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ABSTRACT

A technique for parallelising multiple loops in a heteroge-
neous computing system is presented. Loops are first un-
rolled and then broken up into multiple tasks which are mapped
to reconfigurable hardware. A performance-driven optimi-
sation is applied to find the best unrolling factor for each
loop under hardware size constraints. The approach is demon-
strated using three applications: speech recognition, image
processing, and the N-Body problem. Experimental results
show that a maximum speedup of34 is achieved on a 274MHz
FPGA for the N-Body over a 2.6GHz microprocessor, which
is 4.1 times higher than an approach without unrolling.

1. INTRODUCTION

Microprocessors are commonly used to implement comput-
ing systems as they have the advantages of low cost and
fast development time. In performance-critical applications,
performance can be improved by introducing larger degrees
of spatial parallelism via reconfigurable hardware implemented
on field programmable gate arrays (FPGAs). Heterogeneous
computing systems using both microprocessors and FPGA-
based custom function units can combine advantages of both
for many applications.

Computational intensive tasks in digital signal process-
ing algorithms are usually iterative operations. Scheduling
such loops in a heterogeneous computing system to fully
utilise the available resources is difficult due to their com-
plex nature. Techniques which have been previously pro-
posed tend to address single loop only and are summarised
as follows.

• Control flow based [1][2]. This approach divides a
control flow graph into various sub-graphs based on
control edges and each sub-graph is scheduled inde-
pendently, typically list scheduling technique is used.
A complete scheduling is generated by combining all
the schedulings of sub-graphs. This approach only
analyse one iteration of the loop body, it doesn’t tar-
get on generating higher parallelism implementation
for multiprocessor systems.

• Modulo scheduling [3]. Generates a schedule for one
iteration of a loop so that all iterations repeat at a fixed
interval, i.e. a software pipelined design. Since only

a single iteration is analysed, limited parallelism is
achieved.

• Graph conversion [4]. An application with loop can
be characterised as a cyclic graph, this approach at-
tempts to find a better scheduling of the loop body
by using a graph traversal algorithm to convert the
cyclic graph to an acyclic one with minimised criti-
cal path. Depth first search technique is used to tra-
verse the cyclic graph and remove the feedback edge,
an acyclic graph scheduling technique is then used to
form a scheduling of the loop body. This approach
does not analyze task dependency in different itera-
tions which may result in reduced parallelism.

• Loop unrolling [5][6][7]. This is a common tech-
nique to generate an implementation with greater par-
allelism. It involves unrolling a loop and extracting
parallel tasks from different loop iterations. These ref-
erences have only been applied to parallelise a single
loop.

• Dynamic scheduling [8]. This approach schedules tasks
at run-time making use of both online and offline pa-
rameters. The loop condition is checked dynamically
at runtime. Loop parallelisation is not addressed in
this approach.

• Loop fission [9][10]: This approach breaks a loop into
multiple tasks and maps each individual one to FPGA.
Implementing applications which exceed the size con-
straint on FPGA thus becomes feasible. Since loop
unrolling is not involved, this approach results in lim-
ited parallelism.

A comparison between this work and different approaches
are shown in Table 1. Previous work has focused on paral-
lelising a single loop [3],[4],[5],[6],[7] and multi-loopopti-
misation has not been adequately addressed. Since recon-
figurable hardware in a heterogeneous system is capable of
supporting parallel execution of tasks, a major challenge is
to develop techniques which can effectively exploit this ca-
pability.

This work explores techniques to optimise applications
with multiple loops in a heterogeneous computing system.
Our recent work has shown that an integrated mapping and
scheduling scheme with multiple neighborhood functions [11],



Table 1. Some approaches to address mapping/scheduling.

references approach examples of applications comments

[1] [2] Control flow based
GCD, counter, multiprocessors system

Filtering not addressed

[3] Modulo scheduling DCT, FFT
analyze one iteration,

single loop

[4] Graph conversion random graphs
less parallelism,

single loop

[5] [6] [7] Loop unrolling
random graphs, FFT, solver

single loop unrolling
equalizer

[8] Dynamic scheduling fractal generation
loop unrolling not addressed,

single loop

[9][10] Loop fission JPEG compression, DCT, BPIC
loop unrolling not addressed,

single loop

this work Multi-loop unrolling
speech system global unrolling factors determining,

image processing, N-Body coarse-grained, heterogeneous systems

and combining mapping and scheduling with loop unrolling
[12] can achieve considerable performance gains. This work
complements those results through a method for optimising
the unrolling factors in multiple loops. The novel aspects of
this work are as follows:

• A performance-driven strategy, combined with an in-
tegrated mapping/scheduling system with multiple neigh-
borhood functions, to find the best unrolling factor for
each loop (Section 2.4).

• A static mapping and scheduling technique capable of
handling cyclic task graphs for which the number of
iterations are not known until run-time (Section 3.1
and Section 3.3).

• The introduction of additional management tasks for
dynamic data synchronisation while maintaining near
optimal performance when an accurate compile-time
prediction of the run-time condition is made (Section 3.2).

The remainder of this paper is organised as follows. The
proposed multi-loop parallelisation scheme is presented in
Section 2. Section 3 introduces the loop unrolling tech-
nique and provides an overview of the multiple neighbor-
hood function based mapping/scheduling system. Experi-
mental results are given in Section 4, and finally, concluding
remarks are given in Section 5.

2. MULTI-LOOP PARALLELISATION

2.1. Reference architecture

The reference heterogeneous computing system contains two
processing elements (PEs): one microprocessor and one FPGA.

Each processing element has a local memory for data stor-
age during task execution, and the communication channel
between these two processing elements is being assigned a
weight which specifies the data transfer rate. Results of a
task’s predecessors must be transferred to the local memory
before this task starts execution.

2.2. Notations

Given an application containing a loop (Figure 1a), the fol-
lowing are various notations used in this paper:

• Loop unrolling and unrolling factor: Loop unrolling
is a process to duplicate the body of a loop multiple
times and use them to replace the original body, where
the loop-control code is adjusted accordingly. The
number of copies being duplicated is called unrolling
factor. For example, Figure 1b shows an unrolled loop
with an unrolling factor of N.

• Loop fission and sub-loop: Loop fission is a pro-
cess to split a loop that contains multiple instructions
into a number of loops with the same loop control.
Each splitted loop is called a sub-loop which contains
a portion of instructions of the original loop body. For
instance, Figure 1c shows multiple sub-loops after fis-
sion.

• Task: A task is a block of consecutive instructions
derived from task partitioning stage for a given appli-
cation [13], e.g. a loop in Figure 1a is a task.

• Task graph: A task graph is an acyclic graph rep-
resenting the data flow dependencies of tasks, where



(a) original loop


(d) task graph of

original loop


(b) unrolled loop


 for (i=0; i<R; i++) {

   a[i] = b[i] + c[i];

 }


 for (i=0; i<R; i+=N) {

   a[i] = b[i] + c[i];

   a[i+1] = b[i+1] + c[i+1];

   ...

   ...

   a[i+N-1]=b[i+N-1]+c[i+N-1];

 }


(c) loop after fission


  for (i=0; i<R; i+=N) {

   a[i] = b[i] + c[i];

 }


(e) task graph after fission

 for (i=0; i<R; i+=N) {

   a[i+N-1]=b[i+N-1]+c[i+N-1];

 }


 for (i=0; i<R; i+=N) {

   a[i+1] = b[i+1] + c[i+1];

 }
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Fig. 1. Examples showing various notations: (a) Loop. (b)
Unrolled loop. (c) Obtained loop after fission. (d) Task
graph representating the original loop, where the loop is a
node L in the graph. (e) Task graph representing the loops
after fission.

a task in the task graph is only executed once and it
cannot be executed prior to its predecessors due to the
data dependency. For instance, Figure 1d and Fig-
ure 1e are two task graphs of Figure 1a and Figure 1c
respectively, where each loop is a node in the graph.

2.3. Overview

Figure 2 gives an overview of the proposed multi-loop par-
allelisation strategy. A search strategy is employed where
the goal is to find an optimal unrolling factor for each loop
so that the overall performance is maximised. This section
focuses on the search of unrolling factors, the calculationof
quality score will be introduced in Section 3.

Given an application containing a set of loopsLP =
{lp1, lp2, ..., lpn}, let UC = {uc1, uc2, ..., ucm} be a set of
unrolling configurations with eachuci = {uf1, uf2, ..., ufn}
designating an instance of the unrolling factors of all loops,
whereufj is the unrolling factor of loopj. Each unrolling
configurationuci thus contains all unrolling factors for all
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Fig. 2. Overview of the proposed multi-loop parallelisation
strategy.

loops in this application. In each iteration of the search, a
set of unrolling configurationsUC is firstly generated and a
quality score is then calculated for each configuration af-
ter loop unrolling and fission, task graph generation, and
mapping/scheduling processes have been applied. The best
unrolling configurationuci with highest quality score is se-
lected and used for the next iteration. This process is re-
peated iteratively until a termination condition is reached,
the goal being to find a solution with the maximum quality
score.

The advantage of considering unrolling and fission of all
loops globally is that unrolled sub-loops from various loops
can be potentially executed in parallel. This allows for a bet-
ter mapping/scheduling solution to be found after unrolling
and fission. Figure 3 shows an example of unrolling two
loops which have no data dependencies between iterations.
In the original graph,B andQ represent two loops,B1, B2
andB3 are the three unrolled sub-loops ofB, andQ is un-
rolled asQ1, Q2 andQ3. Before unrolling and fission,B
andQ are mapped to two processing elements PE1 and PE2.
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Fig. 3. Mapping/scheduling example for loop unrolling and fissionwithout data dependencies between iterations: (a) Task
graph containing two parallel loops. (b) Task graph after unrolling the two loops for three iterations. (c) Mapping and
scheduling solution before unrolling and fission, overall processing time for 3 iterations is 90 time units. (d) Mappingand
scheduling solution after unrolling and fission, overall processing time is 50 time units. (e) Execution time of one iteration
of the loop body for different processing elements. Higher inter-loop and intra-loop parallelism is achieved by unrolling two
loops.

Hardware resources are not fully utilised and the processing
time for three iterations using this mapping is 90 time units
(Figure 3c). After unrolling and fission, the first two sub-
loops (Q1 andQ2) are mapped to PE2 and PE3 respectively,
and other unrolled sub-loops are mapped to PE1. Process-
ing time is reduced to 50 time units (Figure 3d). TasksSB

and SQ are two generated management tasks to synchro-
nise results produced by different sub-loops which will be
introduced in Section 3.2.

Unrolling and fission can still achieve higher parallelism
for loops with data dependency between iterations. As a
loop may be executed in parallel with other tasks in an ap-
plication, after unrolling and fission, execution sequenceof
unrolled sub-loops can be better combined with other tasks.
Figure 4 shows the unrolling/fission of two loops with data
dependencies between iterations. Before unrolling and fis-
sion, B is mapped to PE1 andQ is mapped to PE2. The
overall processing time for three iterations is 90 time units

(Figure 4c). After unrolling, the first sub-loop ofQ (i.e.
Q1) is mapped to PE2, and the remaining sub-loops (Q2
and Q3) can be executed in PE1. The overall processing
time becomes70 time units (Figure 4d). A better map-
ping/scheduling solution with higher inter-loop parallelism
is thus obtained.

2.4. Generation and selection of unrolling configuration

If an application contains only one loop it obviously should
be selected for unrolling. For the multiple loop case, the
number of loops to unroll and the corresponding unrolling
factors need to be determined. Since unrolling a loop with-
out data dependencies between iterations is likely to achieve
more performance gain than unrolling a loop with data de-
pendencies, a performance-driven strategy (Algorithm 1) is
proposed in this work.

Given an application containing a set of loopsLP =
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Fig. 4. Mapping/scheduling example for loop unrolling and fissionwith data dependencies between iterations: (a) Task graph
containing two parallel loops having data dependency between iterations. (b) Task graph after unrolling the two loops for
three iterations. (c) Mapping and scheduling solution before unrolling and fission, overall processing time for 3 iterations is
90 time units. (d) Mapping and scheduling solution after unrolling and fission, overall processing time is 70 time units.(e)
Execution time of one iteration of the loop body for different processing elements. Higher inter-loop parallelism is achieved
by unrolling two loops.

{lp1, lp2, ..., lpn}, an initial unrolling configurationucbest

is generated with all unrolling factorsufi being set to1, i.e.
uc = {ufi}, whereufi = 1 for 1 ≤ i ≤ n. A new set
of unrolling configurationsnew uc = {uc1, uc2, ..., ucn}
is generated by incrementing eachufi in turn, e.g. uc1 =
{2, 1, ..., 1} anduc2 = {1, 2, ..., 1}. For each unrolling con-
figurationuci, a quality scoreqsi is calculated by first ap-
plying the unrolling factors specified inuci followed by fis-
sion to break the new loop into sub-loops over the same loop
count with each loop having the same loop body as the orig-
inal loop. A task graph is then generated with each sub-loop
being treated as a task. The task graph is then passed to the
mapping and scheduling process, where a complete map-
ping/scheduling solution is generated and a quality score is
calculated (Section 3). As a result, a set of quality scores
QS = {qs1, qs2, ..., qsn} is produced. Afterward the corre-
sponding quality improvementqii is calculated as:

qii = qsi − qsbest (1)

whereqsbest is the best quality score to date. The best un-
rolling configurationuci with highest quality improvement
qii is chosen, the best quality scoreqsbest is updated asqsi

and the unrolling configurationucbest is replaced byuci.
This process is repeated until the resources on the FPGA are
exhausted, causing termination of the algorithm.

3. QUALITY SCORE CALCULATION

3.1. Unrolling, fission, and task graph generation

Given a set of loopsLP = {lp1, lp2, ..., lpn} and an un-
rolling configurationuc = {uf1, uf2, ..., ufn}. The follow-
ing steps are used to generate a task graph:



Algorithm 1 Search the best unrolling configuration

1: used fpga area ⇐ 0
2: ucbest = {ufi}, whereufi = 1 for 1 ≤ i ≤ n

3: qsbest ⇐ 0
4: while used fpga area < total fpga area do
5: for all loopslpi do
6: uci[ufi] = uc[ufi] + 1
7: end for
8: for all unrolling configurationsuci do
9: for all loopslpi do

10: unroll lpi for ufi iterations, whereufi ∈ uci

11: loop fission
12: end for
13: generate new task graph
14: generate complete mapping/schedulingmsi

15: calculate quality scoreqsi for msi

16: qii ⇐ qsi − qsbest

17: end for
18: find loopi with maximumqi

19: qibest ⇐ qii
20: qsbest ⇐ qsi

21: msbest ⇐ msi

22: ucbest ⇐ uci

23: updateused fpga area

24: end while
25: return ucbest andmsbest

• Unroll each looplpi according toufi.

• Break each unrolled looplpi into ufi sub-loops by
fission, each sub-loop performs the same operations
as the original loop body before unrolling.

• Construct a new task graph by treating each sub-loop
as a task, each having the same parent and child tasks
as the original task before unrolling.

• Generate a management task to synchronise results
produced by different sub-loops (Section 3.2), and in-
sert this task to the tails of all unrolled sub-loops in
the task graph (tasksSB andSQ in Figure 3b), i.e.
predecessors of the management task are the unrolled
sub-loops, successors of the management task are the
successors of the original loop.

The produced task graph is then presented to the map-
ping and scheduling tool to generate a quality score (Section
3.3), which guides the search.

3.2. Management task

One of the problems introduced after unrolling is data syn-
chronisation: since results are produced by unrolled itera-
tions in parallel, they need to be reorganised in the correct

sequence (Figure 5). Another problem is loop count uncer-
tainty, e.g. a loop may be unrolledn times but the actual
loop count at run-time may not be a multiple ofn. In this
case some results must be discarded. To handle these prob-
lems, a management task which: collects data from differ-
ent unrolled tasks; keeps track of the actual loop count at
run-time; organises the collected data into the correct se-
quence; and discard unneeded data is introduced. The man-
agement task is treated as a normal task, inserted into the
task graph and presented to the mapping/scheduling tool.
For loops without data dependencies, the following pseudo-
code shows the data synchronisation process:

for (i = 0; i < (M-1); i++) {
for (j = 0; j < N; j++) {

rst[i*N+j] = d[j][i];
}

}
tc = R - (M-1) * N;
for (i = 0; i < tc; i++) {

rst[(M-1)*N+i] = d[i][M-1];
}

whereM is the actual count of the unrolled loop being ex-
ecuted,R is the required loop count for the loop before un-
rolling, andN is the number of iterations being unrolled.d

is the result produced by different unrolled iterations, e.g.
d[0] is the result produced by the first iteration.rst is the
original array to store results. The second loop is used to
collect the results of the last iteration and discard unneeded
data, wheretc is the number of data remaining.

If there are data dependencies between iterations, the
management task must select the correct result from the un-
rolled iterations:

tc = M * N - R;
switch(tc) {

case 0:
rst = d[N-1];
break;

case 1:
rst = d[N-2];
break;

...

...
case N-1:

rst = d[0];
break;

}

The generated mapping/scheduling solution does not re-
quire the designer to know the exact loop termination con-
ditions using these management tasks. However, users can
specify an estimated loop count at compile time. Loops are
unrolled using this information and a mapping/scheduling
solution is generated. If the estimated loop count matches
the actual value at run-time, maximum performance can be
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Fig. 5. Data synchronisation after unrolling and fission. (a) Original loop. (b) Unrolled loop. (c) Generated sub-loops after
fission.

achieved. However, if the loop count is different, the data
management task can handle data synchronisation dynami-
cally, which means the generated mapping/scheduling solu-
tion is still feasible. These management tasks can easily be
implemented in software or in hardware state machines.

3.3. Mapping and scheduling overview

A heuristic search-based approach is used to find the best
mapping/scheduling solution for an input task graph as shown
in Figure 6. Given a task graph and a target architecture
specification which includes information concerning the pro-
cessing elements and communications channel, a tabu search
is used to iteratively generate different mapping/scheduling
solutions (neighbors). For each solution, a speedup coeffi-
cient is calculated and used to guide the search with the goal
being to find a solution with maximum speedup.

3.4. Integrated scheduling technique

Given a set of tasksTK = {tk1, tk2, ..., tkn} and a set
of task listsPL = {pl1, pl2, ..., plm}, where each task list
plj = (asj1, asj2, ..., asjq) is an ordered task sequence to
be executed by processing elementpej . Each task inplj
will be processed bypej in sequence when it is ready for ex-
ecution, i.e. when all of its predecessors are finished. Task
mapping and scheduling is thus integrated in a single step
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Fig. 6. Overview of the mapping and scheduling system.

that deal with assigning tasks to task lists. A task assignment
function is defined asA: TK → PL, e.g. A(tki) = asrq

denotes tasktki being assigned toasrq of list plr. This
means thattki is theqth task to be executed by processing
elementper. A mapping/scheduling solution is character-
ized by assignments of all tasks to processing elements, i.e.
for every tasktki ∈ TK, A(tki) = asrq for aplr ∈ PL.



3.5. Multiple neighborhood functions

Tabu search is used to find the best mapping/scheduling so-
lution. It is based on neighborhood search, which starts with
a feasible solution and attempts to improve it by searching
its neighbors, i.e. solutions that can be reached directly from
the current solution by an operation called a move. Tabu
search keeps a list of the searched space and uses it to guide
the future search direction; it can forbid the search moving
to some neighbors. In the proposed tabu search technique
with multiple neighborhood functions, after an initial solu-
tion is generated, two neighborhood functions are designed
to move tasks between task lists and used to generate vari-
ous neighbors simultaneously [11]. If there exists a neighbor
better than the best solution so far and it cannot be found in
the tabu list, this neighbor is recorded. Otherwise a neighbor
that cannot be found in the tabu list is recorded. If all the
above conditions cannot be fulfilled, a solution in the tabu
list with the least degree, i.e. a solution being resident inthe
tabu list for the longest time, is recorded. If the recorded
solution has a smaller cost than the best solution so far, it
is recorded as the best solution. The searched neighbors are
added to tabu list and solutions with the least degree are re-
moved. This process is repeated until the search cannot find
a better solution for a given number of iterations.

3.6. Quality score

For each mapping/scheduling solution, an overall execution
time calculated, which is the time to process all tasks using
the reference heterogeneous computing system and includes
data transfer time. The processing time of a tasktki on pro-
cessing elementpek is calculated as the execution time of
tki on pek plus the time to retrieve results from all of its
predecessors. The data transfer time between a task and a
predecessor is assumed to be zero if they are assigned in the
same processing element.

A speedup coefficient is defined and used to measure the
quality of a mapping/scheduling solution, it is calculatedas
the processing time using a single microprocessor divided
by the processing time using the heterogeneous computing
system:

speedup =

processing timesingle CPU

processing timeReference system

(2)

A higher speedup means a mapping/scheduling solution
is better as the application can be finished using less time.
This score is used to guide the tabu search and the goal is
finding a solution with maximum speedup. This maximum
speedup is used as the final output and defined as the quality
score to measure the quality of the input unrolling configu-
ration.

Table 2. Profiling results for major processes of the isolated
word recognition system.

Process % of exe time

vq 71.19
autocc 15.4

hmmdec 6.11
windowing 4.39
lpc analysis 0.95

lpc2cep 0.93
find max 0.39

others 0.64

Table 3. FPGA resources of different speech process, the
total area is calculated by counting two “hmmdec12”.

Process Area (slice)

vq3 21819

autocc12 10272

hmmdec12 15948

Total 63987

4. RESULTS

4.1. Experimental setup

The reference heterogeneous computing system used in work
has one 2.6GHz AMD Opteron(tm) Processor 2218 and one
Celoxica RCHTX-XV4 FPGA board with a Xilinx Virtex-
4 XC4VLX160 FPGA. The FPGA board and microproces-
sor are connected via a HTX interface with maximum data
transfer rate of 3.2GB/s.

An isolated word recognition (IWR) system [14] is used
as an application. It uses 12th order linear predictive cod-
ing coefficients (LPCCs), a codebook with 64 code vec-
tors, and 20 hidden Markov models (HMMs), each with 12
states. One set of utterances from the TIMIT TI 46-word
database [15] containing 5082 words from 8 males and 8
females are used for recognition. Table 2 shows the profil-
ing results of major processes of the isolated word recogni-
tion system on the AMD processor. It is found that loops in
vector quantisation (vq), autocorrelation (autocc) and hid-
den Markov model decoding (hmmdec) consumed the most
CPU resource, which are71.19%, 15.4% and6.11% respec-
tively.
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Fig. 7. Mapping the speech recognition system to the het-
erogeneous computing system. “vq3” are the unrolled 3 iter-
ations of vector quantisation. “autocc12” are the unrolled12
iterations for autocorrelation. “hmmdec12” are the unrolled
12 iterations for HMM decoding. Two “hmmdec12” means
the outer loop of HMM decoding is unrolled for 2 iterations,
i.e. decoding of two words are executed in parallel.

4.2. Multi-loop unrolling and fission

In this experiment, the proposed unrolling strategy is ap-
plied. Figure 7 shows the mapping of different processes
in the speech system. It is found that vector quantisation is
unrolled 3 times (vq3) and mapped to the FPGA, all 12 itera-
tions of the autocorrelation process are unrolled (autocc12),
inner loop of hidden Markov model decoding is unrolled for
12 iterations (hmmdec12) which is equal to the number of
HMM states, the outer loop is further unrolled for 2 itera-
tions which means two HMM decoding are executed in par-
allel. The corresponding FPGA resource usage is shown in
Table 3 and the operating frequency is318.7MHz, a speedup
(quality score) of10 is obtained for this configuration. In
contrast, the speedup obtained without unrolling is4.7, where
vector quantisation, autocorrelation and HMM decoding are
executed in FPGA without unrolling. An improvement of
2.1 times is hence obtained using the proposed strategy.

Figure 8 shows the speedups for different vector quan-
tisation unrolling factors, where all other processes are exe-
cuted on the CPU. It is found that the speedup increases with
unrolling factor and saturates. This figure explains why only
three iterations of vector quantisation are unrolled in thefi-
nal mapping/scheduling solution.

4.3. Run-time vs compile-time parameters

In the above experiment, mapping/scheduling solutions are
generated by assuming the LPCC order is 12 at compile-
time. However, this value may be modified to cope with dif-
ferent circumstances at run-time. Using a mapping/scheduling
solution generated with 12 LPCCs, Figure 9 shows the performa-
nce of this system for different run-time LPCC orders. It is
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Fig. 8. Quality scores (speedups) for different unrolling fac-
tors of vector quantisation.

Table 4. FPGA resources and operating frequency for IWR,
SUSAN, and N-Body.

Application Area (slice) Frequency (MHz)

IWR 63987 (94.7%) 318.7

SUSAN 60106 (88.9%) 274

N-Body 62139 (91.9%) 274

found that maximum performance is achieved at12 LPCCs,
and the performance drops when the run-time LPCC order
is different from compile-time value, e.g. a5% drop at10
LPCCs.

4.4. Quality score comparison

In addition to the IWR example, two other applications are
employed to evaluate the proposed approach: the SUSAN
corner detection image processing algorithm [16], and the
N-Body problem [17]. Figure 10 shows the quality score
comparison between strategies with and without unrolling.
The FPGA resource usage and operating frequency are shown
in Table 4. The proposed strategy can achieve10, 19.7, and
34.3 times speedup for IWR, SUSAN and N-Body respec-
tively, the corresponding improvements are factors of2.1,
3.9, and4.1 over the approach without unrolling. The im-
provements for SUSAN and N-Body are much higher than
the2.1 times improvement obtained using the IWR applica-
tion because that there is a critical loop in each of these two
applications: in SUSAN, the loop to compute the similarity
of pixels and for N-body, the loop to compute velocity. Un-
rolling these loops significantly improves the performance
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Fig. 9. Quality scores (speedups) for different run-time
LPCCs, the estimated LPCC order during compile-time is
12.

of those cases.

5. CONCLUSIONS

A multi-loop parallelisation technique involving fission and
unrolling is proposed to improve intra-loop and inter-loop
parallelism in heterogeneous computing systems. The util-
ity of this approach is demonstrated in three practical appli-
cations and a maximum speedup of34.3 times is obtained
using a computing system containing an FPGA and a mi-
croprocessor. It is4.1 times higher than the case where un-
rolling is not applied. The generated system is tolerant to
run-time conditions, and its performance is closer to opti-
mum when there is a more accurate prediction of run-time
condition during compile-time.
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