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Abstract—The kernel recursive least squares (KRLS)
algorithm performs non-linear regression in an online manner,
with similar computational requirements to linear techniques. In
this paper, an implementation of the KRLS algorithm utilising
pipelining and vectorisation for performance; and microcoding
for reusability is described. The design can be scaled to allow
tradeoffs between capacity, performance and area. Compared
with a central processing unit (CPU) and digital signal processor
(DSP), the processor improves on execution time, latency and
energy consumption by factors of 5, 5 and 12 respectively.

I. INTRODUCTION

In machine learning traditional linear prediction techniques
are well understood, and methods for their efficient solution
have been developed. Many real-world applications are better
modelled using non-linear techniques, which often have high
computational requirements. Mercer kernel techniques utilise
linear methods in a non-linear feature space and combine the
advantages of both. Such kernel methods are considered one
of the major advances in machine learning research [1], [2].

Commonly used kernel methods include the support vector
machine (SVM), Gaussian processes and regularization net-
works [3]. These are batch-based, and a global optimisation is
conducted over all input exemplars to create a model. In contrast,
online methods, such as the kernel recursive least squares
(KRLS) algorithm [4], [5], update the state in a recursive and
incremental fashion upon receiving a new exemplar. Although
not as extensively studied as batch-methods, online approaches
are advantageous when latency is critical. Reconfigurable
computing can be used as another, orthogonal means to reduce
latency. We show that these two techniques can be combined in
a harmonious fashion to perform prediction with exceptionally
low latency.

In this paper, we describe a microcoded implementation
of the KRLS algorithm. Although not explored in this paper,
microcode enables the processor to be easily optimised for
other algorithms at both the instruction set and datapath levels.
The contributions of the work include:

• A novel, scalable architecture for kernel methods which
has advantages in terms of reusability, extensibility
and performance over a straightforward hardware
description language (HDL) approach.

• The first reported FPGA-based online KRLS im-
plementation. To the best of our knowledge, this

implementation has the lowest latency of any reported
kernel method to date.

• Results describing the performance, latency, power and
area of the design in terms of prediction accuracy and
performance, and a detailed performance comparison
with central processing unit (CPU) and digital signal
processor (DSP) approaches.

We believe that reconfigurable computing will prove to
be an enabling technology for applications where minimal
response time is critical. One important factor is that FPGAs
allow the data converters and/or network interface controller to
be tightly integrated with high speed processing. As examples,
it can lead to improved speed in predicting events in a wide
variety of application domains including algorithmic trading [6];
diagnostic and prognostic monitoring of machines [7]; and
electricity blackout prevention [8].

The remainder of the paper is organised in the following
manner. In Section II, previous work in related areas is reviewed.
In Section III, the KRLS algorithm is described. The proposed
architecture of the KRLS implementation is introduced in
Section IV, and an analysis of its performance and power
consumption are given in Section V along with comparisons
with CPU and DSP based approaches. Finally, conclusions are
drawn in Section VI.

II. BACKGROUND

In this section, a review of previous implementations of
relevant machine learning algorithms on FPGAs is given. Soft
vector processors are briefly reviewed in Section IV.

Module generators are common in reconfigurable computing.
These allow a family of parameterised designs to be produced
rather than a single one. Anguita et. al. [9] described an FPGA-
based fixed-point core generator for SVMs which allows sub-
modules with different speed, resource and accuracy tradeoffs
to be included. Papadonikolakis and Bouganis [10] developed
a scalable SVM module generator which allows for the use of
different kernel types, and uses different numbers of parallel
tiles to optimise performance. The design was partitioned into
fixed and floating-point parts to achieve high speed without
sacrificing accuracy. Majumdar et. al. [11] described the many-
core MAPLE architecture which was designed to accelerate
a number of learning and classification problems, including
SVMs. Vector processing elements in a two dimensional grid
were used to perform linear algebra. On-chip memory used

978-1-4799-2198-0/13/$31.00 ©2013 IEEE −144−



for in-processor processing was combined with independent
off-chip memory banks.

Lin et. al. [12] developed a Baysian computing machine
(BCM) using floating-point arithmetic to evaluate probabilistic
networks. Deep pipelines were used to achieve high throughput,
and a novel scheme was devised to efficiently schedule memory
accesses and processing nodes. A system with 16 processing
nodes achieved an average 80/15× speedups over a CPU/GPU
implementation respectively. This system can be applied to
Bayesian problems of different size and graph topology without
changing the FPGA implementation of the BCM.

Shan et. al. [13] developed a map-reduce framework and
applied it to the acceleration of the RankBoost algorithm using
float-point arithmetic. They also described how their work could
be applied to the PageRank and SVM algorithms.

Perhaps most similar architecturally to this work, is an
implementation of the Restricted Boltzman Machine (RBM)
by Ly [14]. A microprogrammed controller was employed, and
a new technique to implement transcendental functions in a
highly pipelined manner by combining lookup tables with linear
interpolators introduced. The system used 32-bit fixed point
arithmetic and could be scaled by allowing multiple FPGAs to
be connected via MPI. Virtualisation through time multiplexing
was employed to allow larger problems to be solved.

In this work, a parallel datapath is combined with mi-
crocoded control logic to produce a vector processor. While both
Ly [14] and Majumdar [11] targetted maximum performance in
batch learning tasks, ours is designed for single-FPGA, floating-
point embedded applications in which minimising latency and
compactness are the key design goals. Similar architectures
have been applied to the acceleration of linear algebra problems,
utilising both spatial parallelism and pipelining to achieve high
performance. To better accelerate kernel methods, hardware
support for kernel evaluation is included. Our designs could
be considered complementary to previous work in that module
generators, scheduling, map-reduce, MPI, etc can be combined
with our architecture.

In terms of data representation, while the performance
benefits of fixed-point and reduced precision floating-point
implementations are undeniable, we advocate single precision
floating-point since it facilitates verification and is more
robust in the presence of ill-conditioned data. The proposed
architecture could be easily modified for fixed-point and mixed
fixed-floating point arithmetic.

General-purpose graphics processing unit (GPGPUs) are
an alternative acceleration technology to FPGAs, CPUs and
DSPs. They offer massive amounts of computing power, but
are optimised for throughput rather than latency. For a 4-byte
transfer, CPU-to-GPGPU and GPGPU-to-CPU latency has been
measured as 40.4µs and 41.9µs respectively [15]. Since the
round trip transfer time alone is similar to the FPGA and
GPGPU total latency including processing, we concluded that
GPGPUs were not suitable for latency-critical applications and
hence were not included in this study.

III. THE KERNEL RECURSIVE LEAST SQUARES

ALGORITHM

Linear regression is commonly used in many machine
learning problems. In the case of online learning, the recursive
least squares (RLS) algorithm provides a computationally
efficient way to perform linear regression. For non-linear
machine learning problems, the RLS algorithm can be modified
to make use of a non-linear kernel function. The resulting
kernel recursive least squares (KRLS) algorithm, provides a
computationally efficient means to apply online learning to
non-linear processes.

In this section, brief summaries of linear regression, the RLS
algorithm and the KRLS algorithm are provided. A variation
on the KRLS, the sliding window KRLS (SW-KRLS), is
also described as it provides tracking capability to the KRLS
algorithm along with explicit bounds on the computational cost
of the algorithm.

A. Linear Regression

Let X = {x1, x2, ..., xn} ∈ R
N×M be the input training set

of N observations of dimension M , and the target be y ∈ R
N .

Linear regression attempts to find the optimal vector h ∈ R
M

which satisfies J = min ||y −Xh||2.

If (XTX) is not singular, a direct solution can be computed
for h as follows:

h = (XTX)−1Xy . (1)

The dual representation can be obtained by pre-multiplying
Eq. (1) by the identity (XTX)(XTX)−1 to obtain h = XTα
making h =

�N
i=1 αixi a linear combination of the training

set.

For an online problem, not all training data is known and
the solution must be recalculated as new observations are
provided. The recursive least squares (RLS) algorithm provides
a direct and computationally efficient, O(M2), solution for
h for every new sample, without needing to recalculate the
matrix inverse. It uses the Matrix Inversion Lemma [16], (A+

xnxT
n )

−1 = A−1−
A

−1xnx
T
nA

−1

1+xT
nA−1xn

, where xn is the latest vector

of observations and A = XT
n−1Xn−1 where Xn−1 is given by

Xn−1 = {x1, x2, ..., xn−1}.

B. Kernel Methods

A common way to adapt linear regression to non-linear
problems is to apply a non-linear mapping, Φ(x) ∈ R

M →
F, to the input data. Linear regression can then applied to

this new data to find h̃. The kernel recursive least squares
(KRLS) algorithm, described in [4], uses the “kernel trick” to
compute an inner product in the feature space without explicitly
computing the feature vectors.

Let K = X̃X̃
T

be the kernel matrix where Ki,j , the entry

corresponding to the ith row and jth column of the kernel
matrix, is given by the kernel function, κ(xi, xj). With this
new representation, the cost function can be updated to: J � =
min ||y −Kα||2, where α is a N × 1 vector of weights.
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A common kernel function is the Gaussian kernel

κ(xi, xj) = exp(−
||xi−xj ||

2

2σ2 ). Other kernel functions include
the polynomial kernel, the hyperbolic tangent kernel and
the Laplacian kernel. The Laplacian kernel, κ(xi, xj) =
2−γ||xi−xj ||, was used in [17] since it can be implemented
in hardware efficiently.

The minima of J � using the dual representation is given
by α = K−1y. A problem with many kernel based machine
learning functions is that the computational complexity of these
algorithms scale superlinearly with the number of training
samples [4]. Traditionally this has limited their use for online
machine learning applications. KRLS uses a recursive method
to compute K−1 efficiently for each new sample with a
computational complexity of O(N2).

C. Bounding the Computational Cost per Sample

There are several methods for minimising the computational
cost of the KRLS algorithm. In [4], a sparsification procedure
is employed to prevent any samples from being admitted to the
training set if they can be represented by linear combinations
of the previous samples. This helps to reduce the computational
complexity but does not bound the computational requirements.
The SW-KRLS algorithm [5] and the fixed budget KRLS (FB-
KRLS) algorithm [18] set a limit, N �, to the number of training
samples which can be stored in the dictionary, enforcing a
bound on the computation cost.

The SW-KRLS algorithm removes any training samples
that are not in a fixed time window, N �. Given a stream of
input/output pairs, {(x1, y1), (x2, y2)...}, at training sample n,
the input matrix becomes Xn = [xn, xn−1, ..., xn−N �+1] and
the output vector becomes yn = [yn, yn−1, ..., yn−N �+1].

In order to calculate αn, the nth estimate of the weights,
K−1

n , the inverse kernel matrix can be calculated using K−1
n−1

and Kn, the nth kernel matrix. Kn can be calculated as follows:

K̂n =

�

Kn−1 kn(xn)
kn(xn)

T knn + c

�

(2)

where kn(xn) = [κ(xn−N �+1, xn), ..., κ(xn−1, xn)]
T ,

knn = κ(xn, xn), c is a regularization constant and Kn−1 is
the kernel matrix calculated from the previous training sample.
Kn is defined as follows:

Kn =

�

kn−N,n−N + c pT

p K̂n−1

�

(3)

where p = [κ(xn−N � , xn−N �+1), ..., κ(xn−N � , xn)]
T and

kn−N �,n−N � = κ(xn−N � , xn−N �). K̂−1
n can then be calculated

using:

K̂−1
n =

�

K−1
n−1(I+ bbTK−1T

n−1g) −K−1
n−1bg

−(K−1
n−1b)

T g g

�

(4)

where b is given by kn = [b d]T and g is given by g =
(d − bTK−1

n−1b)
−1.

K−1 is then calculated using Eq. (5)

Initialise K0 as (1 + c)I and K−1
0 as I/(1 + c).

for n = 1, 2, ... do
Get K̂n from Kn−1 with Eq. (2)

Calculate K̂−1
n−1 from Eq. (4)

Get Kn from Eq. (3)
Calculate K−1

n from Eq. (5)
Calculate αn using α = K−1

n Yn

end for

Fig. 1. Pseudocode: a training step for the SW-KRLS algorithm.

K−1
n = G− ffT /e (5)

where G, e and f are given by:

K̂−1
n =

�

e fT

f G

�

. (6)

and G is a (N �− 1)× (N �− 1) matrix, f is a (N �− 1)× 1
vector and e is a scalar.

Other pruning techniques also been suggested including
approximate linear dependency (ALD) [4], the surprise criterion
[19] and error minimisation [20].

The SW-KRLS algorithm removes the oldest training pair
from its dictionary when a new sample is encountered allowing
it to track non-stationary processes. Psuedocode for the SW-
KRLS algorithm, derived from [5] and [21] is provided in
Figure 1.

Note that the algorithm described in this paper, along with
previous works [5] and [18], uses a regularization parameter to
help prevent overfitting. With regularization, the cost function
becomes:

J �� = min
h̃

||y− X̃h̃||2 + c||h̃||2 = min
α

||y−Kα||2 + cαTKα

(7)

and the ideal solution of weights becomes α = (K+cI)−1y
where I is the identity matrix.

IV. ARCHITECTURE

A. System Overview

Figure 2 shows a block diagram of the processor architec-
ture. It is formed from a program counter (PC), microcode
memory, vector memory, arithmetic logic unit (ALU) and data
control unit. The program counter is a simple counter which
automatically increments every cycle, and its output forms the
microcode memory address. The branch address can be loaded
into the program counter via the Branch instruction (Table II).
Microcode memory is used for storage of the microprogram.

With some exceptions, such as [22], most well-known
previous soft vector processors [23], [24], [25], [26], have
not supported floating-point operations. Apart from those
reviewed earlier, none have been optimised for machine learning
applications. Similar to previous soft vector processors [23],
[24], [25], [26], the KRLS processor architecture offers scalable
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Fig. 3. Microcode and Vector memory architecture.

performance and area via control of the number of vector
lanes. Each independent datapath lane includes a vector lane
and vector memory. The targeted FPGA accommodates up
to 128 datapath lanes, which is larger than previous vector
processors [23]. Since all vector memory is on-chip, as the
number of lanes are increased, the maximum vector memory
depth is reduced [24].

Since online machine learning problems typically require a
modest amount of memory, an external memory interface is
not included, and vector memory is directly connected to the
arithmetic logic unit (ALU). A control unit is implemented as
a finite state machine. It generates enable signals and write
addresses to the vector memory with proper latency according
to the Microcode, and can route data across vector lanes. It is
also responsible for generating the CON signal which controls
the function of the heterogeneous ALU, discussed in Section
IV-C. When a branch instruction is issued, data control unit
generates the Load signal and transfers vector address C to the
branch address.

B. Memory Interface

A vector scratchpad memory is employed as introduced in
VEGAS [23] and VINCE [25], to reduce load/store operations
from memory. Furthermore, the microcode memory output
directly drives the vector memory to eliminate the need for
address registers [26].

Stratix V Embedded Memory Blocks are used for all
memories. As illustrated in Figure 3, Microcode memory is
configured as a 64K×64-bit single port ROM memory, and
occupies 256 M20K block memories. As the vector processor
uses single precision floating point, the data width is fixed to be
32 bit, vector memory is built from 512×32 bit RAM primitives.
For a 128 lane vector processor, the maximum capacity of each
vector scratchpad memory is 4096×32 bits, constructed from
7×M20K block RAMs.

The vector memory is used to store all intermediate data and
constants. It is divided into 3 sections as illustrated in Figure 4.
Training and test data is stored in the memory within the range
0x0000 and 0x0BFF, and temporary outputs from the ALU
are stored in a region with starting address 0x0C00. Vector
memory is initialised in the bitstream, the last 16 words of the
memory being used to store constant vectors. Peripherals are


















 













Fig. 4. Vector memory map.

memory mapped to the higher addresses of the vector memory
of the heterogeneous lane (i.e. Vector memory 1).

C. Vector Lane Architecture

Figure 5 illustrates the ALU architecture. Each datapath
lane includes two vector scratchpad memories, a single pre-
cision floating point adder/subtractor and a single precision
multiplier. Lane widths are limited to powers of two to reduce
hardware complexity. In addition to vector add, subtract and
multiply operations, the architecture supports vector divide and
exponentiation. All floating point operations are implemented
using the Altera floating point library.

Division and exponentiation consume more resources than
other floating point arithmetic modules, but are used less
frequently. For a Stratix V device, a single precision exponential
module utilizes 9× 27-bit DSP blocks, a low latency single
precision division utilizes 5× 27-bit DSP blocks, while a
single precision multiplier only utilizes a single 27-bit DSP
block [27]. Thus if a divider and exponentiation module were
included in each vector lane, resource utilization would increase
significantly, and as such, only a 17 lane vector processor could
be implemented, reducing overall performance.

Hence, divider and exponentiation modules are included
only in the first ALU lane, which we call a heterogeneous ALU.
Though the vector exponential and division operations require
more cycles to complete, the reduction in resources allow for
more lanes to be implemented, increasing overall performance.
The S2VE and PVDOT function units are also implemented in
the heterogeneous ALU lane. The S2VE function unit shares
multiplexers with the exponential and division modules, and
the PVDOT function module is a log2(N) level fully pipelined
single precision adder tree which accepts N parallel inputs.

With minor modifications, other functions such as sqrt,
sin/cos, tan/atan, inverse, log and compare can be added. It
is therefore easy to port other machine learning algorithms to
our vector processor, this being one of our future objectives.
Conversely, any unnecessary functional units can be excluded
to save resources.

D. Microcode

The microcode format is summarised in Table I. The
microcode is 64-bits wide, with all vector and microcode
addresses being 16-bits. The ‘BAK’ bits are reserved for future
use. The SW-KRLS MATLAB code from KAFBOX [21] was
manually vectorised and converted to microcode.

Table II, describes the function of each opcode. The fetch
& decode column represents how many clock cycles it takes
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Fig. 2. Vector processor block diagram.
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Fig. 5. Vector lane architecture.

to load a microinstruction and the input vectors from memory.
The execute column represents the number of clock cycles
used to calculate the result. The write back column represents
how many clock cycles are used store the result. In the current
implementation, no parallelism in the execution of adjacent
instructions is exploited. The Lane Index, L, is a 7 bit value
that specifies which lane of the vector memory is used to store
the result for the PVDOT instruction. The vector memory for
the ith lane is represented as V Mi, and two separate addresses
(A and B) are used. Address C specifies the destination address.
As can be seen in Figure 3, both write ports are driven with
the same address and data signals (VADDR and VDATA), so
identical data are written to both ports.

Microinstructions are either simple or parallel. Simple
instructions include vector operations such as array multiply
(VMUL) and vector addition (VADD). Parallel instructions
(PVxxx) are functionally equivalent to N vector operations but
take advantage of the pipelined ALU for improved performance,
particularly for matrix operations. For example, as illustrated

in Figure 6, PVADD overlaps N consecutive vector additions
achieving a 14N/(N + 13) speedup over N VADD calls.

V. RESULTS

An implementation of the KRLS vector processor was
made using VHSIC Hardware Description Language (VHDL).
Quartus II 13.0 was used for FPGA synthesis, place and route.
The design was written in such a way that key parameters
such as the memory sizes and number of vector lanes can
be configured at compile time. The target platform was an
Altera DE5 board populated with a medium size Stratix V
5SGXEA7C2. Although the results reported were for the DE5
board, it can be easily ported to different FPGA devices, vendors
and floating-point formats. The current implementation assumes
input and output data are present in vector memory as explained
in Section IV-B. I/O is not currently supported, but can be
implemented as a memory mapped device.

This section describes the KRLS processor performance, la-
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Fig. 6. Timing diagrams of VADD and PVADD showing the difference between simple and chained instructions.

TABLE I. MICROCODE FORMAT.

Function Vector A Vector B Vector C Lane BAK Operation

address address address Index Code

Symbol A B C L BAK OP

Bits 16 16 16 7 5 4

TABLE II. MICROCODE INSTRUCTIONS (ALL i, jAND L INDEXES RANGE FROM 1 TO N).

Microcode Description Function Fetch & Execute Write Total

(Opcode) Decode Back Cycles

NOP (0000) No operation 1 - - 1

BRANCH (0111) Branch M = C 3 1 - 4

VADD (0001) Vector add VMi[C] = VMi[A] + VMi[B] 3 10 1 14

VSUB (0010) Vector subtract VMi[C] = VMi[A] − VMi[B] 3 10 1 14

VMUL (0011) Array multiply VMi[C] = VMi[A] × VMi[B] 3 6 1 10

VDIV (0100) Vector divide VMi[C] = VMi[A]/VMi[B] 4 14 N N+18

VEXP (0110) Vector exponentiation VMi[C] = EXP (VMi[A]) 4 17 N N+21

S2VE (1000) Clone a vector N times VMi[C + j] = VMj [A] 4 0 N N+4

PVADD (1001) N× Vector add
VMi[C..C + N − 1] =

3 10 N N+13
VMi[A..A + N − 1] + VMi[B..B + N − 1]

PVSUB (1010) N× Vector subtract
VMi[C..C + N − 1] =

3 10 N N+13
VMi[A..A + N − 1] − VMi[B..B + N − 1]

PVMUL (1011) N× Vector multiply
VMi[C..C + N − 1] =

3 6 N N+9
VMi[A..A + N − 1] × VMi[B..B + N − 1]

PVDOT (0101) N× Vector dot product
VML[C..C + N − 1] =

3
6+

N
N + 9+

�N−1

i=0
VMi[A..A + N − 1] × VMi[B..B + N − 1] 10 log

2
(N) 10 log

2
(N)

tency, power consumption and resource usage information with
different dictionary sizes. For all experiments described in this
section, the MG-30 Mackey-Glass [28] benchmark modelled

by the differential equation
dx(t)
dt = −ax(t) + bx(t−τ)

1+x(t−τ)10 with

(a = 0.1, b = 0.2, τ = 30) is used. The SW-KRLS algorithm
is implemented using a regularization parameter of c = 0.01
and the kernel parameter is σ = 0.6.

The KRLS processor uses single precision floating point
arithmetic. This was compared with an open source double
precision implementation, KAFBOX [21]. The difference in
mean squared error (MSE) between KAFBOX and our processor
was less than 0.07%. For a single prediction, the maximum
relative error was less than 0.5%. We consider this negligible
for our purposes and thus we chose single precision floating
point for our implementation.

Note that an N lane processor is used to implement a sliding
window length of N − 1. An optimised C implementation was
developed for the CPU, DSP and Nios II platforms. Although
both single and multithreaded ATLAS [29] were tested for the
linear algebra routines, the highest performance was achieved
with a serial implementation. We believe this was because our
matrix sizes were too small to benefit from multiple cores.

A. KRLS FPGA Resource Usage

Table III shows the resource usage of the vector processor
and the Nios II processor on an Altera DE5 development board

     








 

     






 




Fig. 7. SW-KRLS output using single precision floating point and a sliding
window length of 127.

featuring an 5SGXEA7N2F45C2 FPGA. Due to the availability
of M20K blocks, the maximum number of lanes that can be
supported is 128. Table III also provides detailed information
on the theoretical maximum frequency, Fmax, for each different
lane configuration of the vector processor. Obviously, a higher
clock frequency can be attained using a faster part such as
Stratix V C1 (fastest speed grade) device [24].

B. KRLS Vector Processor Performance

This test compares batch processing performance between
all of our platforms. The CPU configuration is a desktop PC
with the following specifications: an Intel Core i5-2400 CPU at
3.10GHz, 4GB of memory running Linux Ubuntu 12.10 LTS
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TABLE III. VECTOR PROCESSOR RESOURCE USAGE

Lane Configuration (N ) M20K 27-bit DSP blocks ALMs Fmax(MHz)

DE5 Available 2560 256 234720 -

VP @ 16 227 30 20738 236.96

VP @ 32 451 46 40705 197.68

VP @ 64 899 78 80981 170.58

VP @ 128 2058 142 155687 157.22

Nios II 320 3 4179 253.9

TABLE IV. KRLS VECTOR PROCESSOR PERFORMANCE

Algorithm SW-KRLS

Lane Configuration 16 32 64 128

KRLS Vector Processor(µs) 9 12 18 28

Intel CPU(µs) 2 9 33 141

DSP Processor(µs) 147 462 2127 54926

Nios II Soft Processor(µs) 1406 4275 13930 58428

Speedup VP/CPU 0.3 0.8 1.9 5.1

Speedup VP/DSP 17.0 39.3 122.8 2002.4

Speedup VP/Nios 162.9 363.8 804.3 2130.1

using GCC version 4.7.2. The DSP configuration is a Texas
Instruments TMS320C6748 DSP development kit running at
300MHz. The soft processor is a Nios II configured for high
performance and running at 250MHz. The Nios II processor
is also configured to use a floating point co-processor for
accelerating floating point operations. The vector processor
uses 150MHz for the system clock frequency, fs.

Table IV shows the vector processor performance against
a CPU, a DSP and a Nios II for sliding window lengths
between 15 and 127. For small sliding window sizes, the
CPU outperforms all other platforms. The vector processor
outperforms the CPU and DSP for N ≥ 64, and for N = 128,
the speedup is 5.

C. Energy Consumption

This section details the energy consumption of the Vector
Processor, Nios II, DSP and CPU implementations. The power
dissipation of the Nios II and vector processor implementations
was measured using an Agilent U8001A power supply. The
DSP power dissipation was measured using voltage and current
measurements at the DC input jack on the board using a
Fluke 15B digital multimeter. The CPU power dissipation was
estimated using OS reported battery usage over a 15 minute test
on a laptop using battery power with the LCD screen switched
off. We also provide energy usage per training/prediction pair
using E = P t where E is energy usage, P is power usage and
t is the prediction time.

In this section, in order to select a system optimised for
power dissipation, the CPU configuration is an HP Pavilion dv6
2120TX laptop with the following specifications: Intel Core
i5 CPU M 430 @ 2.27GHz, 4GB of memory running Linux
Mint Debian using GCC version 4.6.3.

From Table V it can be seen that the Nios II and DSP
implementations require the least amount of power to operate.
However, when the computational time is taken into considera-
tion, the vector processor outperforms all other implementations
in terms of energy consumption for sliding window lengths
greater than 31. For N = 128, energy consumption of the
FPGA is a factor of 12 lower than that of the CPU.

TABLE V. POWER CONSUMPTION

Sliding Power Execution Energy

Computing Window Dissipation Time Consumption

Platform Width (mW) (µS) (10−5J)

KRLS

Vector

Processor

15 17480 9 16

31 19080 12 23

63 22320 18 39

127 26880 28 75

Nios II

15

15120

1407 2127

31 4275 6464

63 13930 21063

127 58428 88344

DSP

15 1975 147 29

31 1975 462 91

63 1975 2127 420

127 2025 54926 11123

CPU

15

36818

4 13

31 13 49

63 46 170

127 238 876

D. Latency Test

The previous tests in this paper have excluded I/O. We
explore its effect on latency in this section. The vector
processor test used the Terasic DE5 development board and
the Terasic High-Speed A/D and D/A Development Kit,
featuring Analog Devices AD9248 and AD9767 converters.
The processing time can be acquired from Table IV. The
input and output latency was estimated by examining the
electrical characteristics in the datasheet for AD9248 and
AD9767. In order to achieve minimum latency the ADCs and
DACs were set to their maximum sample rates, 62.5MHz and
125MHz respectively. The InputLatencyI/O = 0.12µs, and
the OutoputLatencyI/O = 0.04µs. For all tests described in
the subsection, N = 64 was used.

The CPU test utilised the National Instruments (NI) 5781
Baseband Transceiver and 7954 FPGA modules which is
capable of data acquisition at 100 MS/s. To minimise latency,
single cycle memory read/writes were used instead of DMA
transfers. The SW-KRLS C library was compiled as a virtual
instrument module in NI LabVIEW. The latency was measured
using an Agilent Oscilloscope.

The DSP latency was estimated by examining the electrical
characteristics timing diagrams for the serial data interface in the
datasheet for the TLV320AIC31, the ADC/DAC chip provided
on the TMS320C6748 development board. The minimum data
clock period was calculated by summing the data clock high
period, low period, rise time and fall time. The minimum clock
period was then multiplied by the lowest bitrate supported by
the TLV320AIC31 to determine the I/O latency. The result is
LatencyI/O = (35ns + 35ns + 4ns + 4ns) ∗ 16 = 1.248µs.
Using this method is likely to yield an optimistically low
estimation of the I/O latency. Even so, using the highest audio
sample rate (96kHz) supported on the development board, the
resulting I/O latency of 10.42µs is still less than 1% of the
processing time for a sliding window length of 63.

The results of the latency tests are shown in Table VI. The
vector processor outperforms the other platforms in terms of
latency due to its fast processing time and minimal I/O overhead.
The DSP has low I/O latency but suffers from high processing
latency. The CPU implementation is capable of providing low
processing latency but suffers from high I/O latency during
data acquisition due to PCIe bus and kernel overheads.
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TABLE VI. LATENCY TEST RESULTS (N = 64)

Computing Input Latency Processing Latency Output Latency Total

Platform (µS) (µS) (µS) (µS)

VP @ 64 0.12 17.62 0.04 17.78

CPU 7.32 78.50 7.32 93.14

DSP 1.25 2127 1.25 2129.50

VI. CONCLUSION

In this work, a microcoded vector processor for the
acceleration of kernel based machine learning algorithms
was presented. The architecture is optimised for dot product,
matrix-vector multiplication and kernel evaluation, and features
simplicity, programmability and compactness. Comparing an
implementation of the SW-KRLS algorithm on the vector
processor with N ≥ 64 with a CPU and DSP, it was found that
it outperforms the others in terms of execution time, latency,
and energy consumption for N ≥ 64.

The microcoded architecture presented herein is a flexible
processor capable of implementing many algorithms. Future
work includes the development of tools to assist in the creation
of microcode, further optimising the processor to enhance
parallelism, and its application to other machine learning
problems.
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