
Map-reduce as a Programming Model for Custom Computing Machines

Jackson H.C. Yeung1, C.C. Tsang1, K.H. Tsoi1, Bill S.H. Kwan1,

Chris C.C. Cheung2, Anthony P.C. Chan2 and Philip H.W. Leong1

1Dept. of Computer Science and Engineering

The Chinese University of Hong Kong, Shatin NT, Hong Kong

and
2Cluster Technology Limited

Hong Kong Science and Technology Park, NT, Hong Kong

{hcyeung,cctsang,khtsoi,bkwan,phwl}@cse.cuhk.edu.hk, {cheungcc,pcchan}@clustertech.com

Abstract

The map-reduce model requires users to express their

problem in terms of a map function that processes single

records in a stream, and a reduce function that merges all

mapped outputs to produce a final result. By exposing struc-

tural similarity in this way, a number of key issues associ-

ated with the design of custom computing machines includ-

ing parallelisation; design complexity; software-hardware

partitioning; hardware-dependency, portability and scala-

bility can be easily addressed.

We present an implementation of a map-reduce library

supporting parallel field programmable gate arrays (FP-

GAs) and graphics processing units (GPUs). Paralleli-

sation due to pipelining, multiple datapaths and concur-

rent execution of FPGA/GPU hardware is automatically

achieved. Users first specify the map and reduce steps for

the problem in ANSI C and no knowledge of the underlying

hardware or parallelisation is needed. The source code is

then manually translated into a pipelined datapath which,

along with the map-reduce library, is compiled into appro-

priate binary configurations for the processing units. We

describe our experience in developing a number of bench-

mark problems in signal processing, Monte Carlo simula-

tion and scientific computing as well as report on the per-

formance of FPGA, GPU and hetereogeneous systems.

1 Introduction

Reconfigurable computing has been successfully applied

to a diverse range of applications including sorting and

searching, signal processing, cryptography, scientific com-

puting and logic emulation. High performance is obtained

by achieving high degrees of parallelism, and problem-

specific customisation of the hardware can be carried out

to a degree not possible in other technologies.

Extracting parallelism is a key issue in the design of such

machines. In the ideal case, designs would be described in

a sequential, algorithmic fashion and parallelism would be

automatically extracted by a compiler. Despite decades of

research in this area for both parallel computers and field

programmable custom computing machines (FCCMs), sat-

isfactory tools still do not exist. Common practice is to

identify the hardware/software interface and the hardware

parallelism manually, and then design separate datapath and

control circuits to implement them using reconfigurable fab-

ric. This ad-hoc approach is used often to the detriment of

design time, efficiency, portability and reuse.

In this work, a parallelisation methodology based on

the map-reduce higher order functions common in func-

tional languages is presented which supports both field pro-

grammable gate array (FPGA) and graphics processing unit

(GPU) based processing units. Map-reduce has the follow-

ing advantages:

• When a problem is expressed in a map-reduce form,

it is easy to parallelise the computation, distribute data

to the processors and to load balance between them.

The details concerning all these issues can be hid-

den from the user and opportunities for task-level and

instruction-level parallelisation are easily identified.

• Designs are easily partitioned between hardware and

software.

• Map-reduce provides an interface that is independent

of the back-end technology. This provides a conve-

1

nient means for employing multiple, heterogeneous

accelerators; separate machine dependent and machine

independent implementation issues and improve porta-

bility.

• The complexity of a map-reduce library is very low

and can be understood, modified and extended by most

developers. This is in contrast to a parallelising com-

piler which requires far more expertise.

Although functional programming languages are well

known to be good for expressing parallelism, we are not

aware of any other design methodology for reconfigurable

computing that is able to combine the benefits of the pro-

posed approach. Map-reduce can be used in conjunction

with other techniques to further improve performance.

The rest of the paper is organised as follows. In Sec-

tion 2, a review of previous map-reduce software implemen-

tations is given. In Section 3, our map-reduce methodology

is detailed. Our benchmark set is introduced in Section 4

and results are given in Section 5. Finally, conclusions are

drawn in Section 6.

2 Background

The origins of the map function in programming can be

traced back to the LISP programming language [1] and re-

duce to APL [2], the precise specification being dependent

on the implementation. A detailed study of several differ-

ent implementations is given in reference [3]. Map-reduce

operations are often used in standard imperative languages.

Waters studied programs in the IBM Scientific Subroutine

Package and found that that 90% of the code could be ex-

pressed as maps, filters and accumulations [4].

Map-reduce typically takes as inputs: a list of input

records l, a map function and a reduce function. The map

function is applied to each element of the list to form a new

list to which the binary reduce operation is then applied.

We assume the map and reduce functions do not have side

effects, and reduce is a binary operator which is both as-

sociative and commutative. This means that the map and

reduce operations can be executed in any order and in par-

allel. In addition, we assume that the list can be infinite in

length, and is hence a stream.

We will use a simple Monte Carlo simulation (MCS) to

compute an approximation to π as an example of applying

map-reduce. Imagine a circle of radius r circumscribed by

a square with sides of length 2r. If a large number of darts

are thrown uniformly at the square, the proportion of darts

which hit inside the circle is given by:

area of circle

area of square
=

πr2

(2r)2
= π/4. (1)

The above proportion is the same if only the top, right

hand quarter of a square centered at the origin is consid-

ered. Thus, if r = 1, π can be approximated by randomly

generating two random numbers, x, y ∈ [0, 1), calculating

whether the coordinate (x, y) is within the top quarter of a

circle (x2 +y2 < 1), counting the proportion of trials inside

and outside the circle, and multiplying this result by 4.

Using map-reduce, the map function, pi map, is

pi map(x, y) =

{

1 ((x2 + y2) < 1)
0 otherwise

(2)

and the reduce function

pi reduce(a, b) = a + b. (3)

A stream of N pairs of uniform random numbers ∈ [0, 1)
are applied to the map function and the outputs reduced to

produce the value of h in the above pseudocode. The ap-

proximation is then computed as 4h
N

.

Map-reduce is used in Google’s “MapReduce” library to

utilise large-scale clusters for parallelised data processing

applications [5]. Programmers simply describe the asso-

ciated map-reduce computation and a map-reduce library

deals with the issues of configuration, initialisation, net-

working, load balancing and fault tolerance. This serves to

provide programmers with a simple means to develop appli-

cations for a massively parallel machine without the usual

associated complexity.

Sawzall is an interpreted language used at Google which

makes writing MapReduce programs easier and 10-20 times

shorter. For example in March 2005, on a 1500 machine

cluster at Google, 32,580 Sawzall jobs were launched, each

using an average of 220 machines. In total, 2.8 pentabytes

of data were read, 9.3 terabytes written and one machine-

century of central processing unit time were consumed [6].

Chu et. al., used map-reduce as a framework for imple-

menting parallelised machine learning algorithms on multi-

core machines [7]. They showed that a variety of algorithms

including locally weighted linear regression, K-means, lo-

gistic regression, naive Bayes, support vector machine, in-

dependent component analysis, principal component analy-

sis, Gaussian discriminative analysis, expectation maximi-

sation and backpropagation can be described and efficiently

implemented on multicore and multiprocessor machines.

The Brook [8] language for stream computing on GPUs di-

rectly supports the efficient compilation of map and reduce

operations.

3 Map-reduce Methodology

3.1 API

The application programming interface (API) of the

map-reduce implementation has a single entry point,

mapreduce() and the mapreduce t structure provides

all of the required data.

typedef struct {

void *parameter; /* passed to fns */

int i_size; /* in rec size (bytes) */

int o_size; /* out rec size */

int (*infn)(void *i_buf, void *param);

void (*mapfn)(void *o_buf,

void *ibuf, void *param);

void (*redfn)(void *result, void *o_buf,

void *param);

void *result; /* result written here */

} mapreduce_t;

extern void mapreduce(mapreduce_t *);

All pointers to input and output records require preallo-

cated memory for a single record entry. The parameter

argument is used to pass information to the three function

pointers infn, mapfn and redfn. This is normally a

fixed block of memory which is directly copied from the

host machine to the hardware accelerator card for access

during the computation.

Since we assume map-reduce functions do not have side-

effects, multiple instances can be executed in parallel with-

out conflict. Unfortunately, strictly conforming is restrictive

and in fact, the API already has side-effects as the map func-

tion must put its result in the o buf buffer and the reduce

function manipulates the result pointer *result. As an

example, the π calculation described in Section 2 makes a

function call to a random number generator (RNG) which

requires state information. If parallel instances are invoked

with the same initial state, identical sequences would result.

Our solution is to enforce the rule that the map and reduce

functions have no side effects with the exception that: a li-

brary of safe functions for random number generation can

be called and writing to o buf and *result are allowed.

3.2 Software Implementation

An example of the usage of this library for the π example

is given in this section. The user must first manually parti-

tion the algorithm into input, map and reduce functions. The

code for these functions are described below.

First the input and output types of the map function are

defined.

typedef struct {

float a; float b;

} map_in_t;

typedef int map_out_t;

typedef struct {

unsigned iterations;

} map_param_t;

Then the three required functions are described as below.

int

pi_input(map_in_t *e, map_param_t *p) {

e->a = Tausworthe_RAND();

e->b = Tausworthe_RAND();

/* return 0 when finished */

return p->iterations--;

}

void

pi_map(map_out_t *out,

map_in_t *in, map_param_t *p) {

*out = (in->a*in->a + in->b*in->b) > 1.0

? 0 : 1;

}

void

pi_reduce(map_out_t *r,

map_out_t *a, map_param_t *p) {

*r = *r + *a;

}

The pi input() function generates the two random

numbers for the map function to consume. It uses the li-

brary’s builtin uniform random number generator which

implements the Tausworthe algorithm [9]. This RNG ini-

tialises state information uniquely for different map execu-

tions and hence can safely be invoked in parallel. Other

library functions may also be used to access special fea-

tures of the hardware. These functions are replaced by

the appropriate implementation on the target platform. The

pi map() and pi reduce() functions implement Equa-

tion 2 and Equation 3 respectively in a straightforward man-

ner. This implementation of pi reduce only takes one

input and hence does not allow an efficient binary reduc-

tion tree implementation. This can be improved in future

versions.

To supply the required parameters to the

mapreduce() function, the user creates a

mapreduce t structure and fills in the relevant fields.

mapreduce_t m;

map_out_t result;

map_param_t p;

m.parameter = &p;

m.i_size = sizeof(map_in_t);

m.o_size = sizeof(map_out_t);

m.infn = &pi_input;

m.mapfn = &pi_map;

m.redfn = &pi_reduce;

m.result = &result

Finally a call to mapreduce (mapreduce(&m)) is

made which performs the calculation. The result of the

computation is stored in the location pointed to by result.

The above implementation can be translated to the target

platform as described in the next section. A C version of the

mapreduce() function is given below.

void mapreduce(mapreduce_t *mp) {

int i;

void *i_buf;

void *o_buf;

/* allocate the memory */

i_buf = malloc(mp->i_size);

o_buf = malloc(mp->o_size);

while ((*mp->infn)(i_buf,

mp->parameter, i, NULL, 0)) {

(*mp->mapfn)

(o_buf, i_buf, mp->parameter, i);

(*mp->redfn)

(mp->result, o_buf, mp->parameter);

}

free(i_buf); free(o_buf);

}

3.3 Hardware Translation

The next phase is to translate the above code to the

target hardware, this being simplified because the func-

tions do not have side effects. Although translation is cur-

rently done manually, we are working on a simple source-

to-source compiler that takes the ANSI C input, map and

reduce functions, and creates a Celoxica Handel-C imple-

mentation. The HyperStreams library [10] is used to create

pipelined implementations of the basic blocks and control

flow is handled in Handel-C. These descriptions can then

be directly compiled to FPGA bitstreams. If the functions

have no dependencies, as is the case for the π example, the

resulting FPGA implementation is fully pipelined, an out-

put being produced every cycle. We note that the quality

of the implementation generated by Handel-C can greatly

affect the overall performance of the system.

macro proc pi_map(Output, X, Y, Domain) {

HS_SINGLE(One); HS_SINGLE(X2);

HS_SINGLE(Y2); HS_SINGLE(R2);

HS_BOOL(R2LtOne);

par {

HsSyncConstant(&One, 1.0);

/* match latency of the 3 streams */

HsSync(3, { X, Y, &One }, Domain);

HsMul(X, X, &X2); HsMul(Y, Y, &Y2);

HsAdd(&X2, &Y2, &R2);

HsLt(&R2, &One, &R2LtOne);

HsConvert(&R2LtOne, Output); }

}

macro proc

pi_reduce(Input, N, Output, Domain)

{ HsSumVar(Input, N, Sum, Domain); }

Multiple map-reduce pipelines are instantiated on the

same FPGA in order to further increase parallelism. A sin-

gle core is first created and its resource utilisation measured.

The maximum number of cores that can fit on the FPGA is

then estimated and a new design generated. In contrast to

some other parallelisation schemes, this ensures that most

of the resources on the FPGA are utilised.

3.4 Graphics Processing Unit

The NVIDIA Geforce 8 series GPUs contain multiple

SIMD processors. Each “multiprocessor” has 8 SIMD

processors, a small (16 kB) user programmable cache, an

instruction unit, register file and local memory. Using

NVIDIA’s CUDA C-to-GPU compiler [11], GPU programs

can be written in a similar way to standard multithreaded C

programs.

Apart from minor differences in the SIMD model, host

to hardware data transfer, memory model and language

syntax, the CUDA code is analogous to a fixed hardware

pipeline in HyperStreams, while multithreading is analo-

gous to building multiple cores on an FPGA. As a result,

the methodology for translating the input, map and reduce

functions from C to HyperStreams or C to CUDA code is

similar, and the actual body of the map-reduce C descrip-

tions can be used directly in the GPU implementation.

3.5 Scheduling

Parallel map-reduce operations are performed on het-

erogeneous processing units (either FPGA or GPU) in our

implementation. A POSIX pthreads-based multi-threaded

scheduler is employed, allowing us to make use of mul-

ticore processor technology. The software-based sched-

uler is responsible for data buffering, task execution and

load-balancing between computational threads. The com-

putational threads supply data to hardware processing units

which can be an arbitrary mix of FPGA and GPU boards.

In the current implementation, the input data are first di-

vided by the scheduler into a number of temporary buffers.

This is done by calling the input function the appropriate

number of times to fill the buffers. This subtask data is

then streamed to each parallel processing unit which per-

forms the map-reduce operation and returns a reduced re-

sult. When a subtask is completed, the computational thread

will reduce its output with previous outputs and assign a

new subtask. This is repeated until the entire computation

has completed. A diagram illustrating this process is given

in Figure 1. Although not currently implemented, dynamic

subtask sizing in which fast processing units get larger jobs

may improve performance.

GPU

Map

Map

Map

Reduce

FPGA

Map

Map

Map

Reduce

GPU Thread

FPGA Thread

Scheduler

Buffer1

Buffer2

…
…
…

…
…
…

Distribute

data

Distribute

data

Input

Function

Entire

data set

Subtask 1

Subtask 2

Reduced

Value 1

Reduced

Value 2

Figure 1. Illustration of the operation of the scheduler.

Although the above is a clean model for hardware-

software partitioning, it may not result in the highest effi-

ciency. As an example, the input function is best generated

in hardware as its computation takes a significant fraction

of total execution time, and sending a large amount of data

from a software-based input function to a hardware-based

map-reduce function is a bottleneck. A solution is an opti-

misation in which the input function is merged with the map

function as shown below.

void

pi_fastmap(map_out_t *out, map_param_t *p) {

float a = Tausworthe_Rand();

float b = Tausworthe_Rand();

*out = (a*a + b*b) > 1.0 ? 0 : 1;

}

In order to use this new function, it must be called

an appropriate (possibly infinite as the input could be

a stream of data) number of times. This is done with

an internal iterator function supplied in the library called

range(), a special type of input function. In hardware,

range() is implemented using a counter that feeds di-

rectly to pi fastmap(). The initial and final values of

this counter are all that needs be transferred from the host

to the processing unit. Furthermore, in contrast to arbitrary

loops, the semantics of range() are easy to understand so

the scheduler can divide ranges into subranges and execute

them in parallel. This is not possible for general input func-

tions which often have side effects as they may need to read

files, analogue-to-digital converters etc.

4 Benchmarks

To demonstrate the applicability of our map-reduce

framework, five examples have been constructed. Each ex-

ample is presented in detail in this section. We found the

implementations of the benchmarks using map-reduce had

very similar architectures to standard parallel implementa-

tions. It should be noted that in our implementations of the

π, European option and N-body benchmarks, for very large

numbers of iterations, inaccurate results are returned. This

is because relatively small numbers are added to very large

accumulated sums resulting in numerical errors. In the fu-

ture we will employ an algorithm such as the Kahan sum-

mation algorithm [12] to improve accuracy.

Dot Product. The dot product c =
∑

i aibi is a primitive

in many signal processing and linear algebra applications

including filters, transforms and regression. In our map-

reduce implementation, we perform the multiplications in

the map function and additions in the reduce function. We

note that we can express matrix-vector and matrix-matrix

products in terms of the dot product by simply changing the

data types of the records and operators. For example, in a

matrix-vector product (mv), the records are the rows of m

and each record is mapped by a dot product with v.

For a hardware-based implementation of dot product, the

I/O overheads are expected to far exceed any computational

advantages of a parallel datapath. Hence we made another

implementation which reduces the I/O by using random in-

put data which is generated in hardware.

π Computation. Monte Carlo simulation is used to ap-

proximate the value of π as presented in section 2. The im-

plementation of the map function in this example includes

a call to the Tausworthe RNG algorithm and the range()

input function is used. For N paths, the output of the map

function is a stream of binary values ∈ {0, 1}. The reduce

function is addition and π is computed by multiplying the

reduced value by 4/N on the host computer.

European Option. The Monte Carlo simulation of a

Black Scholes options pricing model for a European call op-

tion [13, 14] is computed via Monte Carlo simulation. This

benchmark is very similar to the π example and is described

by the following pseudocode:

europt() {

for k=1 to N {

PriceVary = exp (Mean + SD * GRNG());

MyPrice = Price * PriceVary;

Profit = MyPrice - Strike;

if (Profit > 0)

PayoffSum = PayoffSum + Profit;

}

return PayoffSum;

}

where GRNG() is a function call to a Gaussian ran-

dom number generator (GRNG) implemented using the

Box Muller method [15]. In this example, the map func-

tion includes the GRNG and the calculation of Profit

and implements a single path in the simulation. As for the π
computation, the range() input function is used. The out-

put of the map function is the computed value of Profit

in which negative values are replaced by zero. The reduce

function sums the outputs of the map function. The pseu-

docode for the corresponding mapreduce implementation is

given below.

euro_fastmap(out, param) {

in = GRNG();

PriceVary = exp(param.Mean +

param.SD * in);

out = param.Price * PriceVary -

param.Strike;

}

euro_reduce(result, in, param) {

if (in > 0)

result = result + in;

}

RC4 Key Search. Our map-reduce framework is also

used to parallelise a known plaintext attack of a 16-byte

message using the RC4 cipher [16]. The possible key space

of the 40-bit password is divided into blocks with a starting

key. The map function input is an index indicating the po-

sition to start the search and implemented using range().

The output is 1 and the key if the search was successful,

zero otherwise. Each map function performs a key schedul-

ing process and generates a stream which is compared to

the know sequence. The map function is shown below, all

operations being byte operations:

for all keys in assigned search space {

/* key initialisation */

for i=0 to 255 state[i] = i;

/* key scheduling */

j = 0;

for i=0 to 255 {

j = (j + key[i] + state[i]);

swap state[i] stage[j];

}

/* stream phase */

i = 0; j = 0;

for k=0 to TXT_LENGTH-1 {

i = i + 1;

j = j + state[i];

swap state[i] state[j];

t = state[i] + state[j];

ctxt[k] = state[t];

}

/* compare to known sequence */

if ctxt == KNOWN_SEQ

return {1, key};

else

return {0, NULL};

}

This problem differs from the others in that it contains

loops with dependencies. As a result, a lower degree of

pipelining can be achieved. The reduce function, imple-

mented on the host, checks the return value and outputs the

correct key if found.

N-body Problem. In this example, our map-reduce

framework was applied to the n-body simulation which

traces the trajectory in time of n particles under gravita-

tion force [17]. In our implementation, n = 16384 and

initialisation of the particles was randomly generated using

the Tausworthe RNG. Input to the map function are the cur-

rent information for the n particles (passed in the *param

pointer) and the particle index to be computed. The output

is its acceleration. Hence for each particle, acceleration is

computed as follows:

aj =
n

∑

k 6=j

mk

(xj − xk)

|xj − xk|3
j = 1, 2, . . . , n (4)

and the new state for each particle is computed in the reduce

function:

vj = vj + aj∆t

xj = xj + vj∆t

where aj, vj and xj are the acceleration, velocity and po-

sition vectors for particle j respectively, mj is its mass and

∆t is a constant timestep.

5 Results

This section describes results obtained running the

benchmarks described in the previous section. C source

code is compiled with gcc 4.1.1 (-O3 optimisation) and

used as a baseline for comparison. All FPGA implementa-

tions are compiled using Celoxica Handel-C DK5 and im-

plemented using Xilinx ISE9.2i. GPU implementations are

compiled using CUDA toolkit 1.1.

All tests are run on a personal computer (PC) equipped

with a 2.4 GHz Intel Core 2 Duo E6600 central process-

ing unit (CPU) and 2 GB of main memory running Linux.

A Celoxica RC2000-Pro board (with a Xilinx Virtex II Pro

XC2VP100-5 device) and an NVIDIA Geforce 8800GTX

GPU are connected to the PC. The 8800GTX has 16 mul-

tiprocessors and has a total of 128 processing units. In all

GPU implementations, 4096 threads are used, although re-

sults are not sensitive to this parameter.

The benchmark programs are implemented using the

map-reduce methodology and library. This results in de-

scriptions which are concise and a large amount of code

reuse.

5.1 Multiple Pipelines

Figure 2 shows the speedup of the π benchmark com-

pared with the CPU-based software implementation, for dif-

ferent numbers of simulation paths (iterations). The CPU

implementation is not multithreaded so only a single core is

used. For small numbers of paths, no speedup is achieved

as the overhead of initialising and transferring data to the

FPGA/GPU card does not justify the amount of computa-

tion to be performed. At 1 million paths, the FPGA speedup

is approximately linear with the number of pipeline cores as

expected. GPU initialisation has a higher overhead than the

FPGA (of the order of hundreds of milliseconds) but for a

large number of paths, its performance is greater. Even for

a very large problem size, we were unable to saturate the

GPU’s performance for this simple computation. Of course,

if problem size or complexity is further increased, we would

expect saturation of the curve for this example as GPU re-

sources are limited.

5.2 FPGA and GPU Comparison

FPGA and GPU implementations of the benchmarks

were created. FPGA implementation details are given in

Table 1 and the speedup in Figure 3, where speedup is

the maximum speedup observed over a number of different

problem sizes. In all cases, speedup increases with problem

size as this increases the ratio of computation that can be

performed in hardware compared with the initialisation and

transfer overheads. In general, higher maximum speedups

were observed for the GPU than the FPGA, especially for

large problem sizes.

As expected, the dot product does not show any speedup

over the CPU implementation as the overhead of transfer-

ring data to the FPGA or GPU card is very high. For the

random dot product case, there is essentially no I/O and sig-

nificant speedups are seen.

Due to the way iteration is handled in the translation pro-

cess described in Section 3.3, the FPGA-based N-body im-

plementation is not very efficient. The sum in Equation 4

is implemented as a loop and the rest as a parallel datap-

ath and is not fully pipelined. This results in relatively poor

performance compared with both the CPU and GPU. We

expect that a better pipelining scheme for the FPGA would

improve its performance by an order of magnitude.

For RC4, neither the GPU nor FPGA is able to achieve

a significant speedup. This is partly because the RC4 al-

gorithm runs extremely efficiently on the CPU, but also

surprising as we reported on a manually-optimised FPGA

implementation in 2002 which was able to achieve a 60×
improvement over a CPU [16]. Our manual implementa-

tion was very compact which allowed 96 cores to be imple-

mented on a single FPGA. In contrast, our Handel-C imple-

mentation of the map function involved a direct translation

from C, and only 5 cores could fit on a single FPGA; more-

over, more clock cycles per key are also required and it runs

at a lower clock frequency. We hence believe that the poor

performance of the FPGA is due to Handel-C synthesis-

ing a less than optimal implementation of the algorithm and

much better performance of a map-reduce implementation

is achievable. Similarly, the GPU implementation could be

better optimised for memory locality and thus performance.

The π and European option examples achieved signifi-

cant speedups. Both involve single precision floating point

computations and are fully pipelined, hence high degrees of

parallelism achieved.

The speedup as a function of the problem size is shown

for the European option and the N-body problem respec-

tively in Figure 4 and Figure 5. In both cases, performance

improves with problem size as initialisation and transfer

overheads are amortised over a larger amount of computa-

tion. For the European option, the FPGA implementation is

faster than the GPU for less than 40 million paths (we note

Monte Carlo Pi Computation - Speedup

0

10

20

30

40

50

60

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10

Number of iteration

S
p
e
e
d
u
p

FPGA - Single pipeline
FPGA - 2 pipeline
FPGA - 4 pipeline
FPGA - 8 pipeline
FPGA - 16 pipeline
GPU - 128 Cores

Figure 2. Monte Carlo π computation speedup.

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

Dot Product Dot Product

(random data)

Pi European

Option

RC4 N-Body

Benchmark

S
p
e
e
d
u
p

FPGA GPU

Figure 3. Speedup of FPGA and GPU compared with the CPU. Implementation details are given in
Table 1, the largest problem size being chosen for each benchmark.

Bmark Cores Clock Area B- Speed-

(MHz) (Slices) rams up (×)

Dot 8 32 14542 32 7e-05

Dot 16 40 44094 16 12.1

(rand)

π 1 63 3430 16 1.8

π 2 60 6053 16 3.5

π 4 61 11285 16 7.0

π 8 60 21590 16 13.9

π 16 60 42591 16 27.6

Euro 1 53 23106 78 20.0

RC4 1 40 10839 32 0.1

RC4 2 40 20823 32 0.2

RC4 5 40 44094 32 0.5

N-bdy 1 31 26098 435 1.6

Table 1. FPGA implementation and perfor-
mance summary.

that in practical applications, one would not expect to re-

quire more than this number of paths) and hence the FPGA

has higher speedup due to lower initialisation costs for small

to medium sized problems. Remarkably, the speedup for the

GPU only begins to saturate at 231 paths.

5.3 Heterogeneous Execution

We also performed a test in which the benchmark ex-

amples are executed on both the FPGA and GPU simulta-

neously. The problem size for some of the benchmarks is

reduced so that the FPGA and GPU speedup are similar in

value and the results are shown in Figure 6. It can be seen

that in cases where the FPGA and GPU performance is sim-

ilar, heterogeneous execution results in an overall speedup

over a single processing unit. For the benchmarks in the

figure with much higher GPU speedup than FPGA speedup,

the combined performance is very close to the GPU perfor-

mance as the FPGA contributes little to the overall com-

puting power. Best utilisation of a heterogeneous system

would be for problems which can be divided into different

parts where the GPU is efficient for one and the FPGA an-

other.

6 Conclusion

A map-reduce library which encapsulates the code re-

quired for data transfer, interfacing and scheduling was

demonstrated, along with a number of applications to signal

processing, Monte Carlo simulation and scientific comput-

ing. It was further shown that, aided by the map-reduce

methodology and library, sizeable systems could be de-

veloped with high productivity and using concise problem

descriptions on heterogeneous FPGA/GPU-based custom

computing machines.

Map-reduce restricts the programming model to some

degree but offers the benefit that many difficult problems

associated with the design and portability of systems can

be greatly simplified. Excellent performance is achieved

through parallelism due to pipelining of the operators, mul-

tiple cores and multiple GPU and FPGA processing units.

Overall, GPUs showed higher levels of speedup over FP-

GAs. This is partly due to the benchmark set consisting

mostly of floating point and word-level operations for which

the GPU is better optimised, but also because the FPGA

platform used was much older than the GPU (0.13 µm vs

90 nm technology). The programming effort required to

produce the FPGA implementations was much higher than

that of the GPU, mainly due to two factors: the very long

compilation times (an hour for the FPGA compared with

seconds for the GPU) and the fact that CUDA uses standard

C with minor extensions whereas HyperStreams is signifi-

cantly different from C requires manual matching of laten-

cies in the datapath.

We believe that there is much scope for further re-

search in this area. Issues we intend to study in the

future include: power consumption; optimising compil-

ers to efficiently translate map-reduce functions directly to

CUDA and Handel-C; improved implementations of the

map-reduce library to support more generalised scheduling

and map-reduce operations; and other applications as case

studies, particularly in the data-mining and scientific com-

puting domains.

Acknowledgements

The authors gratefully acknowledge the support of the

Hong Kong Innovation and Technology Grant ITS/027/07,

“A Compiler for High Performance Computing on Array

Technologies,” and the Xilinx University Program.

References

[1] J. L. McCarthy, “Recursive functions of symbolic ex-

pressions and their computation by machine, part i,”

Communications of the ACM, vol. 3, no. 4, pp. 184–

195, 1960.

[2] K. E. Iverson, A programming language. New York,

NY, USA: John Wiley & Sons, Inc., 1962.

[3] R. Lämmel, “Google’s MapReduce Program-

ming Model – Revisited,” 2007, to appear in

Science of Computer Programming Journal;

http://www.cs.vu.nl/ ralf/MapReduce/.

European Option - Speedup

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10

Number of iteration

S
p
e
e
d
u
p

FPGA GPU

Figure 4. European option speedup.

Nbody problem - Speedup

0

5

10

15

20

25

30

35

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05

Number of particles

S
p
e
e
d
u
p

FPGA Acceleration

GPU Accleration

Figure 5. N-body problem speedup.

1.0E-01

1.0E+00

1.0E+01

1.0E+02

Dot Product Dot Product

(random data)

Pi European Option RC4 N-Body

Benchmark

S
p
e
e
d
u
p

FPGA

GPU

FPGA+GPU

Figure 6. Speedup of heterogeneous system.

[4] R. C. Waters, “A method for analyzing loop pro-

grams,” IEEE Trans. Softw. Eng., vol. 5, no. 3, pp.

237–247, 1979.

[5] J. Dean and S. Ghemawat, “Mapreduce: Simplified

data processing on large clusters,” in OSDI’04, 6th

Symposium on Operating Systems Design and Imple-

mentation, 2004, pp. 137–150.

[6] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan,

“Interpreting the data: Parallel analysis with sawzall,”

Scientific Programming, vol. 13, no. 4, pp. 277–298,

2005.

[7] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R. Brad-

ski, A. Y. Ng, and K. Olukotun, “Map-reduce for ma-

chine learning on multicore,” in Neural Information

Processing Systems (NIPS), 2006, pp. 281–288.

[8] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fata-

halian, M. Houston, and P. Hanrahan, “Brook for

gpus: stream computing on graphics hardware,” ACM

Trans. Graph., vol. 23, no. 3, pp. 777–786, 2004.

[9] P. L’Ecuyer, “Maximally equidistributed combined

tausworthe generators,” Mathematics of Computation,

vol. 65, no. 213, pp. 203–213, 1996.

[10] Celoxica, 2006. [Online]. Available:

http://www.celoxica.com

[11] NVIDIA Corporation, GPU Programming Guide,

2006.

[12] D. Goldberg, “What every computer scientist should

know about floating-point arithmetic,” ACM Comput-

ing Surveys, vol. 23, no. 1, pp. 5–48, 1991.

[13] J. Hull, Options, futures and other derivatives, 5th ed.

Prentice-Hall, 2002.

[14] G. Morris and M. Aubury, “Design space explo-

ration of the European option benchmark using Hyper-

streams,” in Proc. International Conference on Field-

Programmable Logic and its Applications. IEEE,

2007.

[15] W. Press, B. Flannery, S. Teukolsky, and W. Vetter-

ling, Numerical recipes. Cambridge University Press,

1986.

[16] K. H. Tsoi, K. H. Lee, and P. H. W. Leong, “A mas-

sively parallel RC4 key search engine,” in Proc. IEEE

Symposium on Field-Programmable Custom Comput-

ing Machines (FCCM), 2002, pp. 13–21.

[17] K. H. Tsoi, C. H. Ho, H. C. Yeung, and P. H. W.

Leong, “An arithmetic library and its application

to the n-body problem,” in Proc. IEEE Symposium

on Field-Programmable Custom Computing Machines

(FCCM), 2004, pp. 68–78.

