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Detection of floating-point rounding errors normally requires run-time
analysis in order to be effective and software-based tools are seldom used
due to the extremely high computational demands. In this paper we
present a field programmable gate array (FPGA) based floating-point co-
processor which supports standard IEEE-754 arithmetic, user selectable
precision and Monte Carlo Arithmetic (MCA). This co-processor en-
ables the detection of catastrophic cancellation and minimizing required
floating-point precision in reconfigurable computing applications

1.1. Introduction

IEEE-7541 has long been the standard for computing using floating-point

(FP) numbers, however, as a finite precision arithmetic system it is capable

of anomalous results. Rounding error during computation can significantly

reduce the accuracy of a computation, and result in errors many times

larger than expected.2 In order to properly implement and verify numeri-

cal software, techniques to determine the effects of such errors are required.

Monte Carlo Arithmetic (MCA)3 can track rounding errors at run-time

by force inputs and outputs to behave like random variables. Analysis of

repeated operations turns an execution into trials of a Monte Carlo simu-

lation allowing statistics on the effects of rounding errors to be obtained.

MCA is typically performed using SW routines and as such its implementa-

tion involves a drastic reduction in performance. Field programmable gate

arrays (FPGAs) offer a platform in which hardware (HW) acceleration can

1
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be applied to arbitrary algorithms.

In this work, we describe a complete HW accelerator for run-time er-

ror analysis. A novel MCA co-processor architecture is employed which is

implemented entirely using standard floating-point cores. System-level per-

formance measurements are described, and a comparison with an existing

(SW) implementation made.

This work was influenced by Prof. Cheung’s seminal research on opti-

mising floating-point bitwidths to advantageously utilise the reconfigurable

nature of FPGAs. It is complementary to his approach to floating-point

sensitivity analysis based on automatic differentiation;4 and can be applied

to customised hardware floating-point5 and dual-fixed point6 implementa-

tion schemes.

1.2. Background

1.2.1. IEEE-754 Floating Point

The binary IEEE-7541 floating-point number system F(β, p, emin, emax) is

a subset of real numbers with elements of the form:

x = (−1)smβe (1.1)

The system is characterized by the radix β, which is assumed to be

2 in this paper, precision p, the exponent values emin ≤ e ≤ emax, the

sign bit s ∈ {0, 1} and the mantissa m ∈ [0, β). Normalized values are

most commonly used and are represented as a non-zero x ∈ F with |m| ∈
[1, β) and emin < e < emax. De-normalized numbers are also supported

and represent values of smaller magnitude than normalized numbers with

m ∈ [0, 1) and exponent e = emin. Other classes of numbers including

+/− Zero, Infinity and Not a Number (NaN) are available with special

formats. Without loss of generality, we assume the 32-bit IEEE single

precision format in this paper with p = 24, emin = −125, and emax =

128. Real numbers are generally not exactly representable as FP numbers

due to a number of factors including errors of measurement or estimation,

quantization error or errors propagated from earlier parts of a computation.

Although the IEEE-754 standard is used in all types of applications mostly

without issue, if one or more non-exact numbers are subtracted, a loss

of significant digits can occur due to normalization of the result.2 This

phenomena is called catastrophic cancellation and is one of the major causes

of loss of significance.
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1.2.2. Error Analysis

Several systems have been developed for performing run-time error detec-

tion and analysis. Interval Arithmetic (IA) represents a value x by an

interval [xlo, xhi]. Intervals are propagated through the calculation e.g.

[alo, ahi]− [blo, bhi] = [alo − bhi, ahi − blo]. IA can be used to track inexact

values and rounding errors during computation, however, it often produces

overly pessimistic error bounds.7 A limited number of hardware implemen-

tations of IA can be found in the literature.8–10 The CESTAC method11 is

a special case of MCA that involves executing the same computation several

times by randomly perturbing the the rounding scheme of the arithmetic

operators. Comparing the results from a number of different executions,

the number of significant digits can be estimated. A hardware implemen-

tation of the CESTAC method has also been published,12 but we are not

aware of any system level implementation. An FPGA based implementa-

tion of MCA addition and multiplication with an area penalty of less than

22% over IEEE-754 was recently published by Yeung et. al.13 Compared

with their implementation, this work presents a complete system for MCA

rather than just an MCA core. In addition, while Yeung described a cus-

tom FPU for MCA, the FP computations in this work are performed using

standard IEEE-754 FP primitives, providing significant benefits in terms

of portability, flexibility and development time.

1.3. Monte Carlo Arithmetic

If x is a floating-point value of the form given in Equation 1.1 we define the

inexact function as:

inexact(x, t, ξ) = x+ βex−tξ (1.2)

= (−1)sx(mx + β−tξ)βex (1.3)

where x ∈ R, t is a positive integer representing the desired precision, ξ is a

uniformly distributed random variable in the range (− 1
2 ,

1
2 ), (ξ ∈ U(− 1

2 ,
1
2 ))

andmx, ex are the mantissa and exponent of x. It is assumed that 1 < t ≤ p.
An operation ◦ ∈ {+,−,×,÷} is implemented as:

x ◦ y = round(inexact(inexact(x) ◦ inexact(y))) (1.4)

Adjustments to input operands are referred to as precision bounding and

are used to detect catastrophic cancellation, while adjustments to outputs

are referred to as random rounding and are used to detect round-off error.3
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The system developed for this paper performs precision bounding using

multiple floating-point computations. Using this method the operation can

be performed without modifying the internal architecture of the standard

IEEE-754 FPU, however, the use of standard FP operations results in FP

rounding being applied multiple times within a single MCA operation. In

the case of traditional MCA the average of a Monte Carlo simulation can be

used to estimate the true result of an operation sensitive to rounding error,

and the relative standard deviation used to detect catastrophic cancellation.

In the case of MCA implemented for this paper, the average value of the

results of a Monte Carlo simulation cannot be used to estimate the true

result of the tested operation, as this average is affected by the use of

multiple rounding stages. In this case the system is only used for the

detection of catastrophic cancellation. The value t shown in equation 1.4

is the virtual precision of the MCA operation. This value determines the

number of places the value ξ is shifted to the right of the mantissa of the

floating-point value x, and is used to control the level of random fluctuations

applied during MCA. The virtual precision of the MCA operations is set

to a positive integer less than or equal to the machine precision of the

floating-point system being used:

1 ≤ t ≤ p

A large t value will result in a smaller exponent value for the operand per-

turbation, increasing the accuracy of the operation. Similarly, a smaller

t decreases the accuracy. In practice, variation of t is used to determine

what effect lowering or increasing the precision has on the accuracy of an

operation. The results of this analysis can then be used to determine an

appropriate value for the machine precision p of a floating point operation

that will maintain a required level of accuracy. The implementation de-

veloped for this paper performs variable precision MCA, and the value of

t used by the co-processor can be modified at any time during execution.

Further details are provided in Section 1.4.

1.4. System Implementation

The MCA FPU is an FPGA co-processor connected to a µBlaze soft pro-

cessor through a AXI4-stream bus. The co-processor is capable of perform-

ing both standard floating-point arithmetic and MCA. The MCA FPU

core was developed using the high-level C-to-RTL design software Au-

toESL (http://www.xilinx.com/tools/autoesl.htm). Using AutoESL, our
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MCA FPU is described using standard C statements and during synthesis

and implementation, floating-point operations are translated into a set of

floating-point modules based on the IEEE-754 floating-point library.

1.4.1. MCA FPU Implementation

The MCA FPU is able to perform four basic arithmetic operations; add,

subtract, multiply and divide. A fifth configure operation allows the pre-

cision value, t, and the MCA flag to be modified at run-time. The final

operation combines the add and multiply operations to perform an FMA

(Fused Multiply-Add) operation, which calculates the result of the opera-

tion r = (a∗b)+c. The arithmetic operations are implemented by coupling

standard IEEE-754 floating-point operator primitives with a configuration

register and a perturbation generation module. Each perturbation module

is used to determine a value that will be added to the operation based on the

value of the operands and a random number. Random numbers are gener-

ated using Maximally Distributed Tausworthe Generators (TRNG) .14 The

configuration information consists of a 1-bit boolean flag indicating MCA

or IEEE-754 mode, and a 32-bit unsigned value for t. These are stored

in the configuration register for access during subsequent operations. In

IEEE mode, the FPU fully supports the standard. A description of how

the operators are implemented is given below.

1.4.1.1. MCA Addition/Subtraction:

Addition and subtraction operations are performed in terms of the inexact

function (Equation 1.3) as follows:

x± y = round(inexact(x)± inexact(y))

= round((x+ ξx)± (x+ ξy))

= round(x± y + ξ)

where ξx, ξy ∈ U(− 1
2 ,

1
2 ) and ξ = ξxβ

ex−t + ξyβ
ey−t. The magnitude of ξ

can be calculated using only positive values via:

|ξ| = βex−t(|ξx| ± |ξy|β−(ex−ey))

and a equal probability choice of addition or subtraction is made. Note that

|ξ| ∈ βex−t[0, 1) and its distribution depends on the value of x and y. The

floating-point value ξ can be calculated by first using fixed point arithmetic

to produce separate values for the eξ and mξ then combining these values
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along with a randomly selected value for sξ in the correct format to produce

a floating-point number:

mξ = ξx + [ξyβ
−(ex−ey)], eξ = ex − t

To perform this operation two random values for ξx and ξy must be cal-

culated. These values will be used to form mξ and as such must be 24-bit

normalized fixed point values. Each value must also be in U [0, 12 ). Two

32-bit values are produced (one from each TRNG) and the lower 22-bits

assigned as the fixed point value of ξx or ξy. The MSBs of each 32-bit

number are used to calculate the sign bit sξ. Once the fixed point values

of ξx and ξy have been produced the value of mξ can be calculated using

fixed point arithmetic At this point we have produced a value mξ ∈ [0, 1).

To produce the final value for ξ this value must be normalized, the βex−t

shift applied and the value converted to IEEE-754 single precision format.

This is done in the following stages:

(1) Determine the number of leading zeroes λξ. The leading zero detector

(LZD) used for the Monte Carlo FPU is based on the LZD found in.15

The mantissa value mξ is then shifted left or right depending on the

value of λξ forming the final 24 bit normalized mantissa.

(2) Calculate the 8-bit exponent value based on the value of ex, λξ and t

(3) Merge the sign, exponent and mantissa values to form the single preci-

sion floating-point value using left-shifts to move the sign and exponent

values to the correct location.

Once a value for ξ has been produced the second addition operation is

performed, producing the final result:

1.4.1.2. MCA Multiplication:

The multiplication operation can be represented in terms of the inexact

function shown in Equation 1.4 as follows:

xy = round((x+ ξx)(y + ξy))

= round(xy + xξy + yξx + ξxξy)

The perturbation values in the above equation can be expanded and sim-

plified to the following:

ξ = βex+ey−t[mxξy +myξx + ξxξyβ
−t]

From the above equation it can be seen that the ξxξy term will be shifted to

the right by 2t places during the operation. Calculation of the perturbation
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value including this term would require the precision of the FPU to be

extended, either by modifying the internal architecture of the FPU core

or by performing the Monte Carlo calculation in a higher precision format.

This can be avoided by not including the ξxξy term in the calculation, which

can be done without significantly affecting the results as the large right shift

results in an extremely small value for ξxξy relative to mxξy +myξx. The

Monte Carlo multiplication operation can therefore be simplified to the

following:

xy = round(xy + ξ)

where ξx, ξy ∈ U [0, 12 ) and ξ = βex+ey−t[mxξy +myξx]. The magnitude of

ξ can be calculated using only positive values via:

|ξ| = βex+ey−t(|mxξy| ± |myξx|) (1.5)

where a randomized, equal probability choice of addition or subtraction is

made. Note that |ξ| ∈ βex+ey−t[0, 2) and it’s distribution depends on the

value of x and y. In MCA multiplication a similar method to addition is

employed to produce the perturbation value. Two TRNGs are first used

to produce 24-bit fixed point random numbers and the corresponding sign

bits. These represent ξx, ξy ∈ (− 1
2 ,

1
2 ). Using Equation 1.5, each value is

then multiplied by the mantissa of the relevant operand and the resulting

values added together, resulting in a value for mξ. This process produces

a value mξ ∈ (−2, 2). This value is used to produce a single precision

floating-point value for ξ as follows:

(1) Determine the number of leading zeroes λξ in mξ and normalize

(2) Calculate the exponent value eξ
(3) Merge the sign, exponent and mantissa values to form the 32-bit

floating-point perturbation value

Once the final perturbation value ξ has been produced it is added to the

initial result r′ to produce the final result of the operation:

1.4.1.3. MCA Division

The division operation differs from addition, subtraction and multiplica-

tion in that two individual floating-point perturbation values ξx and ξy are

produced rather than a single perturbation value ξ. This operation can be
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described in terms of Equation 1.4 as follows:

x

y
= round(

inexact(x)

inexact(y)
) = round(

x+ ξx
y + ξy

)

The above equation cannot be easily simplified to a point where a combined

value for ξ can be calculated as for previously discussed operators. Separate

perturbation values (ξx and ξy) are therefore calculated and applied to the

x and y operands, requiring the precision of the division operation to be

extended. This is done by performing single precision (32-bit) MCA division

using double precision (64-bit) floating-point division. The perturbation

values are calculated as follows:

ξx = βex−tU(−1

2
,

1

2
), ξy = βey−tU(−1

2
,

1

2
)

Each perturbation value is applied to the relevant operand using a stan-

dard IEEE-754 floating-point addition operation, after which a standard

IEEE-754 double precision division operation is performed. Although this

calculation requires a total of three FP operations, calculation and addi-

tion of the two perturbation values can be performed in parallel, and the

only increase in overhead over addition/multiplication is from the double

precision division operation. MCA division is performed as follows. Two

TRNGs are used to produce 24-bit fixed point mantissa values for ξx and ξy
and their corresponding sign bits. The values are then converted to single

precision floating-point format

(1) Determine the number of leading zeroes λxi in each mantissa and nor-

malize.

(2) Calculate the exponent values

(3) Merge the sign, exponent and mantissa values.

Once the perturbation values ξx and ξy have been calculated the final result

is calculated:

1.5. Testing Methods

Testing of the FPU was conducted by comparing the performance of the

co-processor to a SW implementation of MCA. The test routines used

are based on routines used by Parker in reference,16 downloadable from

http://www.cs.ucla.edu/∼/stott/mca. Details of equipment and parame-

ters are in Table 1.5. In order to compile unmodified C source code to

use MCA, two different versions of the gcc software floating-point library
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Table 1.1. System Parameters
Item Version / Description

FPGA Parameters

ISE Version 13.2

FPGA Virtex-6 LX240T (Speed Grade 3)
FPGA Board Xilinx ML-605 Development Board
Processor Clock Speed 150 MHz

MCA Core Clock Speed 150 MHz

PC Parameters

CPU Intel Core 2 Duo 3 GHz

Memory 4 GB
OS Ubuntu 12.04 32-bit
GCC Version 4.7.0

were developed. For the FPGA case, a library in which the addsf3, subsf3,

mulsf3 and divsf3 were changed to utilise the MCA co-processor was cre-

ated. FP operations can then be redirected to the appropriate subroutine

by invoking gcc with the -msoft-float option. PC implementations of MCA

were compiled in a similar fashion using a different, software-only MCA

library. For each test case discussed below three tests were performed. The

first was on a PC using a floating-point unit (SW-FP); the second a PC

with software MCA (SW-MCA); and finally, an FPGA using the Monte

Carlo co-processor (HW-MCA).

1.5.1. Cancellation (Knuth) Test

The Cancellation test performs a simple associativity test by calculating

u = (x+ y) + z, v = x+ (y + z)

Over the real numbers, u should equal v, however, for the values x =

11111113.0, y = −11111111.0, z = 7.5111111 catastrophic cancellation oc-

curs. Using these values the difference between |u| and |v| is calculated over

1000 samples and the standard deviation of the results is used to determine

the accuracy of the calculation.

1.5.2. Cosine Test

The Cosine test calculates the cosine function using a power series expan-

sion:

cos(z) = 1− 1

2!
z2 +

1

4!
z4 − 1

6!
z6 +

1

8!
z8 − ...
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for z ∈ [0, π]. For each value of z over n steps a set of 100 samples are

calculated and compared to the value of a single precision FP calculation

of the same value, and the accuracy of the calculation measured at each

step.

1.5.3. Kahan Test

The Kahan test performs an evaluation of a rational polynomial:

rp(x) =
622− x(751− x(324− x(59− 4x)))

112− x(151− x(72− x(14− x)))

The polynomial rp(u) is first evaluated for u = 1.60631924 using single

precision IEEE arithmetic, then n results for rp(x) are calculated using

MCA for increasing values of x:

x = u, (u+ ε), (u+ 2ε), (u+ 3ε), ..., (u+ nε)

with ε = 2−23. The difference value d = rp(x)−rp(u) is then calculated for

each iteration. Results of both the MCA test and the standard IEEE-754

test can then be compared to determine the difference in result distribution

1.5.4. LINPACK

The LINPACK benchmark determines system performance by measuring

the time taken to solve a dense n× n system of linear equations Ax = b.17

Using this benchmark performance of the system can be easily measured

using an industry benchmark tool, and compared to the performance of an

equivalent SW solution. Statistical measurements of the results for x have

also been made, and precision testing performed using the benchmark to

demonstrate the use of variable precision MCA. In this work, n = 300 was

used.

1.6. Results

1.6.1. System Performance & Size

Tables 1.6.1 and 1.6.1 provide performance results and logic utilization

figures for the MCA co-processor. The primary test used to determine

system performance is the LINPACK benchmark, as this is an industry

standard example of a FP benchmark tool. In order to achieve maximum

performance the LINPACK benchmark was profiled to determine which
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Table 1.2. System Performance (Measured)

Test Type MFLOPS Mean Std Dev

Cosine

SW-FP 990 0.0 0.0

SW-MCA 5.5 0.69 0.000009
HW-MCA 4.7 0.69 0.000009

Cancellation

SW-FP 1900 0.0 0.0
SW-MCA 5.2 0.51 0.59

HW-MCA 2.7 0.51 0.59

Kahan

SW-FP 1800 0.0 0.0

SW-MCA 4.2 0.000014 0.000033
HW-MCA 1.5 0.000012 0.000047

LINPACK

SW-FP 2350 1.0 0.0
SW-MCA 4.4 1.0 0.0000000004

HW-MCA 3.5 1.0 0.0000000004

functions would provide the most benefit from optimization. These func-

tions were optimized by performing operations of the type (a ∗ b) + c using

the co-processor FMA operation. The results of the LINPACK test show

that the MCA co-processor achieved a speed of 3.5 MFLOPS for the LIN-

PACK test, and this figure corresponds with the average performance of

the system during all test routines. This performance can be compared to

the PC performing MCA in software, which can be seen to have achieved

an average speed of 4.4 MFLOPS during the LINPACK test, which is again

similar to the average speed of 4.75 MFLOPS achieved across all test rou-

tines. From this comparison two things are noted, firstly, there is a 200×
to 600× decrease in performance for software-based MCA over standard

FP. Secondly, the FPGA implementation has comparable performance to

the SW implementation. Table 1.6.1 shows that this performance has been

achieved with a 5x increase in logic utilization over a single precision IEEE

FP unit capable of performing the same arithmetic operations. Compared

with Yeung et. al.,13 this design has similar throughput but a consider-

able area overhead due to implementing/interfacing each MCA operation

separately in order to reduce I/O overhead

1.6.2. Improving Performance

The FPGA MCA core implementation has not been fully optimised. Per-

formance is limited by I/O overhead, a conflict between the -msoft-float and
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Table 1.3. System Logic Utilization
Operation DSP48E FF LUT % Inc. (Avg)

ADD 2 595 2067 301%

SUB 2 595 2067 301%

MUL 9 905 2299 725%
DIV 6 4476 7383 761%

FMA 9 1263 3618 383%

TOTAL 28 7834 17434 495%

optimisation flags in gcc and the maximum clock speed of the implementa-

tion. In order to overlap communication with computation the LINPACK

benchmark was profiled, with results indicating that 92% of computation

time was spent in the daxpy subroutines. In addition, analysis of the co-

processor I/O overhead showed 80% of execution time spent transferring

data and only 20% on computation. The maximum speedup, S, for LIN-

PACK can be calculated using Amdahl’s Law:18

S ≤ P

1 + f(P − 1)

≤ 5

1 + [0.08 ∗ (5− 1)]

≤ 3.79

where P = 5 is the maximum speed increase achievable by minimizing

I/O, and f = (1 − 0.92) = 0.08 is the ratio of non-daxpy to daxpy com-

putation. This value could be approached since the daxpy operations are

vectorisable. Further performance improvements can be obtained using the

gcc optimization flags, which were not used in this case due to conflicts

with the -msoft-float option. Testing of routines described in this paper

by directly modifying the source code showed that a consistent 2x speed

improvement is achieved with -O1 optimization. Finally the µBlaze max-

imum clock frequency limits the overall system to a clock frequency to

150MHz, while the Zynq family of processors recently released by Xilinx

are capable of clock frequencies of 800MHz. In addition Xilinx LogiCORE

IP FP operator cores can achieve a maximum frequency of 400MHz. Thus

a conservative estimate for the maximum frequency of an optimized design

is 400MHz, a 2.5× speedup over the reported design. The optimizations

in this section are orthogonal and, taken togegther, an additional ∼ 20×
speedup may be possible. This would improve the performance of our ap-

proach to 60 MFLOPS.
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Figure 4: Distribution of results for [(x+y)+z]−[x+(y+z)]

to demonstrate the effectiveness of hardware acceleration of
error detection algorithms. Testing of the complete system
shows that the MCA FPU provides results equivalent to previ-
ously published software implementations. Experiments have
also shown that the hardware accelerated implementation
is capable of performing operations an order of magnitude
faster than an equivalent software implementation, and that
the performance is comparable to a standard floating point
implementation. This work shows that hardware accelerated
implementations of error detection algorithms can provide
quantitative information on the effects of rounding error
without impacting device performance.

In future work, we plan to increase the performance and
usabilty of the system. The current performance bottleneck
is the CPU/co-processor interface. Attaching a higher per-
formance processor to the FPU via a faster bus would lead
to a significant increase in performance. Futher speedup
could be achieved by computing multiple Monte Carlo
samples in parallel. A register file and forwarding mechanism
could also be implemented within the FPU itself to reduce
FPU-processor traffic and allow for lower latencies. Finally,
compiler integration capable of fully utilizing the pipelined
MCA FPU, allowing programs to efficiently employ MCA
without source code modifications will be investigated.
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Fig. 1.1. Distribution of results for [(x+ y) + z]− [x+ (y + z)]

1.6.3. Error Detection

Figure 1.1 shows the results of two runs of the Cancellation test. The

histogram on the right shows results using the values given in section 1.5.1

and demonstrates distribution of results for operations susceptible to round-

off error. From table 1.6.1 it can be seen that the results of this test have

a standard deviation of 0.51, this being of the same order as the mean,

0.59. It can thus be concluded that, for the given inputs, the co-processor

detected catastrophic cancellation. The distribution of these results can

also be compared to the histogram on the right side of Figure 1.1 which

show results for another execution of the cancellation test using different

inputs. From the histogram, it can be seen that the standard deviation

and relative standard deviation of the results are much lower and hence,

for these inputs, lower sensitivity to rounding error is indicated. The results

of the Kahan test are shown in Figure 1.2. The plot on the right side of the

figure shows the results of the Kahan test when performed using standard

IEEE-754 FP operations, and as can be seen in the plot the results do not

show random rounding. The plot on the left side of the figure shows results

obtained using the MCA co-processor. Comparing these two sets of results

it can be seen that MCA operations performed by the co-processor produce

randomly rounded results, and that statistical analysis of these results can

be used to determine the sensitivity of the system to rounding error.
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Performance Indicator Pipelined Non-Pipelined
Max. Freq. 117MHz 117MHz
Latency (avg cycles) 29 11
Initiation Interval (cycles) 1 11
MFLOPS (Peak) 117.0 10.6
MFLOPS (Tested) 13.9 3.0

Table III: System peak performance (overall)

performance results for the Kahan, Cancellation and Cosine
tests are summarized in Table V. When compared to the
software implementation an average speedup of 17× using
AXI4-stream and 7.5× using the AXI4 bus was observed.

Statistical results obtained using the test routines described
in the previous section are presented in Table V. By
monitoring these statistics, the system can be used to provide
real time information on the accuracy of results. Results of
the Cancellation Test show that the standard deviation of
these results is high compared to the mean, leading to a
suspicion that the operation is sensitive to round-off error.
Alternatively the relative standard deviation of the Cosine
test is much lower, indicating that this operation is less
sensitive to rounding error. Figure 3 shows the results of
the Kahan test using both MCA and IEEE single precision
arithmetic. The plot for IEEE single precision shows that
although the operation is sensitive to input perturbations, the
distribution of results is biased. The plot for MCA shows that
precision bounding of input values will force randomization
of round-off error.

B. Run-Time Error Detection

Figure 4 shows two histograms of result distributions
for two runs of the Cancellation Test. The first (lefthand)
histogram shows the results of the test using the values given
in Section V-C. A distribution with a high number of unique
results and a large range relative to the average result can be
observed, indicating that the results are sensitive to round-off
error and the accuracy of the operation using these values
is questionable. In contrast the second histogram shows a
result distribution with a low number of unique results and
small range relative to the average result, indicating stable
results and high accuracy. Using the design presented in
this paper, operations can be performed while monitoring
the accuracy of results at run-time. Software designed to
track the statistics of results distributions obtained from the
co-processor can also be designed to detect large deviations
across Monte Carlo samples and switch to a higher precision
format (i.e. switch from single precision to double precision)
to increase accuracy.

C. Precision Testing

Figure 5 shows results of the Cancellation Test over 1000
trials while varying t. For each t, the Cancellation Test is
performed a total of 8 times. On the left half of the figure,
the precision t is plotted against the number of significant

System Logic Utilization (Slices/DSP48)
Op Type IEEE754 MCA (Pipelined) % Increase
Add/Subtract 195/4 484/4 148% / 0%
Multiply 57/3 325/9 470% / 200%
Divide 246/0 1724/6 600 % / -

Table IV: System Logic Utilization

Cosine Test
Test Type MFLOPS Mean Std Dev

AXI4 3.5 0.69 0.0000090
AXI4-Stream 3.5 0.69 0.0000090

Software 0.35 0.69 0.0000090
Cancellation Test

AXI4 3.2 -0.51 0.59
AXI4-Stream 13.8 -0.51 0.59

Software 0.55 -0.50 0.59
Kahan Test

AXI4 2.4 0.000013 0.000015
AXI4-Stream 6.4 0.000014 0.000033

Software 0.36 0.000012 0.000047

Table V: Performance and statistical testing results

digits. It can be seen that in order to achieve four significant
figures in the Cancellation Test, a minimum p value of 14,
i.e. a 14-bit significand, is required. The right hand plot
shows precision versus standard deviation. This can be used
to determine the minimum precision required to achieve a
specific standard deviation. The precision test shows that
the system is able to provide information on the level of
accuracy obtainable at different precision values, allowing
for the design of self-tuning software that can be optimized
for a mix of speed and accuracy requirements.

VII. CONCLUSIONS AND FUTURE WORK

FPGAs offer the unique ability to compile processors
with custom FPUs for debugging purposes. Using high level
design synthesis a complete system for run-time detection of
round-off error has been devised. Monte Carlo Arithmetic
is used to apply precision bounding to a standard IEEE-754
FPU. The design has been implemented as a co-processor
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1.6.4. Precision Testing

The final set of testing and results demonstrate the ability of the MCA

co-processor to perform variable precision MCA, and to determine the min-

imum precision required to perform an operation to a specified accuracy.

The LINPACK benchmark is executed using n = 300 and the virtual pre-

cision of MCA operations varied between 1 ≤ t ≤ 24. The value of the

result vector x is then analysed to determine the accuracy of the results,

which are given in Figure 1.3. For a required output accuracy, (specified in

terms of either the minimum number of significant figures or the minimum

realtive standard deviation), the minimum required machine precision is

the corresponding abscissa in Figure 1.3.

1.7. Conclusion

A floating-point unit for the run-time detection of round-off errors was de-

signed and implemented using high-level synthesis tools. It was integrated

in a µBlaze soft processor system, and verified to give results of accu-

racy equivalent to previously published software implementations. Mea-

surements showed that the performance of the current implementation is

similar to an equivalent PC-based SW implementation, and that a further
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Fig. 1.3. Precision Test results

speedup of 20× is possible.

This work shows that HW accelerated implementations of error detec-

tion algorithms can provide accurate measurements of the effects of round-

ing error while not dramatically impacting performance. Future work will

focus on better integration between the FPU and processor, improving per-

formance.
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