
LUXOR: An FPGA Logic Cell Architecture for Eficient
Compressor Tree Implementations

SeyedRamin Rasoulinezhad1, Siddhartha1, Hao Zhou2, Lingli Wang2, David Boland1, Philip H.W. Leong1
1School of Electrical and Information Engineering, The University of Sydney, Sydney, 2006, Australia

2State Key Lab of ASIC and System, Fudan University, Shanghai 201203, China
{seyedramin.rasoulinezhad, siddhartha.siddhartha, david.boland, philip.leong}@sydney.edu.au

{zhouhao, llwang}@fudan.edu.cn

ABSTRACT

We propose two tiers of modiications to FPGA logic cell architec-

ture to deliver a variety of performance and utilization beneits with

only minor area overheads. In the irst tier, we augment existing

commercial logic cell datapaths with a 6-input XOR gate in order

to improve the expressiveness of each element, while maintaining

backward compatibility. This new architecture is vendor-agnostic,

and we refer to it as LUXOR. We also consider a secondary tier of

vendor-speciic modiications to both Xilinx and Intel FPGAs, which

we refer to as X-LUXOR+ and I-LUXOR+ respectively. We demon-

strate that compressor tree synthesis using generalized parallel

counters (GPCs) is further improved with the proposed modiica-

tions. Using both the Intel adaptive logic module and the Xilinx

slice at the 65nm technology node for a comparative study, it is

shown that the silicon area overhead is less than 0.5% for LUXOR

and 5ś6% for LUXOR+, while the delay increments are 1ś6% and

3ś9% respectively. We demonstrate that LUXOR can deliver an av-

erage reduction of 13ś19% in logic utilization on micro-benchmarks

from a variety of domains.BNN benchmarks beneit the most with

an average reduction of 37ś47% in logic utilization, which is due

to the highly-eicient mapping of the XnorPopcount operation on

our proposed LUXOR+ logic cells.

ACM Reference Format:

SeyedRamin Rasoulinezhad1, Siddhartha1, Hao Zhou2, Lingli Wang2, David

Boland1, Philip H.W. Leong1. 2020. LUXOR: An FPGA Logic Cell Archi-

tecture for Eicient Compressor Tree Implementations. In Proceedings of

the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays (FPGA ’20), February 23ś25, 2020, Seaside, CA, USA. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3373087.3375303

1 INTRODUCTION

The design of parallel computer arithmetic circuits is a well estab-

lished ield of research dating back to the works of Wallace [30],

Dadda [4], Swartzlander [26], Verma [28], and others. In the context

of ield-programmable gate arrays (FPGAs), there has always been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

FPGA ’20, February 23ś25, 2020, Seaside, CA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7099-8/20/02. . . $15.00
https://doi.org/10.1145/3373087.3375303

interest in specialized arithmetic primitives which improve perfor-

mance over a wide range of application domains. One such primi-

tive, Generalized Parallel Counters (GPCs), enables fast accumula-

tion of compressor trees. Work from Parandeh-Afshar et. al. [21]

motivated the use of GPCs on FPGAs, while Kumm et. al. [12]

demonstrated software techniques that automate the design of opti-

mal compressor tree implementations for FPGAs. However, modern

FPGA lookup table (LUT) based architectures are not particularly

eicient for implementation of compressor trees [19].

In this paper, we show that support for compressor trees in

FPGAs could be signiicantly improved through minor modiica-

tions to the logic element (LE). This is beneicial for implementing

low-precision and multi-operand operations. One example of in-

terest is that compressor trees and GPCs can be used to accelerate

the XnorPopcount operations within binarized neural networks

(BNNs) [1], which forms the critical path of the model’s execution.

BNNs enable neural networks to be utilized in resource constrained

applications and can be deployed eiciently on FPGAs [13, 34]; our

optimizations would improve their performance further.

LUXOR is a portmanteau of the acronyms LUT and XOR. Its

design is motivated by the observation that the Boolean XOR oper-

ation is very commonly found in optimized compressor trees. This

is corroborated by Verma et. al. in [29], where they exploited the

correlations between the operands of the XOR function to improve

delay for ASIC implementations. Our goal is to utilize this insight

in a similar vein, but optimized for FPGAs.

Our proposed changes provide a means to eiciently implement

compressor trees using new area-optimized GPCs, which can all be

applied to a large variety and/or important classes of applications.

The contributions of this paper can be summarized as follows:

• A new logic element, LUXOR, that integrates a 6-input XOR

gate with commercial FPGA logic elements. This architecture

independent modiication improves the implementation of

XnorPopcount operation and the most commonly used GPC.

• LUXOR+, an amalgamation of LUXOR with further Intel

(I-LUXOR+) and Xilinx (X-LUXOR+) architecture-speciic

optimizations to achieve further resource reduction. To the

best of our knowledge, this leads to the most eicient re-

ported logic element based GPC, called C06060606, which

can be mapped to just a single Xilinx slice.

• A novel integer linear programming (ILP) formulation based

on the lexible Ternary Adder approach proposed in [22] to

optimally map compressor tree problems to LUXOR cells.

• Quantitative investigation of the beneits of LUXOR and

LUXOR+ architectures using a set of more than 50 micro-

benchmarks. Our results also show the positive beneits of

https://doi.org/10.1145/3373087.3375303
https://doi.org/10.1145/3373087.3375303

FPGA ’20, February 23ś25, 2020, Seaside, CA, USA SeyedRamin Rasoulinezhad1 , Siddhartha1 , Hao Zhou2 , Lingli Wang2 , David Boland1 , Philip H.W. Leong1

the proposed LUXOR and LUXOR+ enhancements in SMIC

65nm standard cell technology.

• The ILP-based compressor tree synthesizer, benchmarks and

design iles required to generate the results in this paper are

open source to support reproducible research, and available

at github.com/raminrasoulinezhad/LUXOR_FPGA20.

The remainder of the paper is organized as follows. In Section 2,

we provide background on parallel counters, GPCs, compressors,

and compressor trees. Our LUXOR and LUXOR+ enhancements are

presented in Section 3, and the accompanying ILP formulation in

Section 4. The experiment results are given in Section 5. Finally, we

present conclusions in Section 6.

2 BACKGROUND

2.1 Parallel Counters

Parallel counters are digital circuits that simply count the number

of asserted bits in the input, returning this value as a binary output.

They can be speciied in (p:q) notation, where p is the number

of input bits, and q is the number of output bits used to express

the result in binary notation. Half-adders (HA) and full-adders

(FA) are commonly used parallel counters, denoted as (2:2) and

(3:2) respectively. Parallel counters can also be expressed in dot

notation [6] as shown for the full-adder in Figure 1a. We use this

notation frequently in this paper to visualize various designs, and

use the terms bits and dots interchangeably. Figure 1b shows how

FAs can be used in parallel to implement a single stage of carry-save

addition for a 3-bit (3b) 3-operand addition. Note that each FA takes

inputs from a single-column, and hence, all input bits to a parallel

counter have the same rank , i.e. they all have the same weight.

Full-Adder

SumCarry

(a) FA takes in three bits
(dots) and produces two out-
puts: sum and carry

S
ta

g
e
 0

S
ta

g
e
 1

Rank 0Rank 1Rank 2

(b) One stage of 3b carry-save ad-
dition of three operands using
three FAs in parallel

Figure 1: (3:2) parallel counter, also known as a full-adder.

2.2 Generalized Parallel Counters

Generalized Parallel Counters, or GPCs, were irst proposed by

Meo [14] and subsequently shown by Parandeh-Afshar et. al. [17]

to map eiciently to FPGAs. Unlike parallel counters, GPCs allow

input bits to have diferent weights, which, in the dot notation, make

the GPCs appear as multi-column counters. Figure 2 shows the dot

notation of some previously published GPCs [22]. Mathematically,

GPCs are written as a tuple: (pn−1, ...,p1,p0:qm−1, ...,q1,q0), where

pi is the number of input bits in the ith column, andqj is the number

(a) C6:111 (b) C25:121 (c) C1325:11111

Figure 2: Three popular GPCs found in the literature

of output bits in the jth column. FPGA implementations can be

classiied as lookup table-based GPCs [10], or carry-chain-based

GPCs [18]. As their names suggest, the łshapež of a GPC can have

a profound impact on its hardware implementation on FPGAs, and

subsequently its performance and eiciency in a compressor tree.

Popular metrics to quantify the eiciency of a GPC include [20, 22]:

GPC eiciency, E =
p − q

k
(1)

Strength, S =
p

q
(2)

Area-Performance Degree, APD =
(p − q)2

k ∗ d
(3)

Arithmetic slack, A = 1 −
1 +

∑m−1
i=0 2ipi

1 +
∑n−1
i=0 2iqi

(4)

where p and q are the number of input and output bits to/from the

GPC respectively, k is the area utilization (in LEs) of the GPC, and

d is the critical path delay (in nanoseconds) of the GPC implemen-

tation. We tabulate the eiciency of each GPC studied in this work

using these metrics later in this paper (Table 1 and Table 3).

2.3 Compressors

C4:2

4 inputs (rank 0)

Cin
(rank 0)

Cout
(rank 1)

Out0

(rank 0)

Out1

(rank 1)

(a) Block diagram

0

(b) One stage of a four-operand
4b-addition using four (4:2)
compressors

Figure 3: Simple (4:2) compressor example.

Compressors can be considered parallel counters, with one main

diference: they have explicit carry-in (Cin) and carry-out (Cout) bits

that can be connected to adjacent compressors in the same stage, as

shown in Figure 3b. In contrast to carry-propagate adders, the carry-

chains between compressors are not cascaded and hence reduce

the critical path. Instead they are connected in a carry-save manner.

LUXOR: An FPGA Logic Cell Architecture for Eficient Compressor Tree Implementations FPGA ’20, February 23ś25, 2020, Seaside, CA, USA

So the overall delay of the circuit scales much better (Figure 4).

To the best of our knowledge, the (4:2) compressor (see Figure 3a)

is the only FPGA-friendly [11]) design that targets Xilinx FPGAs,

while no eicient compressors exist for Intel devices. Parandeh-

Afshar et al. [19] addressed this issue by proposing conigurable

carry-chains as modiications to the Intel Adaptive Logic Module

(ALM), supporting 6:2 and/or 7:2 compressors.

For brevity, we describe adders/compressors/GPCs with a simpli-

ied notation omitting commas. For example, we describe the GPC

(6:1,1,1) as C6:111, the (4:2) compressor as C4:2, or the full adder

(3:1,1) as C3:11.

2.4 Adder and Compressor Trees

For multi-operand addition, we can build adder trees by chaining

multiple ripple-carry adders (RCA). Figure 4a shows addition of

3×3b operands. The carry-out from each FA/HA propagates to the

next FA, which results in a long critical path along the carry-chain

(shown in red). While the RCA has a small area footprint, this

long delay is undesirable and can limit performance, especially for

operands with large bitwidth.

The carry-save adder (CSA) [5] addresses this issue by treating

the full-adder as a C3:11 compressor and breaking the carry-chain as

shown in Figure 4b. By avoiding the carry chain, the delay is largely

determined by the depth of the tree. However, the inal stage must

be reduced to the inal answer using an RCA. Nevertheless, the CSA

adder reduces the overall delay of the addition. For the example in

Figure 4, the critical path delay has one less full-adder-delay.

HAFAFA

HAFAFAHA

(a) Ripple-carry adder.

FAFAFA

HAFAHA

(b) Carry-save adder.

Figure 4: Examples of two types of adders.

This idea of breaking the carry-chain dependency up till the

inal RCA stage is the basis behind compressor trees. A compressor

tree is simply a circuit that takes in a set of binary values (or dots)

that represent multiple operands, and outputs the result as a sum

and carry. Stage 0 in Figure 1b is a compressor tree that produces

sum and carry bits as inputs into Stage 1, which are then evaluated

by an RCA to produce the inal result (see HA→FA→HA row in

Figure 4b, which is the RCA stage). Compressor trees can be built

using GPCs, compressors, or both, and eicient compressor tree

design is an active area of research with large bodies of existing

literature [11, 12, 18ś22, 29].

The reader is encouraged to read [19] for a more detailed back-

ground on parallel counters, GPCs, compressors, and diferent meth-

ods of compressor tree implementations.

2.5 Xilinx FPGA Logic Elements

The Xilinx conigurable logic block (CLB) [33] is composed of two

slices, which are the basic unit of the FPGA’s soft-fabric. Each slice is

composed of four 6-input LEs, including 6-input LUT and additional

circuitry such as registers and multiplexers, which give the slice

its expressiveness. Figure 5a (in black) shows a quarter of the slice

architecture (an 6-input LE and the corresponding circuits) found

in the modern Xilinx UltraScale+ FPGAs. Another notable feature

of the slice is the presence of a fast carry-chain between the LEs,

which is often used to implement arithmetic circuits such as RCAs.

The architectural modiications proposed in this work are at the

quarter slice abstraction.

2.6 Intel FPGA Logic Elements

The main logic element in Intel FPGAs is the adaptive logic module

(ALM) [8]. Figure 5b (in black) shows the ALM architecture of a

modern Stratix-10 device. Each ALM is composed of a fracturable

6-input LUT, while primitives such as full-adders and multiplexers

help to support higher-order boolean functions. Ten ALMs on Intel

FPGAs are grouped to form a logic array block (LAB), which aug-

ments the ALMs with more primitives such as HyperFlex registers,

local interconnect, and conigurable carry-chains [8]. Our proposed

modiications in this paper are at the ALM abstraction.

2.7 Related Work

Parallel digital arithmetic circuits have been explored since the

1960s [4, 26, 30], but FPGA-based compressor trees were only pop-

ularized in the past two decades, primarily from work by Parandeh-

Afshar et. al. [17, 19] and Kumm et. al. [11, 12]. In [19], the authors

proposed architectural changes to the Intel ALM carry-chains such

that large compressors like (6:2) and (7:2) can be eiciently mapped

to single ALMs. Although their proposed compressor is very ei-

cient, for modern applications such as BNN popcounting [13], these

compressors would be signiicantly underutilized. Similarly, Kim et.

al. [9] and Boutros et. al. [2] propose changes to the FPGA archi-

tecture, by adding sum-chain and extra carry chains respectively,

speciically for modern deep neural network applications, which

do not necessarily beneit general-purpose compressor trees. Our

proposed changes are motivated by insight into modern GPC-based

compressor tree designs, and beneit a larger suite of old and new

benchmarks.

3 FPGA LOGIC CELL ENHANCEMENTS

In this section, we describe in detail the proposed hardware ar-

chitecture modiications that further improve the performance of

GPCs on FPGAs. We focus our eforts on improving the design

of the logic cell of FPGAs from the two major FPGA vendors, In-

tel and Xilinx. Our modiications are organized into two tiers: (1)

A vendor-agnostic change to both Intel and Xilinx FPGA logic

cells, and (2), a vendor-speciic modiication on top that further

optimizes performance. We refer to these logic cell design tiers as

LUXOR, and LUXOR+ respectively. Both LUXOR and LUXOR+ are

backward-compatible and retains pin-interchangeability, i.e. any

existing design maps equally well to these new architectures.

3.1 LUXOR

Our irst proposed modiication is to add a 6-input XOR gate (XOR6)

to both Intel and Xilinx FPGA cells. The XOR6 is parallel to the

LUT and re-uses its inputs and output path as shown in Figure 5.

FPGA ’20, February 23ś25, 2020, Seaside, CA, USA SeyedRamin Rasoulinezhad1 , Siddhartha1 , Hao Zhou2 , Lingli Wang2 , David Boland1 , Philip H.W. Leong1

LUT-6 XOR2

O6

O5

FF

Q

FF/Lat

Q

0/1

A6:A1

AX

AQ

A

AMUX

A6:A1

CIN

Signals from/to next LEs

A1

XOR2
XOR6

(a) Modiications to Xilinx UltraScale+ LE. A slice is composed of four LEs.

LUT-4

LUT-4

LUT-4

LUT-4

FF

Q

E

CIN

COUT

+

+

FF

Q

FF

Q

FF

Q

A

B

C1

D1

F

D0

C0

O0

O1

O2

O3

A,B,C0,D0,E,F

C1,D1

Maj3

+

C0,D0,E
XOR6

(b) Modiications to the Intel Stratix-10 ALM. Each ALM has 8-inputs
and a fracturable LUT6 [8].

Figure 5: Basic logic element (LE) for Xilinx and Intel FPGA architectures. LUXORmodiications are highlighted in red, while

vendor-speciic LUXOR+ modiications are colored blue. Some signals are omitted for simplicity.

This modiication is motivated by the observation that the C6:111

GPC is dominant in modern FPGA-based compressor tree designs.

To quantify that claim, we analyzed optimal solutions of compres-

sor trees from a set of 50+ micro-benchmarks that are commonly

found in various domains (e.g. popcounting, multi-operand addi-

tion, FIR ilters, etc) using eicient GPCs and compressors for Xilinx

architecture from reference [22]. Figure 6 shows a histogram of the

percentage count and cost (in LEs) for all GPCs across all solutions.

Due to its compression eiciency, C6:111 is used more than a third

of the time, and as a result, most of the hardware is dedicated to-

wards its implementation. In modern FPGAs, the C6:111 maps to 3

LUTs, but by providing an explicit XOR6 datapath inside each logic

cell, we can bring that cost down to 2 LEs. This is done by mapping

the irst output bit to the XOR6 rather than using a separate LE.

Hence, LUXOR can deliver a resource utilization reduction for the

most commonly-used GPC of up to 33%.

Another very useful feature of the LUXOR design is its appli-

cability to binarized neural networks (BNNs). In BNNs, the core

computational workload is generated by the convolution layers,

which are reduced via a XnorPopcount [24] operation for the binary

case. Consider the XnorPopcount operation between three binary

activations (x0, x1, and x2) and their corresponding binary weights

(w0,w1, andw2). The required computation is:

Sum = (w0⊕x0) ⊕ (w1⊕x1) ⊕ (w2⊕x2)

Carry, C = (w0⊕x0) · (w1⊕x1) + (w2⊕x2)[(w0⊕x0) ⊕ (w1⊕x1)]

where ⊕ and ⊕ represent the XNOR and XOR operations respec-

tively.

This XnorPopcount operation gets mapped to 2 LEs on modern

FPGAs, as shown in Figure 7a ś one LE to compute the sum bit,

and the other to compute the carry bit. With LUXOR, however,

this computation can be mapped to just a single logic element

via a Boolean transformation, where the Sum bit (S) can now be

<1%<1%<1%<1%<1%<1%<1%<1%<1%<1%<1%<1%<1%<1%<1%<1%<1%<1%<1%<1%<1%<1%

0

5

10

15

20

25

30

35

40

C
6:

11
1

C
25

:1
21

C
06

15
:1

11
11

C
06

06
:1

11
11

C
3:

11

C
13

25
:1

11
11

C
06

23
:1

11
11

C
14

06
:1

11
11

C
14

15
:1

11
11

C
22

15
:1

11
11

C
24

44
:1

22
21

GPC

P
e
rc

e
n
ta

g
e
 (

%
)

Total Use Count

Cost (Number of LEs)

Figure 6: Total percentage count and cost of each

GPC/compressor found in optimal solutions of com-

pressor trees across 50+ Micro-Benchmarks from a variety

of ields. The GPC/compressor list is according to [22]

expressed as:

Sum = (w0 ⊕ x0) ⊕ (w1 ⊕ x1) ⊕ (w2 ⊕ x2)

which is essentially a XOR6 function where the complement of the

weights are used. The LUT-6 implements the carry logic in this

case, and both outputs from a single Xilinx slice can now be used

to compute the partial products of the binarized convolution layer

(see Figure 7b). Finally, to compute the output activations of the

convolution layer, all the partial sums have to be summed, which

can be visualized as a tall two-column many-operand instruction

of carry and sum bits, as shown in Figure 7c. This can be eiciently

reduced using a compressor tree, which is also improved by our

proposed LUXOR modiications.

LUXOR: An FPGA Logic Cell Architecture for Eficient Compressor Tree Implementations FPGA ’20, February 23ś25, 2020, Seaside, CA, USA

LUT-6

W
k

X
k

W
k+1

X
k+1

W
k+2

X
k+2

C

LUT-6

S

(a)

W
k

X
k

W
k+1

X
k+1

W
k+2

X
k+2

C

S

LUT-6
XOR6

(b)

SC

SC

SC+

SC

SC

(c)

Figure 7: BNN implementation on Xilinx FPGAs: primary

multiply and compressors of (a) XnorPopcount with 2 LEs,

(b) XnorPopcount with 1 LUXOR LE. (c) Final two-column

popcount to accumulate the partial sums (S), and carries (C)

3.2 LUXOR+

3.2.1 LUXOR+ for Xilinx FPGAs (X-LUXOR+). Reference [22] pro-

poses the atoms (ś06ś, ś14ś, ś22ś), as primitives to construct slice-

based GPCs. Atoms are 2-column-input GPCs which mapped well

to half of a slice (2 LEs) and can be connected via fast in-slice carry-

chains to form wider GPCs, called couple. Note, the irst atom in a

couple can also accept one extra input in the irst rank, except ś06ś

for structural reasons. For instance ś06ś and ś22ś atoms builds two

couples as C0623:11111 and C2206:11111. All combinations of these

three atoms as well as C1325:11111 (which is also a slice-based GPC

but not decomposable) are listed in the baseline section of Table 1.

The blue datapath in Figure 5a highlights the proposed modiica-

tion to the Xilinx FPGA slice. It involves modiication of the carry

chain datapath, introducing additional logic to allow the output

from the XOR6 gate to be propagated into the carry-chain. This

allows us to improve the implementation of slice-based GPCs. This

enables us to map atom ś06ś to a quarter slice and consequently

ofers new set of slice-based GPCs such as C06060606:111111111,

which can be mapped to just a single slice. This particular GPC has

a very high compression eiciency of 3.75, which is more than any

other existing GPCs in the literature. The X-LUXOR+ portion of

Table 1 summarizes the characteristics of the new GPCs for Xilinx

FPGAs.

We provide a simple illustration of the impact of our X-LUXOR

and X-LUXOR+ optimizations in Figure 8. The penultimate (red)

column can be implemented with a C6:111 compressor, requiring 2

LEs (instead of 3 in the unmodiied case) in X-LUXOR. X-LUXOR+

is able to use the C06060606:111111111 GPC, which further reduces

resource usage. In general, X-LUXOR has the greatest impact on tall-

skinny compressor trees, which require signiicant use of C6:111,

and hence has greater gains for wide compressor trees.

3.2.2 LUXOR+ for Intel FPGAs (I-LUXOR+). Note that in Figure 6,

the C25:121 GPC, originally suggested in [22], is also a very eicient.

Figure 9 shows that it can be implemented using two sets of two

5-shared-input functions, occupying 2 ALMs. I-LUXOR+ introduces

a majority circuit and full-adder to the ALM datapath, called MajFA

(blue in Figure 5b), to explicitly implement S1 and C1 while S0 and

C0 can be implemented in parallel with two 5-input LUT which

shares the inputs in a ALM. This modiication captures C25:121

in a single ALM instead of two. In summary, I-LUXOR+ reduces

the cost of two highly used GPCs, C6:111 and C25:121, by one LUT

(33% and 50% respectively).

Table 1: Slice-based GPCs for Xilinx FPGAs. N.B. X-LUXOR+

area overhead is not considered in computing E, S,A.

GPCs p q LUTs E S A

B
a
se
li
n
e
[1
1
,
2
2
]

C0606:11111 12 5 4 1.75 2.40 0.031

C1415:11111 11 5 4 1.50 2.20 0.000

C2215:11111 10 5 4 1.25 2.00 0.000

C0615:11111 12 5 4 1.75 2.40 0.000

C1423:11111 10 5 4 1.25 2.00 0.000

C2223:11111 9 5 4 1.00 1.80 0.000

C0623:11111 11 5 4 1.50 2.20 0.000

C1406:11111 11 5 4 1.50 2.20 0.031

C2206:11111 10 5 4 1.25 2.00 0.031

C1325:11111 11 5 4 1.50 2.20 0.063

X
-L
U
X
O
R
+

C06060606:111111111 24 9 4 3.75 2.67 0.002

C140606:1111111 17 7 4 2.50 2.43 0.008

C220606:1111111 16 7 4 2.25 2.29 0.008

C060606:1111111 18 7 4 2.75 2.57 0.008

C060615:1111111 18 7 4 2.75 2.57 0.000

C060623:1111111 17 7 4 2.50 2.43 0.000

C061406:1111111 17 7 4 2.50 2.43 0.008

C062206:1111111 16 7 4 2.25 2.29 0.008

4 ILP-BASED COMPRESSOR TREE SYNTHESIS

Many commonly used arithmetic operations such as multiplica-

tions, multiply-add, or digital ilters can be expressed compactly

as compressor tree hardware implementations. However, realiz-

ing eicient compressor trees is a non-trivial task that typically

requires software automation. Methods to do eicient compressor

tree synthesis include heuristics-guided search [16, 22, 25], integer

linear programs (ILP) [12, 29], or hybrid approaches [10]. We opt

for the ILP method in this work, and use ideas from [12] and [22]

as inspiration. Our goal is to quantify the efect of our proposed

LUXOR/LUXOR+ modiications on eicient compressor tree syn-

thesis for commonly-used arithmetic operations in modern applica-

tions. Figure 10 encapsulates the worklow of our ILP formulation,

and we detail each building block shown in the igure. Table 2 serves

as a reference for all the variables used in this section. Note that,

for clarity, all variable names in Table 2 are local to this section,

and should not be confused with nomenclature in other sections.

4.1 Objective

There are two key metrics that quantify the efectiveness of a com-

pressor tree implementation on FPGAs: area utilization in LUTs and

the critical path delay, which is strongly correlated to the number

of stages in the compressor tree. Hence, the objective function to

an ILP program should be described in a way that minimizes these

two metrics for each input micro-benchmark. To minimize the area

cost, the objective function can be written as follows:

min

St−1
∑

s=0

C−1
∑

c=0

T−1
∑

t=0

VtRs,t,c

To model the number of stages in the objective function, the

authors in [12] add the number of stages (St) as a heuristic to the

FPGA ’20, February 23ś25, 2020, Seaside, CA, USA SeyedRamin Rasoulinezhad1 , Siddhartha1 , Hao Zhou2 , Lingli Wang2 , David Boland1 , Philip H.W. Leong1

X-LUXOR X-LUXOR+

4 + 4 = 8 LEs4 + 4 + 4 + 2 = 14 LEs

Input

Stage #1

Xilinx baseline

4 + 4 + 4 + 3 = 15 LEsCosts:

Figure 8: Example compressor tree for a 6-operand 7-bit addition using Xilinx baseline, X-LUXOR, and X-LUXOR+

a2

a3

a4

a0

LUT-5

FA

FA

FA

a0

a1

a2

a3

b0

b1

a4

s0

c0

s1

c1

a1

LUT-5

S0

C0

b0

LUT-5

b1

LUT-5

S1

C1

a2

a3

a4

a0

LUT-5

a1

LUT-5

S0

C0

S1

C1+

XOR6

b0
b1

Maj3

Logical block

diagram
Intel ALMs I-LUXOR+ ALM

Figure 9: Eicient implementation of C25:121 GPC

Integer linear

program solver

Runtime manager

Objective Constraints

Micro-

benchmark

GPC Library

Compressor

Tree Solution

Cost

(LUTs/Delay)

Legend

: Described once

: Changed at runtime

Figure 10: Flowchart of ILP-based compressor tree synthesis

cost function. However, we found this optimization strategy to be

slow for diicult problems, and in some cases, the solver returns

a solution that takes more stages than required. To tackle this

issue, we design a runtime manager that improves the speed of the

optimization process.

4.2 Runtime manager and solver

Instead of modeling St as a heuristic in the objective function, we

rely on an iterative approach where we query the solver to ind

an optimal solution within a ixed maximum stage limit, Stmax .

This limit is relaxed incrementally until a feasible solution is found.

In practice, we found that the solver was able to determine infea-

sibility within a few seconds, whilst being able to ind a feasible

Table 2: Variables used in the ILP model

Var Description

St Number of stages in model

C Maximum number of columns in model

Xc Number of bits in column c of benchmark

T Total number of compressors used

It Total number of columns consumed by compressor t

Vt Cost (in LUTs) of compressor t

Mt,c Number of bits consumed by compressor t in column c

Ot Total number of columns output by compressor t

Kt,c Number of bits output by compressor t in column c

Ns,c Number of bits in stage s of column c

Cs,c Number of carry-bits in stage s of column c

Rs,t,c Number of compressor t used in column c of stage s

integer solution within a few minutes. This iterative approach was

also recently used by Kumm et. al. [10] by combining the ILP opti-

mality search with heuristics to guide the solver. We use the IBM

CPLEX v12.9 [3] ILP solver (under academic license), and design a

Python3-based interface for the runtime manager using the PuLP

package [15].

4.3 Constraints

Since the the input stage captures the input shape of the benchmark,

we set constraints on the input stage as follows:

N0,c = Xc for c = 0,1,2,...,C-1

For subsequent stages, there are two constraints required to

guide the solver towards a feasible compressor tree architecture,

such that input/output requirements of each stage are met:

T−1
∑

t=0

Ot−1
∑

c ′=0

Mt,c ′ ∗ Rs−1,t,c−c ′ ≥ Ns−1,c

T−1
∑

t=0

It−1
∑

c ′=0

Kt,c ′ ∗ Rs−1,t,c−c ′ = Ns,c

for c = 0,1,2,...,C-1

for s = 1,2,3,...,St-1

The irst constraint ensures that all bits in each column of every

stage are used as inputs by compressors in the next stage. The

second constraint ensures that the number of bits produced by the

LUXOR: An FPGA Logic Cell Architecture for Eficient Compressor Tree Implementations FPGA ’20, February 23ś25, 2020, Seaside, CA, USA

compressors in the previous stage matches the number of input

bits in the following stage. Both these constraints can also be found

in [12].

In each stage, the number of carry-bits in each column are com-

puted in (5), where the division by two is due to the increase in the

column’s radix.

Cs,c =

⌊

Cs,c−1 + Ns,c−1

2

⌋

(5)

This can be formulated as an ILP constraint as follows:

Cs,c + 0.999 ≥
1

2
(Cs,c−1 + Ns,c−1)

Cs,c ≤
1

2
(Cs,c−1 + Ns,c−1)

Cs,0 = 0

for c = 0,1,2,...,C-1

for s = 0,2,3,...,St-1

Note that the number of input carry-bits into the irst column is

always set to 0.

When solving the model iteratively, as described above, the con-

straints on the inal stage guide the solver to converge to the solu-

tion. In [22], the author proposes a novel ragged carry-propagate

architecture for the inal accumulation stage for Xilinx FPGAs.

This architecture reduces the overall number of stages required,

and hence, we opt for this strategy on Xilinx FPGAs. Unlike [22],

where the author uses a heuristic solver, we model the ragged

carry-propagate adder into our model for the inal stage as three

constraints:

Ns,c +Cs,c ≤ 5

Cs,c ≤ 2

Ns,c ≤ 4

for c = 0,1,2,...,C-1 and s = St-1

Finally, since Intel FPGAs cannot beneit from the ragged carry-

propagate adder, we model the ILP constraints for Intel FPGAs as

shown in [12] :

Ns,c ≤ 3 for c = 0,1,2,...,C-1 and s = St-1

4.4 GPC/Compressor library

4.4.1 Xilinx compressor set. When targeting Xilinx architectures

for our baseline, we use the GPC/compressor set deined by Preußer

[22], who pruned a set from Kumm and Zipf [11]. For our LUXOR

experiments, we reduce the cost of C6:111 GPCs from 3 to 2 logic

elements, as described in Section 3.2.1. For LUXOR+, in addition

to the smaller version of C6:111, we add all the new slice-based

GPCs described in Table 1 to our model. We denote these results as

X-LUXOR and X-LUXOR+ respectively.

4.4.2 Intel compressor set. When targeting Intel architectures, our

baseline compressor set is based on aGPC set proposed by Parandeh-

Afshar et al. [20], augmented with the C25:121 compressor from

[22]. Since this GPC set is large, to minimise run-time of our ILP,

we pruned this set using the GPC selection approach and metric

described by Preußer [22].

Parandeh-Afshar et al. [20] have gathered a group of LUT-based

and arithmetic-based GPCs for Intel architectures. In the irst three

Table 3: Comparison of diferent GPCs proposed in [22] and

new GPCs supported by I-LUXOR and I-LUXOR+

GPCs S A Delay LUTs APD

[20]

C6:111 2 0.13 0.38 3 7.9

C15:111 2 0 0.38 3 7.9

C23:111 1.67 0 0.38 2 5.3

[22] C25:121 1.75 0 0.38 2 11.8

O
u
rs C6:111 2 0.13 0.39* 2 10.95*

C25:121 1.75 0 0.39* 1 21.9*

*Area/delay overheads for I-LUXOR+ are included (Section 5).

line of Table 3, we show the eiciency and compression metrics

of our selected GPCs according to the APD (Equation 3) metric,

which measures the eiciency of a GPC taking into account delay

and resource usage. We also considered the delay itself, since some

of the proposed GPCs, such as C7:111, ofer slightly better S (com-

pression rates) but their reported delay is 3.5× greater. In addition,

we included C3:11 and C25:121 in the baseline GPC set for Intel

architecture.

Similar to our X-LUXOR experiments with Xilinx architectures,

we reduce the cost of C6:111 GPCs from 3 to 2 logic elements for

I-LUXOR. For I-LUXOR+, as well as using the upgraded version of

C6:111, we reduce the cost of C25:121 from 2 to 1 LE as described

in Section 3.2.2. We also comment that the efect of the I-LUXOR

and I-LUXOR+ enhancements are highlighted by the metrics, as

demonstrated by the last two rows of Table3. Due to the lower logic

element cost, theAPD of both GPCs show signiicant improvement.

4.5 Micro-Benchmarks

To evaluate the improvements of our proposed architectures, we

use diferent basic operations that are commonly found in various

domains in three categories: 1) Low-rank inputs including pop-

count and two-column count (based on [22], but with additional

input sizes) 2) High-rank inputs including multi-addition [12], 3-

MAC operation (described below), and a FIR-3 ilter from [20], and

3) BNN XnorPopcount operation for various input sizes, where

the ilter sizes are taken from the networks in [1, 7]. These three

categories highlight the beneits and limitations of LUXOR and

LUXOR+ architectures, as the chosen operations appears in var-

ious applications, especially digital signal processing and neural

networks which are the most important concerns of new FPGA

architectures [2, 23].

4.5.1 3-MAC operation. The 3śMAC operation is modeled accord-

ing to the following equation:

3-MACN×(N−bit) =

2
∑

i=0

Ai(N−bits) × Bi(N−bits) (6)

Note that since there are 3 pairs of inputs, instead of computing

partial products then and summing their results, we can select par-

tial products of the same rank and perform a primary compression.

The cost of this step is included in our result. The resulting tree

forms the input to the compressor. We repeat this for diferent input

widths (N).

FPGA ’20, February 23ś25, 2020, Seaside, CA, USA SeyedRamin Rasoulinezhad1 , Siddhartha1 , Hao Zhou2 , Lingli Wang2 , David Boland1 , Philip H.W. Leong1

Table 4: ASIC results for the Intel Stratix-10 ALM architec-

ture

Intel I-LUXOR Intel+MajFA I-LUXOR+

Area
um2 1680 1687 1715 1767

ratio 1 1.00 1.02 1.05

Delay
ns 1.42 1.44 1.49 1.46

ratio 1 1.01 1.05 1.03

5 RESULTS

In this section we present results from experiments undertaken to

evaluate the performance of the LUXOR and LUXOR+ architectural

enhancements.

5.1 ASIC Modeling: Delay and Area Overheads

We model state-of-the-art Intel Stratix-10 ALM unit [8], and Xilinx

UltraScale+ slice [32, 33] according to their respective data sheet de-

scriptions. For the ASIC metric analysis, we synthesize our Verilog

models using SMIC 65-nm technology standard cell by Synopsis

Design Compiler 2013.12. Post synthesis results are reported and

the synthesis strategy was set to łTiming Optimizationž since it

usually leads to a better Area × Delay product. We note that while

our approach to estimating area and delay overheads using standard

cells may difer slightly from an commercial full custom layout, in

either case the overhead is minimal.

Table 4 gives the post-synthesis area and timing results for the

Intel baseline, I-LUXOR, Intel+MajFA and I-LUXOR+ modiications

to the ALM. From the table, it can be seen that the delay increase of

I-LUXOR is about 1% while the area increase is less than 0.5%. This

demonstrates that there is little overhead associated with adding a 6-

input XOR gate to the ALM unit. In contrast, adding MajFA circuits

will increase the area and delay by 2% and 5% respectively (see

description in Section 3.2.2). The full I-LUXOR+ implementation,

has 3% and 5% delay and area overhead respectively. We believe that

the unexpectedly large increase in area compared to the individual

efect of each modiication arises from the performance-driven

synthesis optimization. For measuring the critical path, we removed

the multiplexers connecting the ALM’s outputs to its input, and

thus it is measured from: an input, through a LUT and two-coupled

full adders (FAs) to an output multiplexer.

In a Xilinx slice, the critical path is from an input, passing through

the irst LUT (A) and four carry-chain circuits, and ending with

the last output multiplexer. This path is also the critical path after

applying LUXOR(+) for both architectures.

The synthesized Xilinx baseline slicemodel has an area of 6045um2.

We compare the reported critical path with that from the Virtex-5

datasheet, which was a device that was also manufactured with

the similar 65 nm process. Reference [31] reports the critical path

from an input, through four carry circuits to the output (TITO) as

0.67, 0.77, or 0.90-ns for three diferent speed grades. Comparing

these values with our value of 0.84 ns from Table 5, consistency

with our synthesis results was veriied. The same table shows that

X-LUXOR has similar area utilization and a 6% increase in delay,

while X-LUXOR+ has 6% area and 9% delay overheads.

Since the routing delay strongly contributes to the total delay,

the LUXOR(+) delay advantages are diluted in practice. Although

Table 5: ASIC results for the Xilinx UltraScale+ slice archi-

tecture

Xilinx X-LUXOR X-LUXOR+

Area
um2 6045 6002 6361

ratio 1.00 0.99 1.06

Delay
ns 0.84 0.89 0.92

ratio 1.00 1.06 1.09

Table 6: A comparison of solutions from our ILP-based syn-

thesis compared with those reported in [22]

Test 1H1/H2/H3[22]
Our ILP Solver

cases
Baseline X-LUXOR X-LUXOR+

2LE 2Stage LE Stage LE Stage LE Stage

S128 101/102/101 4/3/4 100 3 79 3 78 3

S256 209/209/209 4/4/4 195 4 159 4 154 4

S512 418/422/418 5/5/5 380 5 319 5 312 4

D128 178/205/178 5/4/5 168 4 156 4 150 4

D256 360/417/360 6/5/6 328 5 315 5 298 4

D512 721/839/721 7/6/7 709 5 631 5 586 5
1Heuristics used in [22]: Eiciency/Strength/Product, reported in that order.
2LE = logic elements (LUTs), Stage = # of compressor tree stages

the X-LUXOR+ overheads are notable, because of the signiicant

resource and performance beneits, new trade-ofs are ofered. For

example, partially upgrading the LEs to LUXOR(+) architectures is

another option. Also, with more efort in layout and bufer sizing,

area and delay overheads can be recovered/balanced.

At a higher level of abstraction, LUXOR(+) does not require

any I/O scheme modiications. However, they increase the logic

implementation density leading to higher connectivity per LE/ALM.

Thus, routing limitations may slow down LUXOR(+) enhancements.

LUXOR(+) adds to the input load which also slows down the LE.

This was not measured directly but taken into account in the LE

measurements.

5.2 Benchmark Performance

The efect of our ILP approach on resource utilization in logic

elements is afected by the choice of primitives in the primary stage

(if applicable), compression tree stages, and the last stage (inal

ternary adder in Intel or the equivalent relaxed ternary adder for

Xilinx architectures as proposed in [22]). Table 6 compares our

technique with that of [22] for X-LUXOR and X-LUXOR+ where

test cases are popcount and double column popcount operations

indicated respectively by S and D, concatenated with input size.

As can be seen in the baseline column, our ILP approach uses

fewer logic elements (LEs) and stages for all benchmark problems

compared with the heuristic approach, since an optimal solution is

found. While the X-LUXOR enhancement signiicantly reduces the

number of LEs compared with the baseline, X-LUXOR+ achieves a

further reduction in the number of stages.

Figure 11 shows the savings in LEs for Xilinx architectures over

a larger micro-benchmark set, with the red star also indicating a

reduction in number of stages by one. For low-rank inputs (i.e. pop-

count and two-column popcount), the C6:111 and C25:121 compres-

sors are heavily used. X-LUXOR improves the resource eiciency

LUXOR: An FPGA Logic Cell Architecture for Eficient Compressor Tree Implementations FPGA ’20, February 23ś25, 2020, Seaside, CA, USA

Popcount 2−Column Popcount Multi−Operand Addition FIR−3 and 3−MAC

*

* *

* *

*

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S64

S12
8

S25
6

S51
2

S10
24

S20
48

S40
96

D
64

D
12

8

D
25

6

D
51

2

D
10

24

D
20

48

D
40

96

6x
 6

b

8x
 8

b

10
x
10

b

12
x
12

b

14
x
14

b

16
x
16

b

FIR
−3

3M
4x

4b

3M
8x

8b

3M
12

x1
2b

3M
16

x1
6b

Micro−Benchmark

R
e
s
o
u
rc

e
 U

ti
liz

a
ti
o
n
 R

a
ti
o

Xilinx Baseline X−LUXOR X−LUXOR+

Figure 11: Resource reduction on Xilinx UltraScale+, X-LUXOR, and X-LUXOR+ architectures for various micro-benchmarks.

The * indicates that the proposed solution required one less logic stage in the compression tree.

of C6:111 implementations and achieves the best savings for the

1024-input popcount problem at 22% reduction. Less improvement

is seen for two-column popcount, as in the irst stage, C25:121 has

better arithmetic slack (A) while ofering the same eiciency. This

observation was also made in [1]. X-LUXOR+ ofers a new set of

the state of the art compression rate and compression eiciency.

On average, X-LUXOR+ can reduce area utilization on the low-rank

input popcount and two-column popcount benchmarks by 22% and

15% respectively.

For the high-rank benchmarks (multi-operand addition, FIR-3

and 3-MAC), the inputs are wide enough to beneit from the slice

based GPCs. The C6:111 compressor is not signiicantly utilized.

However, X-LUXOR+ ofers higher compression rates and hence

achieves 39% and 18% improvement in multi-addition and 3-MAC

benchmarks respectively and in some cases the required number

of stages is also reduced by one.

Figure 12 shows the same result for Intel I-LUXOR, and I-LUXOR+

architectures. More dramatic resource savings are apparent over

Xilinx, particularly for low-rank problems using I-LUXOR+. Since

I-LUXOR and I-LUXOR+ do not present new compressors, no re-

duction in number of stages is achieved. However, because the

baseline ofers no wide GPC, the resource reduction of I-LUXOR is

more signiicant (averaging 24% and 17% for popcount and double

popcount). I-LUXOR+ ofers an enhanced C25:121 GPC which is the

most eicient GPC for the Intel architecture. This leads to 35% and

39% resource savings for popcounting and two-column counting.

5.3 Performance on BNNs

Binarized neural networks ofer a new challenge for FPGA architec-

tures as 1-bit multiply-accumulate operations require XNOR and

popcount operations to be eicient. As explained in Section 3.1 the

irst computation stage (Multiplication) should be merged with the

early compression circuits, leading to an eicient implementation

(as illustrated in Figure 7(a)). If the number of input pairs is N , N /3

fused units are required in the primary stage. LUXOR can imple-

ment this fused computation using a single LE rather than two LEs

in the baseline architectures leading to N /3 fewer LE utilization. In

addition, after implementation of the primary stage, a two-column

counting problem with the height of N /3 is encountered.

As shown in Figure 13, these two optimizations lead to almost

the same 34% resource reduction for LUXOR modiication on both

Xilinx and Intel architectures. Moreover, as described before, X-

LUXOR+ cannot reduce the number of LEs signiicantly for low-

rank inputs, and hence, the best area savings for BNNs plateaus

at 37%. In the case when the input size is 3×3×256, the number

of stages is reduced by one, which would give us a signiicant im-

provement in delay. In comparison, I-LUXOR+ reduces the number

of LEs signiicantly at an average of 47%, but without reducing the

number of stages.

6 CONCLUSION

This paper has discussed several low-cost FPGA logic cell modii-

cations that can lead to signiicantly improved performance GPCs

and the XnorPopcount operation. We then added these primitives

to a set of state-of-the-art compressor tree primitives (adders, GPCs,

and compressors) described in literature and built an ILP model for

inding optimal solutions for FPGA-based compressor tree imple-

mentations for both Xilinx and Intel FPGAs. Using this ILP, we were

able to show that our modiications lead to substantial performance

gains. LUXOR is a vendor-agnostic modiication, which augments

each logic cell datapath with a dedicated 6-input XOR circuit, re-

duces the cost of the commonly used (C6:111) GPC from 3 LEs to

just 2 and enables eicient XnorPopcount implementations.Over a

benchmark set, this reduces the logic utilization cost of compres-

sor trees by up to 36% (average 12ś19%) on both Intel and Xilinx

FPGAs, with a silicon area overhead of <0.5%. The architectural

re-design is taken a step further with LUXOR+, which proposes

carefully-crafted vendor-speciic modiications. LUXOR+ requires

FPGA ’20, February 23ś25, 2020, Seaside, CA, USA SeyedRamin Rasoulinezhad1 , Siddhartha1 , Hao Zhou2 , Lingli Wang2 , David Boland1 , Philip H.W. Leong1

Popcount 2−Column Popcount Multi−Operand Addition FIR−3 and 3−MAC

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S64

S12
8

S25
6

S51
2

S10
24

S20
48

S40
96

D
64

D
12

8

D
25

6

D
51

2

D
10

24

D
20

48

D
40

96

6x
 6

b

8x
 8

b

10
x
10

b

12
x
12

b

14
x
14

b

16
x
16

b

FIR
−3

3M
4x

4b

3M
8x

8b

3M
12

x1
2b

3M
16

x1
6b

Benchmark

R
e
s
o
u
rc

e
 U

ti
liz

a
ti
o
n
 R

a
ti
o

Intel Baseline I−LUXOR I−LUXOR+

Figure 12: Resource reduction on Intel Stratix-10, I-LUXOR, and I-LUXOR+ architecture for our selected micro-benchmarks.

*

Xilinx Intel

3x
3x

64

3x
3x

12
8

3x
3x

25
6

3x
3x

51
2

3x
3x

10
24

3x
3x

64

3x
3x

12
8

3x
3x

25
6

3x
3x

51
2

3x
3x

10
24

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Input size

R
e

s
o

u
rc

e
 U

ti
liz

a
ti
o

n
 R

a
ti
o

Xilinx X−LUXOR X−LUXOR+ Intel I−LUXOR I−LUXOR+

Figure 13: XnorPopcount micro-benchmarks found in BNN

Convolution Layers in [7, 27]

an additional 3ś6% silicon area, can improve our micro-benchmark

results to up to 48% (average 26ś34%).

REFERENCES
[1] Michaela Blott, Thomas B. Preußer, Nicholas J. Fraser, Giulio Gambardella, Ken-

neth O’Brien, Yaman Umuroglu, Miriam Leeser, and Kees A. Vissers. FINN-R:
An end-to-end deep-learning framework for fast exploration of quantized neural
networks. TRETS, 11(3):16:1ś16:23, 2018.

[2] Andrew Boutros, Mohamed Eldafrawy, Sadegh Yazdanshenas, and Vaughn Betz.
Math doesn’t have to be hard: Logic block architectures to enhance low-precision
multiply-accumulate on FPGAs. In Proceedings of the 2019 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays FPGA, pages 94ś103. ACM,
2019.

[3] IBM ILOG CPLEX. V12. 1: User’s manual for cplex. International Business
Machines Corporation, 46(53):157, 2009.

[4] Luigi Dadda. Some schemes for parallel multipliers. Alta frequenza, 34:349ś356,
1965.

[5] J. G. Earle. Latched carry-save adder. IBM Tech. Disc. Bull., 7(10):909ś910, 1965.
[6] Milos D Ercegovac and Tomas Lang. Digital arithmetic. Elsevier, 2004.
[7] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Binarized neural networks. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems, pages
4107ś4115, 2016.

[8] Intel. UG-S10LAB Intel®Stratix®10 Logic Array Blocks and Adaptive Logic
Modules User Guide, 9 2018.

[9] Jin Hee Kim, Jongeun Lee, and Jason Anderson. FPGA architecture enhance-
ments for eicient BNN implementation. In International Conference on Field-
Programmable Technology, FPT, pages 214ś221, 2018.

[10] Martin Kumm and Johannes Kappauf. Advanced compressor tree synthesis for
FPGAs. IEEE Transactions on Computers, 67(8):1078ś1091, 2018.

[11] Martin Kumm and Peter Zipf. Eicient high speed compression trees on xilinx
FPGAs. InMethoden und Beschreibungssprachen zur Modellierung und Veriikation
von Schaltungen und Systemen, Böblingen, Germany, pages 171ś182, 2014.

[12] Martin Kumm and Peter Zipf. Pipelined compressor tree optimization using inte-
ger linear programming. In 24th International Conference on Field Programmable
Logic and Applications, FPL, pages 1ś8, 2014.

[13] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. FP-BNN:
Binarized neural network on FPGA. Neurocomputing, 275:1072ś1086, 2018.

[14] Angelo Rafaele Meo. Arithmetic networks and their minimization using a line
of elementary units. IEEE Transactions on Computers, 100(3):258ś280, 1975.

[15] Stuart Mitchell, Stuart Mitchell Consulting, and Iain Dunning. Pulp: A linear
programming toolkit for python, 2011.

[16] Vojin G. Oklobdzija, David Villeger, and Simon S. Liu. A method for speed
optimized partial product reduction and generation of fast parallel multipliers
using an algorithmic approach. IEEE Transactions on computers, 45(3):294ś306,
1996.

[17] Hadi Parandeh-Afshar, Philip Brisk, and Paolo Ienne. Eicient synthesis of
compressor trees on FPGAs. In 2008 Asia and South Paciic Design Automation
Conference, pages 138ś143. IEEE, 2008.

[18] Hadi Parandeh-Afshar, Philip Brisk, and Paolo Ienne. Exploiting fast carry-chains
of FPGAs for designing compressor trees. In 19th International Conference on
Field Programmable Logic and Applications, FPL, pages 242ś249, 2009.

[19] Hadi Parandeh-Afshar, Philip Brisk, and Paolo Ienne. An FPGA logic cell and
carry chain conigurable as a 6:2 or 7:2 compressor. TRETS, 2(3):19:1ś19:42, 2009.

[20] Hadi Parandeh-Afshar, Arkosnato Neogy, Philip Brisk, and Paolo Ienne. Com-
pressor tree synthesis on commercial high-performance FPGAs. TRETS, 4(4):39:1ś
39:19, 2011.

[21] Hadi Parandeh-Afshar, Ajay Kumar Verma, Philip Brisk, and Paolo Ienne. Im-
proving fpga performance for carry-save arithmetic. IEEE transactions on very
large scale integration (VLSI) systems, 18(4):578ś590, 2009.

[22] Thomas B. Preußer. Generic and universal parallel matrix summation with a
lexible compression goal for xilinx fpgas. In 27th International Conference on
Field Programmable Logic and Applications, FPL, pages 1ś7, 2017.

[23] SeyedRamin Rasoulinezhad, Hao Zhou, Lingli Wang, and Philip H. W. Leong. PIR-
DSP: an FPGA DSP block architecture for multi-precision deep neural networks.
In 27th IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines, FCCM, pages 35ś44, 2019.

[24] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-
Net: Imagenet classiication using binary convolutional neural networks. In
European Conference on Computer Vision - ECCV, pages 525ś542, 2016.

LUXOR: An FPGA Logic Cell Architecture for Eficient Compressor Tree Implementations FPGA ’20, February 23ś25, 2020, Seaside, CA, USA

[25] Paul F Stelling, Charles UMartel, Vojin G Oklobdzija, and R Ravi. Optimal circuits
for parallel multipliers. IEEE Transactions on Computers, 47(3):273ś285, 1998.

[26] Earl E Swartzlander. Parallel counters. IEEE Transactions on computers,
100(11):1021ś1024, 1973.

[27] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. FINN: A framework for fast, scalable
binarized neural network inference. In Proceedings of ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays FPGA, pages 65ś74. ACM, 2017.

[28] Ajay K Verma, Philip Brisk, and Paolo Ienne. Data-low transformations to maxi-
mize the use of carry-save representation in arithmetic circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 27(10):1761ś1774,
2008.

[29] Ajay K. Verma and Paolo Ienne. Automatic synthesis of compressor trees: reeval-
uating large counters. In 2007 Design, Automation and Test in Europe Conference

and Exposition, DATE 2007, Nice, France, April 16-20, 2007, pages 443ś448, 2007.
[30] Christopher S. Wallace. A suggestion for a fast multiplier. IEEE Trans. Electronic

Computers, 13(1):14ś17, 1964.
[31] Xilinx. DS202 (v5.5) Virtex-5 FPGA Data Sheet:DC and Switching Characteristics,

6 2016.
[32] Xilinx. UG474 7 Series FPGAs Conigurable Logic Block, 9 2016.
[33] Xilinx. UG574 UltraScale Architecture Conigurable Logic Block, 2 2017.
[34] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani B.

Srivastava, Rajesh Gupta, and Zhiru Zhang. Accelerating binarized convolutional
neural networks with software-programmable FPGAs. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA,
pages 15ś24, 2017.

	Abstract
	1 Introduction
	2 Background
	2.1 Parallel Counters
	2.2 Generalized Parallel Counters
	2.3 Compressors
	2.4 Adder and Compressor Trees
	2.5 Xilinx FPGA Logic Elements
	2.6 Intel FPGA Logic Elements
	2.7 Related Work

	3 FPGA Logic Cell Enhancements
	3.1 LUXOR
	3.2 LUXOR+

	4 ILP-based Compressor Tree Synthesis
	4.1 Objective
	4.2 Runtime manager and solver
	4.3 Constraints
	4.4 GPC/Compressor library
	4.5 Micro-Benchmarks

	5 Results
	5.1 ASIC Modeling: Delay and Area Overheads
	5.2 Benchmark Performance
	5.3 Performance on BNNs

	6 Conclusion
	References

