaural lo-
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calization cuegleft and right monaural spectral cue and ITD ong, 1994. Since no phase information was included with

cue were extracted from the cochlear outpBtg. 1(b)]. An  the published MAF, it was assumed that the phase of

artificial neural networKANN) was trained to classify these HRTF,, ¢ andWsg; o) are identicalEq. (2)]:

localization cue$Fig. 1(c)]. The model was developed using _

the Matlab scripting languageersion 4 and the C program- AYW Siaz e)(F)) = ArG(HRTFgz (T ). @

ming language. In this model, the direction of a sound source A randomly generated white noise was filtered with

with respect to the listener is given using the vertical, single\W s,y and produced the input to the cochlear model needed

pole coordinate system with azimuth 0 degrees and elevatioi® predict the neural excitation pattern for locati@z, e).

0 degrees indicating the position directly ahead of the subThe duration of the noise stimulus was 100 ms.

ject. Locations above the audio-visual horizon and to the  The Patterson—Holdsworth cochlear model provided the

right of the anterior of the midline are indicated by positive simulation of the auditory transduction model using a

degrees elevation and azimuth, respecti@sgrlile, 1996. gamma-tone filter bank and the Meddis hair cell model
(Slaney, 1994 The output of the gamma-tone filter bank
was connected to an array of Meddis hair cells. The com-

B. Stimulus generation and localization cue encoding pressive nonlinearity of the Meddis hair cell model limited

Due to the various level-dependent nonlinearities in auj[he output of the cochlear model. The output of the hair cell

ditory encoding, the capacity of the system to encode speCgives the firing probqbility at each ;ampling interval. Each
tral shape is dependent upon the overall input lé@zichs cochl_ear mod_el contained 1_28 Meddis hair cells. The number
and Young, 197p This will also be modified by the fre- of halr_ cells in the mod_el is a _tr_ade-off between s_pectral
quency dependency of auditory sensitivity that reflects, ir{esolutlon and computational efflmency and our choice was
part, the acoustical transmission properties of the auditoryifluénced by the model of Ne&t al. (1992 who used the
periphery(the pinna, concha, ear canal, and middle.cBine same number of channels to represent a spectral cue.
minimum audible fieldMAF) describes the minimum de-
tectable pressure level determined at the position of the sub- .
ject’s head for a free-field, pure tone stimulus located on thé&- Extraction of ITD cues
median plang(ISO R.226; see also Glasberg and Moore,  Figure ib) shows the circuit for the extraction of the
1990. This variation of sensitivity should affect the audibil- |TD and the left and right monaural spectral cues encoded in
ity of different frequency components of a complex sound.the output of the cochlear model. Figure 2 shows the circuit
In this context, the MAF will weight the spectral cues ac-that extracts the ITD cue from the left and right cochlear
cording to the human audiometric sensitivity so that some obutputs. This design was based on the silicon model of the
the features of the HRTF will be more salient than the OtherStime_coding pathway of the owl described in Lazzaro and
Carlile and Pralond1994 argued that the neural exci- Mead (1989 which operates on binary pulse/trains. The
tation pattern for a spectrally flat broadband noise directly inrmodified ITD circuit calculates the cross-correlation coeffi-
front of a subject(azimuth 0 degrees, elevation O degiees cients from the profile of the left and right inputs to the
could be estimated by passing the inverted MAF through &jrcuit.
cochlear model. This study extended this method to estimate  The output of the hair cells in the left and the right
the neural excitation pattern for a sound at any location foochlear outputs with the same center frequency were passed
which the HRTF had been determined. The MAF used in thighrough a pair of time delay lines. Assuming that the ears are
model was taken from Glasberg and Mo@i®90 and was  two points on a spherical head, the path differedbetween
assumed to correspond to the human sensitivity for a sounghe two ears is approximated tw=r(6+sin6) wherer is
located at(0 degrees, O degreées our system. The MAF  the radius of the head andlis the direction of the sound
curve was extrapolated with a low-order spline to estimatgource measured from the median plane in radis¥isod-
the low- and high-frequency tails of the sensitivity function worth, 1938. The maximum path length-occurs @t /2.
not covered by the original measurements. The neural excErom this equation the maximum path differertis 0.26 m
tation pattern for a locatioffaz, €) was then estimated by for r=0.1 m and corresponds to a time delay of 780 This
passing a weighted spectris, ) for a broadband sound defines the maximum time delay to be modelled for a signal
source ataz, €) to the cochlear model whel's,, g Was an  to propagate from the start to the end of the delay line. The
approximation of the MAF ataz, e). The magnitude re- time delay elements updated their output by copying the out-
sponse 0fV s, ¢ Was estimated using the HRTFs measuredput of the preceding time delay element to its own output at
at (az, e) and (0 degrees, 0 degreessing Eq.(1): a rate of 40 kHz(i.e., At=25us). Each time delay line
K* HRTE gz,6(f ) ‘ contained a chgin of 32 determined by the relationship be-
IWSaze(f)|= : *M'AF - (1)  tween the maximum output rate of the cochlear madél
HRTF(e,0(T) 009()] kHz) and the need for the number of time delay elements to
Equation (1) computes the magnitude response ofspan the maximum ITOi.e., N=40000< 780us~32). In
Wsaz¢ by adjusting the MAF at locatiofO degrees, 0 de- addition, 32 delay elements would quantize the ITD to ap-
grees by the difference between the HRTF(atz, €) and(0  proximately 25us which is similar to the human just notice-
degrees, 0 degreesThe constantk adjusts the weighted able differencgJND) for an ITD of 10us (Yost, 1974. The
spectrum to a reasonable level corresponding to a spectruoutput of all hair cells propagated through the time delay
amplitude of 30 dB(i.e.,k=31.6) (see also Carlile and Pral- elements at the same rate. The cross correlation was calcu-
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FIG. 2. The ITD cue extractor.
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lated by multiplying the output of cochlear models passing 100 ms
through the two time delay lind€q. (3)], wherecgm and  ITD;= 2 ITD; (t) for O<i<N, (5)
cgm are the left and right cochlear outputs aNdis the =25 ms
number of delay elements in a delay line: ITD, ITD, ITDy_;
1.4 kHz ITD norm= ITD i’ ITD e TTD e
t)= f,t—kAt
xeorr(t) fz% Hzcgm( ’ ) where ITD, = (maxITDy,...,ITDy_1). (6)
xcgm(f,t—(N—k—1)At) Within a particular frequency channel, the ITD informa-
tion corresponded to the phase relationships between the sig-
for O<k<N. ) nals received from the left and right ears. As a result, only

The ITD cue extractor summed the cross-correlation coffeduencies with a wavelength greater than the distance be-

efficients for all hair cells with center frequency below 1.4 Ween the ears offer an unambiguous ITD.

kHz as described in Eq3). A “winner takes all” function _

converted the cross-correlation coefficients into a binary vec?: EXtraction of spectral cues

tor ITD(t), where thath component of this vector, IT[t), The monaural spectral cue for the model was the time

was computed using E@4): average of the cochlear output from 25 to 100 ms. The first

ITD; (1) 25 ms of output was discarded to allow the coc_:hlear output

: to reach a steady state. Note that the left and right monaural

1 if xcorri(t)y=xcorr;(t) for all 0<j<N, spectral cues were extracted simultaneously and presented to

10 otherwise. 4) the_ANI\_I together. This arrange_ment allowed the ANN to
derive binaural cues such as the interaural spectral difference
cue or the interaural level difference cue using the two mon-

Bit i in the binary vector ITD{) was set to one if it 2ural spectral cues.

corresponded to the maximum cross-correlation coefficient o -

otherwise it was set to zero. The binary versions of the inE- Artificial neural network classifier and feature
stantaneous ITD cues were accumuldtéd. (5)] to estimate vector coding

the normalized ITD cuéEqg. (6)]. In most cases when the A two-layer artificial neural networKRumelhart and
model was stimulated by a broadband stimulus, only onélcCelland, 1986; Lippmann, 198Was trained to transform
component in ITQR,, was set to one while the other com- the localization cues to a two-dimensional output matrix that
ponents were close to zero: indicated the direction of the sound source. A feed-forward
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FIG. 3. Examples of ANN outputga) A single clear peak for an estimated source located-d0 degrees, 0 degreesb) A single clear peak for a source
estimated to be 440 degrees, 40 degree&) Output of ANN which led to elevation confusion with source locateatdegrees;-40 degreeks (d) Output

of ANN which led to front—back confusion with source located40 degrees, 20 degree®ata points were interpolated at 10 degrees rather than 1 degree
as described in Set E for clarity of this illustration.

back-propagation algorithm was used to train the network. Ats associated coordinates, the profile of the plot resembles a
neural network simulator, NevPrg@oodmanet al,, 1993, double Gaussian distribution. The coordinates with the high-
was used to implement the neural network. est output activity was taken as the source direction. Equa-
The ANN contained 288 input neurones: 128 neuronesion (7) was used to calculate the output activity for an out-
to receive the left spectral cue, another 128 neurones to r@ut neuroned;; located at position (20degrees, 2p
ceive the right spectral cue, and 32 neurones to receive thdegrees) where-9<i<9 and—4<j=<4 for a sound source
normalized ITD cue. The model used in the experiment thatocated afaz, e). The variables is the standard deviation of
was described in Sec. Il A contained eight hidden layer neuthe double Gaussian distribution. A large valuesotauses
rones. The output layer contained 162 neurones whiclmore output neurones to respond to an input stimulus. The
formed a 9< 18 neurone matrix. Each neurone in the matrixvalue of o was set to 30 degrees in all model experiments
was associated with a pointaz,e), where —180<az unless otherwise stated:
<180 degrees and—80=el<80 degrees, with a 20-
degrees step size. The neurones in the input and the hidden d;; — g~ [(20°~a2/(olcos 20*))* + (20 ~ e/ o)?] (7)
layer were fully interconnected, and likewise for the neu-
rones in the hidden layer and the output layer. There were no  The single pole representation of space used in the study
assumptions about how the network would use the localizahas the disadvantage that as elevation diverges from the
tion cues. Although the two poldsorth and southwere not  greater circle indicating the equator, there is a decrease in the
represented directly by any neurones, the localization modelrea of space corresponding to one degree azimuth. A scaling
could still specify these directions by passing the ANN out-factor, 1/cos(2{) (where 20 is the elevation associated with
puts to a space-map interpolatalescribed beloyv the output neuronehas been included in E¢?) to adjust the
Each training vector presented to the ANN consisted oSpread of the activity to compensate for the change in density
two parts: the ANN input vector and the target output vector.of neurones under a fixed area at different elevations.
The input vector consisted of the left and right spectral cues The ANN output was interpolated using the Matlab
and the ITD cue for directiofaz,e). The left and right spec- function griddata to give the final location estimate. The
tral cues in each input vector were scaled by the normalizaalgorithm interpolates the ANN outputs from a 20-degree
tion factor 1m, wherem was the maximum value in each grid to a 1-degree grid. The most active output neurone was
pair of left and right spectral cues. The target output vectoidentified and the interpolation operation was applied to the
specified the output activity of the output layer neurones durfocal 3X 3 output neurone matrix centered on the most active
ing training. When the neurone output activity is plotted overoutput neurone. Figure 3 illustrates four examples of the
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ANN outputs. The plots show the pattern of activity of the confused if the source and the estimate were on different
output layer which reflects stimulation at four different sides of the interaural axis and greater than 5 degree from the
points in space. Note that the maximum output activityvertical plane through the interaural axis. In addition, an es-
shown in Fig. 8a) and(b) is close to 1, whereas in Fig(8 timate was considered front—back confused only if it lay
and (d) the maximum output activity is lower. In the latter within =20 degrees azimuth of the mirrored source location.
two cases, the ANN had difficulty in estimating the sourceThis operation was employed to separate the large azimuth
location, and generated output activities for two regionserrors from front—back confusion errors. All data analysis

which indicates an increase of elevatidfig. 3(c)] or front—  was performed using the Matlab toolb®sgAK (Leong and
back confusiorfFig. 3(d)] errors. Carlile, 1997.

Il. EXPERIMENT C. Vector generation

A. Psychophysical test setup The HRTFs were used to simulate sound sources located

. . ) at different positions in space. The HRTF library of a human
Since the model was designed to deliver human level, hioct was recorded using the procedures described in Pral-

performance, it was necessary to assess the model perfcghg and Carlilg1996. A total of 724 pairs of HRTFs were
mance against the free-field localization performance of the. o rded for equally spaced stimulus positions.

human listener who provided the HRTFs to the model. The | ocqjization cue vectors were generated by passing fil-
free-field localization tests have been described in detail elsetéred noise stimuli through the cue coding and extraction

where (Carlile et al,, 1997 but are briefly outlined below. components of the model as described in Sec. I. A range of
All localization tests that involved human listeners were car—Input levels were prepared: 40, 50, 60, 65, 70, 80, and 90 dB.

ried out in the same anechoic chamber that was used for thg 4 qgition, at each input level, ten samples were generated
HRTF recording(Carlile et al,, 1997. A 150-ms broadband for each pair of HRTFs contained in the 724-point HRTF

stimulus was played through a loudspeaker mounted on @, a1 This provided a vector pool that contained a total of

computer-con'trolled,’ semi-circular hodp-m radiug cen- 50 6g0 |ocalization cue vectors. Training and testing vector
tered on the listener’s head. The listener was asked to poiats \were formed by selecting localization cue vectors from
his/her nose toward the perceived location of the sounghis |arge pool that corresponded to the particular stimulus

source. An electromagnetic tracking device was mounted ORparacteristics of interest. Humans are most likely trained to
the listener's head which measured the position of the heagyjize on a wide range of stimulus levels. This was simu-

This procedure was repeated for all 76 locations with fourigtaq in the training of the model by using training cue vec-

trigls per location. The Iocalizati_on estimates were analyzeg ¢ generated at different input levels. The training vector
using the same procedures applied for the model’s results fQfa \yas composed of one sample per point in the HRTF

comparison. library for each input level. This gives a total of 5068 cue
vectors in the training set. The testing vector set was com-
posed of a subset of 76 positions that were used in the train-
The azimuth and elevation systematic errors, the sphering, with ten samples of localization cue vectors generated at
cal angular error of localization estimates, and the overalf5-dB input level. The performance of the model on this test
spherical correlation coefficiedSCO were calculated for Se€t was compared with the localization results of human lis-
the model results to assess the performance of the moddgners using the same set of 76 stimulus locations. The hu-
The randomness in the stimuli supplied as input to the modenan psychophysical experiments were performed at a fixed
would certainly cause some variations in the estimated®5-dB sound pressure levé3PL) and used the same set of
source location, and therefore multiple estimates for eachtimulus locations as that used in the generation of the test-
source location were collected. The difference between th#g vector set.
source position and the mean direction of the distribution
gives the systematic error in azimuth and elevation directiond!- RESULTS
(referred to a£,, andE,, respectively (Leong and Carlile, A number of parameters were available to control the
1997. For the set of estimates made for the same sourcperformance of the model which was then compared to the
location, the spherical angular error is defined as the averageerformance of the single subject who provided the HRTFs
of the angle between the line joining the center of the head ofised in the model as well as the performance data pooled
listener to the mean direction and the line joining the head ofrom a population of 19 other subjects. Localization perfor-
the listener to each of the estimates. mance was measured in terms of the spherical correlation
The spherical correlation coefficient is a measure of thecoefficient of the localization estimates against the actual tar-
correspondence between the actual location of the target amgt locations and the percentage of front—back confusion er-
the location indicated by either the human subjdé&arlile  rors. We have included comparisons of both the single sub-
et al, 1997 or the model. Consistent with other studies weject and the population response as it is likely that the
have used this coefficient as a global metric of localizationperformance of the single human subject also contains idio-
accuracy (for methods of calculation see Wightman and syncrasies that reflect factors other than the sensory inputs.
Kistler, 1989; Fisheretal, 1993; Carlile etal, 1997.  Therefore, a more robust comparison of the model perfor-
Front—back confusion errors were processed separately dumance might be against the population response where indi-
ing data analysis. An estimate was considered front—backidual effects should have been cancelled out to some extent.

B. Data analysis
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TABLE |. Localization performance of individual listenéumar), a group of 19 human listenet6roup, and the reported model with different configu-
ration (E1 to E14. The test stimuli were generated at 65 dB SPL.

Quantization  Cochlear Hidden SCC % fb %

Result Trial no. levels channels  neurone o (degrees (no MAF) (no. MAF) SCC(MAF) fb (MAF)

Human 304 n/a n/a n/a n/a n/a n/a 0.957 1.0%
Group 6909 n/a n/a n/a n/a n/a n/a 0.983 3.2%
E1l 780 10 128 8 30 0.958 8.1% 0.884 7.5%
E2 780 20 128 8 30 0.966 3.7% 0.944 3.3%
E3 780 40 128 8 30 0.962 5.9% 0.972 0.8%
E4 780 100 128 8 30 0.970 5.4% 0.975 1.5%
ES 780 20 64 8 30 0.934 7.6% 0.950 4.1%
E6 780 20 256 8 30 0.969 3.3% 0.974 2.7%
E7 780 20 128 6 30 0.883 7.2% 0.823 6.7%
E8 780 20 128 10 30 0.964 4.7% 0.956 3.7%
E9 780 20 128 8 5 0.274 33.7% 0.477 12.1%
E10 780 20 128 8 10 0.925 9.9% 0.886 4.6%
E11 780 20 128 8 20 0.957 4.1% 0.984 0.4%
E12 780 20 128 8 40 0.969 6.5% 0.968 1.6%
E13 780 20 128 8 60 0.955 3.1% 0.941 2.1%
E14 780 20 128 8 90 0.939 3.1% 0.948 0.0%

In Table | the summary results for all 28 experimentsOn average the error magnitudes were very similar among
with the model are presented. Experiments E1-E4 examineithe three sets of results.
the variation of the spectral cue amplitude resolution; E2, E5, = The azimuthal systematic errors for the individual lis-
and E6 examined the effects of varying the frequency resotener showed more abrupt changes than the data obtained
lution of the input to the ANN; E2, E7, and E8 examined from the group. For instance, Fig. 4 shows that at elevation
variation in the number of neurones contained in the ANN40 degrees, the azimuthal systematic error for the individual
hidden layer; and E2 and E9—E14 examined the variation ifistener(circles changed from 10 degrees at azimuti50
the size of the neural “point image” of the output. All ex-
periments were conducted both with and without the MAF
correction. Elevation

(degrees)
A. Broadband localization _

The objective of the first series of experiments was to
develop a model with the most human-like localization per-
formance. In this series, we systematically varied the fre-
guency resolution64 (E5), 128 (E2), and 256(E6) cochlear
channel$ and the size of the neural point ima¢g 10, 20,
40, 60, and 90 degrees: E991Zhe SCC provides only a
rough guide for comparisons of localization accuracy be-
tween the subject group and the model as this measure i©
sensitive to the number of samples. Therefore, as an initial §
screening of performance, we sought a combination of pa- o
rameters that provide a SCC that was close to that of the‘g
individual listener and a front—back confusion rate that was &
closer to the group. This was provided by a model with 128 2
channels and a neural point-image of 30 degrees. For eact
model we also examined the azimuth and elevation system-
atic errors and the spherical angular error and these alsc
demonstrated the best fit to the human data for our standarc
model. These measures have more explicit and detailed mea
sures of localization performance, offering more information
than the SCC.

The *“standard” model result and the individual and
group human results were analyzed and plotted as a functior
of the azimuth of the sound source. The plots include the
azimuthal and elevational systematic err@fgys. 4 and 5 Azimuth (degrees)
the spherl'cal .angUIar errdFig. 6 of the localization _estl- FIG. 4. E,, of the estimate distribution of the modglot), the human lis-
mate distributions at-40-, =20-, and 0-degrees elevation, as tener whose HRTFs are used by the motiiicle), and the group of 19
well as the distribution of the front—back confusiqfay. 7). listeners(cross.

egrees)

err

Azimuth sys

-180 -90 0 90 180
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; Elevation
(Edlg\é?ggg) (degrees)

Elevation systematic error (degrees)

Average spherical angle (degrees)

Azimuth (degrees)

Azimuth (degrees)

FIG. 5. Eg of the estimate distribution of the modglot), the human lis- FIG. 6. Spherical angular error of estimate distribution of the méded),
tener whose HRTFs are used by the moghécle), and the group of 19 the hyman listener whose HRTFs are used by the mmile), and the

listeners(cross. group of 19 listenergcross.

degrees to-15 degrees at azimuth 110 degrees, then back that was close to the group results, and that the distribution
to 20 degrees at-70 degrees. of estimates were usually within the range of the group re-
The elevational systematic error is shown in Fig. 5 andsults. The model gave similar systematic errors for most lo-
indicates that the magnitudes for the elevational systematigations to that shown for the single and group results.
error were similar for the three sets of data. At higher eleva-  The distribution of front—back confusion errors in the
tions, for example at 40 degrees, the magnitude of the elevahree sets of results with data collapsed across elevation are
tional systematic error of the modétiots was generally illustrated in Fig. 7. In the model resiiFig. 7(a)], the front—
lower than those of the listenégircles and the group results  back confusion errors occurred more often with source loca-
(crossep The individual listener gave greater elevationaltions on the left hemisphere. However, for the results of the
systematic error at-40 degrees elevations than a20 de-  group[Fig. 7(c)], the front—back confusion errors were more

grees and 0 degrees elevations, and often had positive elevequally distributed for the right and left hemispheres.
tional systematic errors when the source was on the right

hemisphere. This feature was not found on the left hemiB. Effects of frequency resolution
sphere, and also not obvious in the model or the group result.

This may represent a bias related to the response measu(rteS)
rather than the perception of the location.

Increasing the number of cochlear channels from 64
to 128 (E2) resulted in only minor differences in the

Figure 6 shows the magnitude of the average Spheric£erformance of th_e model, bUt. th?t an increase to &5
angular error of the estimates for the model, single subjectCh"’"n"’]eIS resulted na substantial increase in accuracy. In any
and group. The spherical angular error between the mod&vent, the model with 128 cochlear channel provided the best
(dots and the individual listener resulfsircles are similar match to the human performance.
at 20,—20, and—40 degrees elevation. The spherical angu-C Effects of amplitude resolution
lar error of the groufcrossesis generally greater than that P
of the model and the individual listener at all elevations. The  To explore the role played by the fine structure of the
average spherical angular error of the model remained withispectral cues in localization performance, the spectral ampli-
the limits defined by the individual listener and group resultstude components of the monaural spectral cues were sub-
at most test locations. jected to a linear quantization operation. The magnitude of

The magnitude of systematic errors shown in Figs. 4 andhe quantization step applied to the monaural spectral cues
5 indicate that the individual listener exhibited performancewas varied and four models were trained using spectral cues
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(C) FIG. 8. E,, for models trained with spectral cues quantized todd¥), 20
(circle), and 40(cross levels.

changes with variation in the number of quantization levels
(azimuth: Fig. 8 and elevation: Fig).9rhe random errors of
localization indicated by the extent of the distribution of the
estimates showed clear changes when the number of quanti-
zation levels were changg@Fig. 10. At all elevations, the
model that used spectral cues with higher amplitude resolu-
tion (greater number of quantization levetmve smaller av-
erage spherical angles for the distributions. For the directions
e 55 80 5 o 45 8o T 10 close to(0 degrees, 0 degreeshowever, all three models

Actual azimuth had similar spherical angular error. In addition, the extent of

F1G. 7. Front_back confusi ¢ the) model. (i) h st i the front—back(FB) confusions were also negatively corre-
. [. Front—pack contusions o moael, uman listener, an . .
the group of 19 listeners. Front—back confused data are plotted using emp!é’ued to.the number of quan_tlzatlon Ievé@ t9 40 IeV8|$
circles and non-front—back confused data are plotted using dots. rom Fig. 11, the model with 10_ quantization levels pro-
duced the most front—back confusion errors among the three

. models; the model with 40 quantization levels gave almost
that were quantized to 10, 20, 40, and 100 levels over the X q 9

total dynamic range of the normalized spectral cues. For in-° front—back confused estimates.
y 9 P ) The levels of performance with 20 quantized levels was

stance, V\_/hen the quantization parameter was sgt to 40 level bsest to that exhibited by the human subjetgs. 4, 5,
a normalized monaural spectral cue was approximated by 4 . .
. . . and 9. Increasing the number of quantized levels beyond 40
equally spaced discrete values between 0 tonglusive. . )
. roduced only a slightly higher SCC and more front—back
Each analog value of spectrum amplitude was rounded to thi2 .
o i . confused estimates.
closest quantization level. The azimuth and elevation sys-
tematic errorgFigs. 8 and 9 spherical angular erraiFig.
10), and the front—back confusion errgfEg. 11 have been
plotted for 10, 20, and 40 quantization levels. E1-E4 in The number of hidden layer neurones will affect the
Table | correspond to the models trained with spectral cuesformation storage capacity of the ANBaum and Haus-
guantized to 10, 20, 40, and 100 quantization levels, respesler, 1989. As a control experiment, it was important in this
tively. study to demonstrate that the ANN architecture we were em-
The pattern and magnitude of the systematic errors denploying was not a limiting factor in the performance of the
onstrated by the different models showed only marginaimodel. In experiments E7, E2, and E8, the number of hidden

Corrected perceived azimuth

D. Effects of number of hidden layer neurone
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Elevation systematic error (degrees)

Average spherical angle (degrees)
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FIG. 9. Eg, for models trained with spectral cues quantized todd), 20
(circle), and 40(cross levels. FIG. 10. Spherical angular error for models trained with spectral cues quan-
tized to 10(dot), 20 (circle), and 40(cros3 levels.

layer neurones was six, eight, and ten, respectively. With six

hidden layer neurones, there was a substantial decrease in tﬁﬁ)cess there are at least two types of errors that may be
SCC and a twofold increase in the number of FB confusiongyesent in the estimates. First, for sound locations that re-

when compared to the model with eight hidden layer neuqire very small or large movements of the head to the me-
rones. In contrast, an increase to ten neurones had only @yanical limits of motion, there is a tendency for the listener

marginal effect on the SCC and a similar number of FBy, hoint towards the source using a combined movement of
confusions. We concluded from this experiment that the Pelthe head and the eyes, rather than only the movement of the
formance of our standard model was not bound by capacitheaq. As the method of detecting the perceived location of
of our ANN with eight hidden layer neurones required 10{he sound source involves tracking the position of the head

carry out an effective input—output mapping. (rather than the eygsthe “eye capture” of the perceived
target location may produce systematic errors in estimating
IV. DISCUSSION the perceived location. This type of systematic error is clas-

sified as a motor errdfor a full discussion see Carlilet al.,
1997. In addition to motor error, there are also spatially
The localization performance of the model was com-dependent variations in the localization performance found
pared with the individual listener from whom the HRTFs in experiments that have minimized the presence of motor
were obtained and with a group of 19 human listeri€@ar-  errors(Gilkey et al, 1995; Carlileet al,, 1997 which can be
lile et al, 1997. Although there is a good match between theattributed to sensory error. Since the model used the HRTFs
three sets of data, there are some characteristic differences. the individual listener, one would expect similar features
Some of these differences can probably be attributed to th be found in their results if the behavior of the model was
differences in the sample sizes for each group. This is pareonstrained similarly to that of the human even though the
ticularly evident with the sharp variations in the azimuthalmagnitudes of the model systematic errors were close to the
systematic errordig. 4) for the individual human data com- individual listener and the group results. The systematic er-
pared to the group data and to a lesser extent the model. rors(Figs. 4 and bmade by the model were more symmetri-
A second source of difference is likely to originate from cal about the median plane than that of the individual lis-
the response measures. In testing human localization perforener. The asymmetry in the single listener's errors might
mance, the listener was asked to point his or her nose in thigave resulted from motor errors or other response biases. We
direction of the sourcéCarlile et al, 1997. Although turn-  have not attempted to include any of these latter kinds of
ing to face towards a sound source is a highly ecologicaérrors in our model.

A. Broadband localization
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(a) ' The close similarities between the average spherical an-
gular error and systematic error close to the median plane in
the results collected from the model and the human listeners
also suggests that localization cue features used by the model
were similar to those used by human listeners. This in turn
provides support for the notion that the model parameters
were set to psychophysically plausible values.

B. Effect of amplitude quantization on localization

performance
There was no significant change in the pattern of the
180-135 -90 45 0 45 90 135 180 systematic errors with the variations in the number of quan-
Actual azimuth tization levels applied to the monaural spectral cues. Rather,
(b) the more significant changes were in the magnitude of the

distribution of the estimates. In general, the spherical angular
error of the distribution of estimates increased as the number
of quantization levels was decreased. This indicates that the
detail in the monaural localization cues can provide informa-
tion important for accurate localization performance. It was
interesting that even with a quantization level of only ten
steps, the extent of the systematic errors was similar to the
other models, and the distribution of estimates was only
slightly greater than models with higher quantization. How-
ever, with ten-step quantization, there was a significant in-
crease in front—back confusions.

This strongly suggests that the detail in the spectral cues
could contribute to the processes involved in resolving
(©) front—back confusions. Of interest, the model with 100 quan-
tization levels showed slightly more front—back confusions
than the model with 40 quantization levels although the
SCCs at 40 and 100 were the same. This may indicate that
the fine detail in the spectral cues caused by the randomness
of the white noise had an undue influence on the develop-
ment of the network during training. As a result the model
became more sensitive to such random detail which resulted
in increased front—back confusions.

This result suggests that the auditory system may not
need to exploit the full detail of the spectral cues available to

perform accurate localization. Alternatively, the auditory

-180-135-90 -45 0 45 90 135 180 i h
Actual azimuth system may be unable to encode or resolve high resolution
changes in amplitude that are characterized by the measured
FIG. 11. Front—back confusions for models trained with spectral cues quanycoustical HRTF. From the experiments, the model that used
tized to(a) 10, (b) 20, and(c) 40 levels. . .

spectral cues with 20 discrete levels produced a performance

. ) ~ most similar to that of the human, which implies that the

For instance, both the systematic error and the size ofgitory system might only require about 4 bits of resolution

the error distributions were observed to increase with thy the spectral amplitude cues to perform reliable localiza-
azimuth of the sound source. In localization experiments thaggp

involved a human listener, when the sound source was be-
hind the listener, the listener was unable to swivel his/herC Effect of MAF correction on model performance
head towards the back without body movement to point their™ P

nose at the perceived sound location. The judgment of the An initial design decision in the model front end was to
azimuthal angle traveled may well be less accurate than relaaclude the frequency sensitivity function of the auditory
tively smaller azimuth movements accomplished by the headystem in the form of the minimum audible fielAF)
alone. This is consistent with observations that for the humafunction in line with earlier excitation pattern estimates of
listeners, the azimuthal localization error was smallest wheiCarlile and Pralong1994). The underlying rationale was
the source was on the median plane and close to the audithat the MAF weighting should affect the saliency of various
visual horizon. The slightly greater accuracy demonstratedpectral components of the broadband sound. The cochlear
by the model for more lateral and posterior location may banodel itself does not have a frequency dependence in thresh-
due to the absence of motor error in the model’s result.  old sensitivity; however, the use of the MAF, determined

-180-135-90 -45 0 45 80 135 180
Actual azimuth

45

Corrected perceived azimuth
o
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TABLE Il. Model architecture summary.

Neti et al. (1992 Jankoet al. (1995 Chau and Dud#1995 This work
Spectral analysis n/a FFT FFT and gamma- Patterson—Holdsworth
tone filter bank cochlear model

Spectral cues Yes Yes Yes Yes
Interaural time No Yes Yes Yes
difference cue
Interaural level No Yes Yes No
difference cue
ANN 128 input 1 to 23 input No 288 input

8 hidden 50 hidden 8 hidden

187 output 30 output 162 output
Azimuth and —75<az<75 degrees —180<az<180 degrees Not stated —180<az=180 degrees
elevation range —30<el<90 degrees —b54<el<54 degrees —80<el<80 degrees
Distortion on No Amplitude and No Quantization and MAF
localization cues time jitter

psychophysically, lumps together all of the threshold sensitheir model. In contrast, we have explicitly examined the role
tivity components of the auditory system. To test whetherof amplitude features using a quantization parameter which
this weighting was relevant at the simulated stimulus levelsietermines the number of equally spaced quantized levels
used in this model we repeated the experiment using ouwivailable to code the monaural spectral cues.
standard model in the absence of MAF filtering. In the ab-  The model reported by Neét al. (1992 used an ANN
sence of MAF weighting, the SCC in experiment E2 in-for the transformation of auditory cues into a two-
creased from 0.944vith MAF) to 0.966(without MAF) but  dimensional output map to indicate the position of the sound
the front—back confusion weights were largely unchangedource. An important point of departure with this study was
(3.3% with MAF to 3.7% without MAF. This suggests that, that Netiet al. employed HRTFs measured from cats. The
at the simulated stimulus levels used in training and testingar of the cat is a quite different in acoustical structure to that
the current model, the MAF has only a minor effect on thegf the human and is well modelled as a truncated conical
quality of the information available to the ANN. It is a mat- o (Calford et al, 1984 whereas the human outer ear
ter for future investigation to explore the impact of the MAF jomonstrates more complex acoustic beha(@raw, 1974
at higher and lower input levels where the nonlinearity OfCarIiIe, 1996, Chap. 2 As a consequence, the nature of the
cochlear encoding would more likely result in distortions Ofspectral cues to localization are likely to be quite different
the encoded spectra. between these species. For instance, the HRTF of the cat
displays a number of middle frequency notches whose center
D. Comparison with previously reported models frequencies vary systematically with locatigRice et al.,

Several previously reported models have been reviewed?92 Where similar systematic changes in notches are not

(Searleet al, 1976; Lazzaro and Mead, 1989; Middlebrooks, €Vident in the human HRTFCarlile and Pralong, 1994Not
1992: Netiet al. 1992: Horiuchi. 1994 Chau and Duda. Withstanding these differences in what is being modelled, the

1995: Lim and Duda, 1995: Jank al, 1999. Neti et al. model itself provides important insights in the approach and
(1992, Chau and Dud&1995, and Janket al. (1995 em- W€ have adopted.much of the architecture for the model re-
ploy models with a similar architecture to the model reportedPOrted here. For instance, all neurones in successive layers
in this paper. Table Il summarizes the architecture of thes¥/€re fully connected, and the ANNs were trained to generate
model and the model reported in this paper. Apart from thé?utput activities which resemblle a dquble Gaussian dlstr|bu—
models by Lazarr@t al. and Horiuchi which extracted only tion when mapped to the two-dimensional output map. Sixty-
the ITD cue, the other models reviewed together with thifour spectral channels were used as monaural inputs in Neti's
work used separate processing streams to extract the locdnodel although we settled on 128 cochlear channels after
ization cues(e.g., spectral cues and ITD Que exploring this parameter experimentally. Additionally we
All the models also used the HRTF to filter the acoustichave included an ITD analysis stream which was not in-
cues into neural excitation patterns. Netial. (1992 used cluded by Netiet al. Their model with ten hidden layer neu-
the HRTF measured in anaesthetized cats, and assumed tfi@fes which was trained using both left and right monaural
the HRTF and the neural excitation pattern had the sameépectral cues gave the best results. This is consistent with the
profile. Chau and Dudé1995 estimated the neural excita- findings reported here.
tion pattern by filtering a broadband noise with the HRTF ~ The model reported by Janlet al. (1999 provided an
and passing the result through a cochlear model. Howeveamplitude and time jitter operator which is not found in other
neither model used the MAF to adjust the amplitude of themodels. After filtering a sound with the HRTF, each point of
inputs to the model. All of the previously reported modelsthe left and right channels were multiplied by a normally
used the full precision of the estimated neural excitation pateistributed amplitude jitter factor and subjected to a normally
tern, although Lim and Dudél995 noted that the spectral distributed time delay. The standard deviation of the ampli-
fine structures were not necessary for accurate localization itude jitter was 0.25 and the standard deviation of the time
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