
FPGA-BASED MSB-FIRST BIT-SERIAL VARIABLE BLOCK SIZE
MOTION ESTIMATION PROCESSOR

Brian M.H. Li and Philip H.W. Leong

Department of Computer Science and Engineering,
 The Chinese University of Hong Kong

 Shatin NT, Hong Kong
 email: {mhli,phwl}@cse.cuhk.edu.hk

 ABSTRACT

H.264/AVC is the latest video coding standard adopting
variable block size, quarter-pixel accuracy, motion vector
prediction and multi-reference frames for motion
estimation. These new features result in much higher
computation requirements than previous coding standards.
In this paper we propose a novel most significant bit (MSB)
first bit-serial architecture for full-search block matching
(FSBM) variable block size motion estimation. Since the
nature of MSB-first processing enables early termination of
the sum of absolute difference (SAD) calculation, the
average hardware performance can be enhanced. The
architecture has been simulated, synthesized and
implemented on a Xilinx Virtex-II XC2V6000 FPGA. The
maximum frequency achieved is 340 MHz and the
throughput rate is around 18674 macroblocks per second
within a -16 to 15 search range. The resource utilization is
3345 LUTs and it can encode CIF resolution video in real
time.

1. INTRODUCTION

H.264/AVC [1] video coding standard is the latest video
coding standard developed by the Joint Video Team (JVC)
of ITU-T VCEG and ISO/IEC MPEG. It is suggested that it
can provide two times better performance than the previous
coding standard MPEG-2, in terms of compression
efficiency and picture quality [9]. Like previous coding
standards, e.g. H.263 and MPEG-4, it employs block-based
motion estimation to reduce temporal redundancy between
frames. In H.264, block-matching efficiency is further
enhanced by advanced features such as variable block sizes,
multi-reference frames and motion vector prediction.
Because of these features, the computational complexity of
H.264/AVC is increased by a factor of four, creating
challenges for engineers to achieve real time performance.
 Many motion estimation architectures [2][3][7][9][16]
have been proposed in the literature and most can achieve
real time encoding. In many cases a full search strategy is

chosen because of regularity, no data dependencies and it
finds the optimal solution. Fast algorithms are employed in
some cases, but the speedup is often not significant
compared with full search, particularly for hardware
implementations. For this reason we focus on full search
(FS) hardware designs.
 Most of the reported FS architectures were implemented
using bit-parallel operations since they have the advantages
of better performance, easier control and simpler design
than a bit-serial approach and most of these were for ASIC
rather than FPGA technology. Of previously reported
FPGA implementations [13,6,14,11,5,12,8,15], only two
[8,15] support variable block sizes, and both are bit-parallel.
A most significant bit (MSB)-first bit-serial design with
early termination was proposed for QCIF resolution video
[5] which employed a FS within the range -15 to +16. Their
experiments showed that on average, 50% of the
computation, can be saved when an early termination
scheme is employed, the savings depending on the video
scene. A SAD engine employing on-line arithmetic was
also reported [12]. This design has improved area-time
product over previous bit-serial architectures, but only
supports one block size and cannot be used for H.264/AVC
or later standards.
 In this work we propose a novel MSB-first bit-serial
architecture for variable block size motion estimation that
efficiently utilizes the high ratio of registers to logic present
in FPGA devices which can be employed in H.264/AVC.
The architecture makes it possible to eliminate certain
unnecessary computations which are unavoidable in a bit-
parallel implementation, and has a higher performance per
look-up-table (LUT) than all previously reported
implementations.
 Furthermore, the new architecture results in
performance comparable to bit-parallel implementations but
with greatly reduced area. The total execution cycle savings
over a scheme that does not use the early termination
scheme is dependent on the nature of the video but is on
average 36.5%. The introduction of H.264 motion vector
prediction mode further improves the saving by 3-5%. The
proposed architecture not only reduces the computation
time via optimizations in the arithmetic and early

termination schemes, but also reduces resource utilization
through a bit-serial architecture and power by eliminating
unnecessary calculations. This makes it feasible to
implement a motion estimation processor on a small FPGA
device with high performance and low power dissipation. A
similar scheme could be used for other algorithms that
search an input space to optimize a given metric.

The rest of this paper is organized as follows. Section 2
gives an overview of motion estimation and the new
features present in H.264/AVC. Section 3 presents the early
termination technique employed in this work. Section 4
explains the construction of a sum of absolute difference
(SAD) adder tree which uses a signed-digit representation.
Section 5 presents our 4-stage top level architecture and
section 6 describes details concerning data allocation and
scheduling. Results and a comparison will be given in
section 7 and conclusions are drawn in section 8.

2. MOTION ESTIMATION ALGORITHM

In digital video, consecutive picture frames are combined to
form a scene. The redundancy between frames is usually
large due to a relative high frame rate to scene motion
relationship in normal videos. Motion estimation (ME)
techniques have been adopted since the first generation of
digital video coding standards to reduce temporal
redundancy between frames, hence improving compression
rates. Block based matching techniques have been used
because of their simplicity and high efficiency. Although,
due to its limited search range, an optimal solution is not
guaranteed, its hardware-friendly nature makes it the most
common scheme for video coding standards.

2.1. Block-based motion estimation

A description of block-based matching techniques follows.
Each picture is divided into a fixed number of square non-
overlapping blocks, called macroblocks. Typically, the
block size is 16-pixel by 16-pixel. Each block in the current
frame is compared to blocks in the reference frame within a
predefined search window and the best match is found. A
sum of absolute difference (SAD) between the current
block and reference block is commonly used as the distance
metric since it can be implemented efficiently. A SAD is
calculated using equation (1) below.

(1a)

(1b)
(1c)

 In equation (1), c(i,j) and r(i,j) represent pixels in the
current and reference block respectively. m, n are the
horizontal and vertical displacement of the current block

w
su
ar
Th
ex
m

2.

In
m
co
ad
es
re
si
H
m
pi
se
th
of
du
pr

m
bl
8x
m
w
fo
pr

uQP

QPnm

P

i

Q

j
QP

nmMV

nmSADu
orQPnm

njmirjicnmSAD

|),(

)},({min
168,4,16,8,4,15,16

|),(),(|),(

),min(

,,

0 0
,

=

=
==+≥≥−

++−=∑∑
= =

m
H
th
Q
m
th
Fig. 1. Supported block sizes in H.264/AVC
ithin search window. P, Q is the index indicating which
bblocks/macroblock’s SAD is calculated. In total there
e 7 types of subblocks/macroblocks shown in figure 1.
e search window is confined to -16 to +15 in this
ample and the rest of this paper. Lastly, MVmin is the
otion vector with the minimum SAD value.

2. Variable block size motion estimation

 traditional motion estimation such as MPEG-1, only one
otion vector is generated for a macroblock and the
mputational complexity is relatively low. In recent
vanced coding standards such as H.264/AVC, the motion
timation process has been improved to exploit temporal
dundancy as much as possible. Additional features add
gnificant demand to hardware requirements, e.g. in
.264/AVC, variable block sizes increase the number of
otion vectors produced per macroblock and the quarter-
xel and multi-reference frame features add additional
arch points to the original searching algorithm. In total,
e overall complexity of H.264/AVC is raised by a factor
 4 compared to the MPEG-2 standard and most of this is
e to increased complexity in the motion estimation
ocess.

In H.264/AVC, each picture (frame) is segmented into
acroblocks. Each macroblock is further divided into sub-
ocks with 7 different types of block sizes (4x4, 4x8, 8x4,
8, 8x16, 16x8 and 16x16) as shown in figure 1. Each
acroblock has in total 41 types of sub-blocks to cover the
hole macroblock. In variable block size motion estimation,
r each type of subblock a motion vector (MV) is
oduced so in total 41 MVs are calculated per macroblock.

The variable-block-size motion estimation feature is the
ost challenging hardware implementation issue added in
.264/AVC. The multi-reference feature can be solved at
e algorithm level and by data scheduling techniques.
uarter-pixel accuracy can be performed after the integer
otion estimation process in a post-processing unit. Thus in
is paper we restrict ourselves to the problem of how to

Table 2. Online signed-digit adder example

)}94(0100011000
)245(11111111),151(11111101{

10

1010

=

=−=

R
BA

Cycle A+ A- B+ B- R- R+
0 0 1 1 0 0 0

1 0 0 1 0 0 0
2 0 1 1 0 1 1
3 1 0 1 0 0 1
4 0 1 1 0 0 1
5 1 0 0 1 0 0
6 0 1 1 0 1 1
7 0 1 0 1 0 0
8 0 0 0 0 1 0
9 0 0 0 0 0 0

Table 1.

T
{

Fig. 2.

generate 41
block.

2.3. Search

In the FS
exhaustively
search area,
case, FS in
Compared w
log-search a
complexity
data depend
and furtherm

3. EAR
S

In bit-parall
be made aft
the 16-bit S
any compar
much large
possible to
able 1. Online carry save adder example
A=000101102(2210), B=101010112(17110),

C=111110102(25010),
Result[C+S]=1101110112(44310)}

Cycle Aj Bj Cj Cj+1 Sj+1
0 0 1 1 1 0

1 0 0 1 0 0
2 0 1 1 1 1
3 1 0 1 1 0
4 0 1 1 1 0
5 1 0 0 0 0
6 1 1 1 1 1
7 0 1 0 0 1
8 0 0 0 0 1
s

result is produced. This results in wastage of hardware
resources and power consumption. The bit-parallel partial
distortion elimination technique (PDE) [15][16] has been
proposed for the early termination of the SAD computation.
 The disadvantage of this approach is a large increase in
hardware requirements and reduction in the maximum
operating frequency of the design. Also, the design must
operate in a row-serial manner and maximum parallelism
may not be achieved. In this section we describe an MSB-
first bit-serial technique that can address this problem.

 On-line Carry save and signed-digit adder
 MVs within given search window and current

 algorithm – full search

algorithm, optimality can be guaranteed by
 finding the absolute minimum SAD within a

 typically ranging from -16 to +15. Thus, in our
volves a total of 1024 searching positions.
ith FS, techniques such as the three-step search,

nd diamond search have reduced computational
but their hardware implementations involve
encies which makes it difficult to parallelize,
ore, they produce sub-optimal results.

LY TERMINATION SCHEME IN BIT-
ERIAL MOTION ESTIMATION

el motion estimation, the SAD comparison must
er the summation of all pixel differences. Thus,
AD (for a 16x16 MV) must be produced before
ison can be made. Even if the current SAD is
r than the current minimum SAD, it is not
terminate the SAD operation before the 16-bit

3.1. MSB-first arithmetic (on-line arithmetic)

MSB-first arithmetic [17], also called on-line arithmetic, is
a bit-serial arithmetical technique in which all operations
start from the most significant bit. It is particularly
efficient for operations such as square root, division and
comparisons. This can be used advantageously in motion
estimation as some comparisons can be made without
examining all the bits involved. Such early termination
schemes can save computation.

Compared to least significant bit (LSB) first
techniques, the MSB-first approach produces results with
more delays, this delay being called on-line delay. The
number of delay cycles depends on the number of operands.
Redundant number systems such as carry-save or signed-
digit representations are normally employed.

We present an example of on-line addition using carry-
save operands. The addition consists of three operands and
is done using the on-line full adder proposed in [17], as
shown in figure 2. Referring to table 1, a 3 operand 8-bit
addition can be done in 9 cycles with 1 cycle of on-line
delay using an online carry-save full adder (ol-CSFA).

In our adder tree for SAD, we make use of two kinds of
adders. The first is the online carry-save full adder (ol-
CSFA) presented above. The other is an online signed-digit
adder (ol-SDFA) to handle signed-digit addition. The ol-

Table 3. Number of cycles to complete comparison
stage for different scenes using different starting
strategy (16 cycles for no termination scheme)

Video
type Sequential Zero MV Predicted

MV
news 6.95 5.39 5.4

Flower 6.64 5.83 5.5
stefan 7.26 6.54 6.46

SAD4x4
 Adder tree

SAD4x4
 Adder tree

SAD4x4
 Adder tree

SAD4x4
 Adder tree

...

SAD Merger

Sixteen 4x4 adder tree

registers

4x8, 8x4, 8x8, 8x16,
16x8, 16x16 SAD

4x4SAD

Fig. 4. Signed-digit adder tree that generates 41 SADs

Fig. 5. A 16-operand carry save adder tree

Fig. 3. Motion vector prediction in H.264/AVC

SDFA architecture is shown in figure 2. It can be
constructed from ol-CSFAs with some inputs and outputs
inverted. An example of signed-digit addition is shown in
table 2 with 2 signed-digit pairs. The signed-digit result
can be produced with 2 cycles of on-line delay.

3.2. Early termination scheme and an enhanced method

There are two related advantages to having a good initial
value for the minimum SAD. The first is that early
termination of comparisons to the current minimum can be
effected more frequently, and the second is that updates to
the minimum SAD value take extra cycles, and
initialization can serve to reduce their occurrence.
H.264/AVC uses MV prediction mode (figure 3) and
initializes the search to the predicted location. In the typical
case, this serves to reduce the number of SAD updates as
the search is started with a near-minimum value. Table 3
shows our simulation results showing the number of clock
cycles needed to complete the comparison operation for
different video scenes with different motion vector

initialization strategies, a non early termination
implementation requiring 16 cycles for the three
initialization schemes. The news example is almost-still
motion and zero–assumed (Initial MV = {0,0}) motion and
predicted MV initialization performs better than a standard
sequential scheme (Initial MV = {-16,15}). In fast motion
scenes, such as flower and Stefan, the H.264/AVC
predicted MV initialization scheme performs the best and
has an average of 5.78 cycles. On average our scheme
offers a (16-5.79)/16=63.8% savings in comparison
operations. For the entire motion estimation computation, in
total (12+16)=28 cycles are required in the worse case, and
on average our scheme offers a 36.5% improvement.

4. MULTI-OPERAND SD-ADDER TREE

The macroblock size of H264/AVC is 16 pixels by 16
pixels with a 4x4-block as its smallest sub-block. To find
all the minimum motion vectors of a 16x16-block and its
subblocks, we make use of a SAD-reuse strategy [4]. As a
result, the 4x4-SAD computation becomes our primitive
element and this is reused to form other SADs. Since the
different macroblock modes are overlapped in spatial
domain (Figure 1), the SAD can be calculated using 4x4
SAD and a sequence of merging steps to obtain other
mode’s SADs. For example, 8x4-SAD and 4x8-SAD can be

CS16 ADDER
TREE

p0+ … p15+

C S

CS16 ADDER
TREE

C S

p0- … p15-

OL_SDFA

A+ B+ A- B-

p n

To next OL_SDFA to
calculate other size SAD

SAD4x4_pos SAD4x4_neg

SAD4x4
Adder tree

Fig. 6. 16-operand sign-digit adder tree for 4x4 SAD.

Table 4. On-line delay of different SAD types
SAD type Delay (cycles)

4x4 16
4x8, 8x4 19

8x8 21
8x16, 16x8 23

16x16 25

Fig. 7. SAD merger

formed by combining corresponding value of 4x4-SAD (e.g.
4x4-SAD(Block 1, 2) in figure 1 to form 8x4-SAD(Block
17)). Similarly, 8x8-SAD can be formed by 4x8-SAD.
16x8-SAD, 8x16SAD can be calculated from 8x8-SAD and
finally 16x16-SAD is combined from 16x8-SAD. The top
level adder tree is shown in figure 4.

4.1. SAD4x4 signed-digit adder tree

The SAD of a 4x4-subblock involves a 16 pairs of operand
summation in signed-digit format. Thus, effectively we
need to add 32 bit operands in our adder tree. According to
[10], we could implement a 16-operand signed-digit adder
tree based on double ol-CSFA trees and ol-SDFA. Together,
the hardware utilization is minimized [10]. This is
illustrated in figure 5 and figure 6. It consists of 8 levels
with 8 cycles of on-line delay. The total number of cycles to
calculate the 12-bit summation result including the on-line
delay is 8+8=16 cycles. The output of SAD4x4 adder tree is
the SAD value of 4x4-subblock in signed-digit format. This
value is passed to SAD Merger to calculate other necessary
SADs.

4.2. SAD Merger

In our design we need sixteen SAD4x4 adder trees to
compute the SAD of 16 subblocks in parallel. The sixteen
SAD4x4 computed are passed to SAD merger as inputs
shown in figure 7. The sixteen 4x4- SAD is fed to a series
of ol-SDFAs called SAD merger and combined to form 4x8,
8x4, 8x8, 16x8, 8x16 and 16x16 SADs. The number shown
in figure 7 indicates which block’s SAD is calculated at that
node. The block index can be referred to figure 1. In total,
the number of ol-SDFAs in SAD merger i is
8+8+4+2+2+1=25. Pipelining registers are added between
SAD4x4 adder trees and SAD merger to split the
combinatorial path and boost the operating frequency. In

our FPGA platform, one pipeline register obtains a good
balance between maximum frequency and latency.
 Finally, the 41 SAD values are passed to an on-line
comparator for next stage processing. Since the arrival
times of different SAD results are different, the completion
times to determine the minimum SAD vary. Table 4 shows
the delay for each type of SADs.

5. TOP LEVEL ARCHITECTURE

Motion estimation involves the calculation of SAD value
between current block and reference block as shown in
equation (1). By rewriting equation (1) in a bit-serial
representation, we get the equation (2) with a triple
summation.

(2)

∑∑ ∑
= = =

++−×=
P

i

Q

j k

k
qp knjmirkjicnmSAD

0 0

7

0
, |)),,(),,((2|),(

The double summation (0 to P,Q) are mapped to the adder
tree and computed spatially while the innermost summation
(0 to 7) of bit-serial part is computed iteratively. The
remaining problem is how to generate signed-digit numbers
from current and reference pixel values. Both current and
reference pixels are positive 8-bit integers. The computation
of their difference in signed-digit representation can be
done easily by making the current pixel positive weighed
and the reference pixel negative weighed. The absolute
value operation can be done by on-the-fly checking of the

Fig. 8. SD-adder tree that generate 41 SADs

Fig. 10. Architecture of on-line comparator

Fig. 9. Flow chart of conventional number to signed-
digit conversion

signed-digit number until 1 or -1 is detected for the first
non-zero digit, then the positive weighing is interchanged
with the negative weighing part to complete the absolute
operation if negative.

In the following sub-session we describe the entire
motion estimation process in 4 stages: conventional number
to signed-digit number conversion, summation, comparison
and early termination stage. The top level system is shown
in figure 8.

5.1. Conventional number to S.D. conversion stage

As described above, the |ci – ri| operation, where ci and ri
are 8-bit positive integers from current and reference blocks,
can be converted to SD representation by setting ci and ri as
being positively and negatively weighed respectively and
finally doing a sign-detection to check if changing the sign
of result is necessary. The circuit that implements this
functionality requires few hardware resources and little
computation delay is introduced. A finite state machine

which detects the first non-zero digit is required for the
absolute value. Together with a pair of multiplexers for
interchanging the signed-digit, |ci – rj| in signed-digit form
is produced. Figure 9 shows the flow chart for sign-
detection of the signed-digit number. In total there are
16x16=256 absolute difference stages in our motion
estimation processor.

5.2. Summation stage

The datapath for directly feeding all 256 pairs of signed-
digit numbers into our signed-digit adder tree is described
in section 4 and figure 4. 41 SADs are calculated at the end
of the adder tree stage.

5.3. Comparison stage

In the comparison stage, we compare the current SAD to
current minimum SAD for each subblock type in a MSB-
first manner. A signed-digit comparator is used for this
purpose. The architecture of the comparator suggested in [7]
is shown in figure 10. If the number being compared has a
difference of two or more, we can determine which SD
number is bigger. The on-line comparator will stop when
this situation arises. A proof for this algorithm is given in
[7]. The on-line comparator can determine the result in 2
cycles at a minimum.

5.4. Early termination stage

Early termination of the SAD computation allows the
avoidance of redundant calculations. In terms of processor
throughput, 100% speed-up can be achieved when 50% of
calculations can be eliminated. In our case, we have to deal
with the variable block size effect, which affects our early
termination scheme. Since we have to compute 41 parallel
comparisons, some can be terminated earlier than the others.
There exists dependencies between successive types of
SADs, e.g. 8x4 depends on 4x4, and we cannot terminate

Fig. 11. Timeline for whole motion vector computation process

the 4x4 summation process even if we are sure the current
4x4 SAD must be larger than the minimum. For the sake of
simplicity, we check for early termination for all SADs and
when all have terminated, the current summation can be
terminated and begins next searching position. Termination
can be detected by OR-ing all the comparator results.

6. DATA SCHEDULING AND ALLOCATION
TECHNIQUE

In a bit-serial based architecture, we need to handle word-
to-serial conversion which is unnecessary in a bit-parallel
design. In addition, we have to handle extra scheduling
brought upon by MSB-first arithmetic. For example,
summation of 16 8-bit signed-digit numbers results in a 12-
bit result, which involves 8 cycles of on-line delay. We
have to generate 8 consecutive cycles of all-zero operands
feeding into adder tree to compensate the online delay.
Similarly, a 16x16 SAD requires 12 consecutive cycles of
zeros as shown in figure 11. The 16-bit 16x16-SAD result
is calculated in 28 cycles in the worse case.
 The allocation of picture pixels in memory is different
to that normally used in a bit-parallel case. 256x9-pixels of
the search window are stored in 4 block rams. The ram
address indexes the bit position instead of the pixel location.
Before feeding the reference block pixels into the SD adder
tree, 1-bit from 32x32 pixels are loaded from 4 block rams
to 4-to-1 multiplexers. The multiplexers select the correct
reference block from the search window. The reference
block values from MSB to LSB are loaded in each cycle.
The drawback of this approach is we need preprocessing to
fetch search window pixels from the external bus to block
memories, requiring shift registers before the block rams.

The current block is stored similarly but no multiplexers are
required.

7. RESULTS AND COMPARISON

The proposed bit-serial architecture was written in VHDL,
implemented, simulated and verified for a Xilinx Virtex-II
XC2V6000 -6 speed grade device. The ME processor was
synthesized using Simplicity Pro 8.4 and place-and-route
performed using Xilinx ISE tools. The area and speed
obtained is shown in table 5. Performance per LUT is also
indicated to show our improved efficiency on the FPGA.
The LUT per flip-flop for this design is 3345/2733=1.22
which matches the logic ratio in FPGA slices.
 A comparison is also made between bit-parallel and bit-
serial implementations in table 5. Note that some of these
designs do not support variable block sizes, e.g.
[5][6][11][12][13][14], and hence occupy significantly less
area than variable-block-size motion estimation processors.
This is because they require only one comparator and their
adder tree can optimized for one specific block size.
 Compared with those designs that fully support
H.264/AVC [8,15], our architecture occupies less area and
has a performance per LUT 1.4 and 36 times higher
respectively. In the worst case, our design needs
28x1024=28672 cycles to complete a full search of a
macroblock with -15 to +16 search range, which implies
our architecture can process at least 11858 macroblocks per
second. By employing early termination, our architecture
can process 18674 macroblocks per second, achieving a
36.5% savings on average over an approach that does not
use early termination. The overall performance achieved is
comparable to reported bit-parallel implementations. Thus
we are able to process CIF images (352x288 resolutions) at

Table 5. Results and comparison of ME processor
 [13] [6] [14] [11] [5] [12] [8] [15] Our design

Design strategy Bit-
parallel

Bit-
parallel

Bit-
parallel

Bit-
parallel

Bit-
serial

Bit-
serial Bit-parallel Bit-parallel Bit-serial

Supported block
size 16x16 8x8 16x16 16x16 4x4 16x16

4x4,4x8,8x4,
8x8,8x16,

16x8,16x16

4x4,4x8,8x4,
8x8,8x16,

16x8,16x16

4x4,4x8,8x4,
8x8,8x16,

16x8,16x16

Area (LUT) 16541 37522 310601,3 16991 15105 1945 73811 19576 3345
Speed (MHz) 103.84 191 380.7 197 352 425 120 51.49 340
Throughput

(MB[16x16]/sec) 18519 47522 371513 71254 50782 17456 29296 30366 18674

Performance/LUT 11.2 1.265 12 4.19 3.36 8.97 3.97 0.155 5.59
 1 Altera STRAIX family 2 Throughput normalized to 16x16 block size. 3 No comparator included

 4 Fully parallized approach 5 Area in terms of gate 6 Normalized to search range (-15 +16)

30 fps. The performance per LUT is comparable to bit-
parallel implementations while having greatly reduced
absolute area requirements, demonstrating the advantage of
a variable block size.

8. CONCLUSION

We employ on-line arithmetic in an FPGA-specific
implementation of variable block size motion estimation for
H.264/AVC. The performance per LUT is improved over
bit-parallel approaches; the small area and high speed
nature of this motion estimation processor enables real time
encoding of small frame sizes, and an early termination
scheme serves to reduce power consumption. These
combined features make the architecture particular suitable
for FPGA-based implementations on mobile devices.

9. REFERENCES

[1] “Draft ITU-T Recommendation H.264 and Draft ISO/IEC
14496-10 AVC” in JVC of ISO/IEC & ITU-T SG16/Q.6
Doc. JVT-G050, T.Wieg, Ed., Pattaya, Thailand, Mar. 2003.

[2] Thomas Komarek, Peter Pirsch, “Array arhcitectures for
Block Matching Algorithm,” IEEE Trans. On Circuits and
Systems, vol. 36, no. 10, pp. 1301–1308, Oct. 1989.

[3] K.M. Yang, M.T. Sun, L. We, “A Family of VLSI Designs
for the motion compensation Block-Matching Algorithm,”
IEEE Trans. On circuit and systems, vol. 36, no. 10, pp.
1317–1325, Oct. 1989.

[4] C.Y. Cho, S.Y Huang, J.S. Wong, “An Embedded Merging
Scheme for H.264/AVC Motion estimation,” IEEE Int. Conf.
on Image Processing, vol. 3, pp. 1016–1019, Sept, 2005.

[5] C.L. Su, C.W. Jen, “Motion estimation using MSD-first
processing”, in Proc. IEEE Circuits, device and systems, vol.
150, Issue 2, pp. 124-133, Apr. 2003.

[6] M. Mohammadzadeh, M. Eshghi, M.M. Azadfar, “An
optimized Systolic Array Architecture for Full Search Block

Matching Algorithm and its Implementation on FPGA
chips,” IEEE the 3rd Intl. Conf. NEWCAS, pp. 327-330,
2005.

[7] SU, C.L., JEN, C.W., “Motion estimation using online
arithmetic,” Proc. of IEEE Intl. Symp. on Circuits and
Systems, vol. 1, pp. 683-686, 2000

[8] C. Wei, M.Z. Gang, “A Novel SAD Computing Hardware
Architecture for Variable-size Block Motion Estimation and
Its Implementation with FPGA,” on Proc. 5th Intl. conf. on
ASIC, vol.2, pp. 950-953, Oct. 2003.

[9] Y. Kamaci, N. Altunbasak, “Performance comparison of the
emerging H.264 video coding standard with the existing
standards”, ICME’03, vol. 1, pp.345-348, July 2003

[10] J. Villalba, J. Hormigo, J.M. Prades, E.L. Zapata, “On-line
multioperand addition based on on-line full adders,” IEEE
Intl. Conf. on App. Specific systems, pp. 322-327, July 2005.

[11] S. Wong, S. Vassiliadis, S. Cotofana, “A Sum of absolute
differences implementation in FPGA hardware,” on Proc.
28th Euromico Conf., pp. 183-188, Sept. 2002.

[12] J. Olivares, J. Hormigo, “Minimum Sum of Absolute
Differences implementation in a single FPGA device,” Prof.
FPL., pp. 986-990, 2004.

[13] H. Loukil, F. Ghozzi, A. Samet, “Hardware Implementation
of Block Matching Algorithm with FPGA Technology,”
IEEE 16th intl. conf. on microelectronics, pp. 542-546, 2004.

[14] Stephan Wong, Bastiaan Stougie, Sorin Cotofana,
“Alternatives in FPGA-based SAD Implementation,” Proc.
FPL, pp. 449-452, Dec. 2002.

[15] S. Lopez, F. Tobajas, A. Villar, V. de Armas, J. Lopez, R.
Sarmiento, “Low cost efficient architecture for H.264
Motion estimation,” IEEE Intl. Symp. On Circuits and
Systems, vol. 1, pp. 412-415, May 2005.

[16] Siou-Shen Lin, Po-Chih Tseng, Liang-Gee Chen, “Low-
power parallel tree architecture for full search block-
matching motion estimation,” Proc. IEEE Intl Symp.
Circuits and Systems, vol. 2, pp. 313–316, May. 2004

[17] M.D. Ercegovac and T. Lang, “Digital Arithmetic,” Morgan
Kaufmann, San Francisco, 2004.

