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Kernel methods utilize linear methods in a nonlinear feature space and combine the advantages of both.
Online kernel methods, such as kernel recursive least squares (KRLS) and kernel normalized least mean
squares (KNLMS), perform nonlinear regression in a recursive manner, with similar computational require-
ments to linear techniques. In this article, an architecture for a microcoded kernel method accelerator is
described, and high-performance implementations of sliding-window KRLS, fixed-budget KRLS, and KNLMS
are presented. The architecture utilizes pipelining and vectorization for performance, and microcoding for
reusability. The design can be scaled to allow tradeoffs between capacity, performance, and area. The design
is compared with a central processing unit (CPU), digital signal processor (DSP), and Altera OpenCL imple-
mentations. In different configurations on an Altera Arria 10 device, our SW-KRLS implementation delivers
floating-point throughput of approximately 16 GFLOPs, latency of 5.5μS, and energy consumption of 10−4 J,
these being improvements over a CPU by factors of 12, 17, and 24, respectively.
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1. INTRODUCTION

In machine learning, traditional linear prediction techniques are well understood, and
methods for their efficient solution have been developed. However, many real-world
applications are better modeled using nonlinear techniques, which often have very
high computational requirements. Mercer kernel techniques utilize linear methods in
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a nonlinear feature space and combine the advantages of both. Such kernel methods are
considered one of the major advances in machine-learning research [Friedman 2006;
Wu et al. 2007]. Commonly used kernel methods include the support vector machine
(SVM), Gaussian processes, and regularization networks [Scholkopf and Smola 2001].
These are batch based, and a global optimization is conducted over all input exem-
plars to create a model. In contrast, online methods, such as the kernel normalized
least mean square (KNLMS) [Richard et al. 2009] and kernel recursive least squares
(KRLS) algorithm [Engel et al. 2004; Van Vaerenbergh et al. 2006], update the state
in a recursive and incremental fashion upon receiving a new exemplar. Although not
as extensively studied as batch methods, online approaches are advantageous when
latency is critical.

We believe that reconfigurable computing, the application of field-programmable
gate arrays (FPGAs) to computing problems, will prove to be an enabling technology for
applications where minimal response time is critical. In this article, it is demonstrated,
for the first time, that a combination of 16 GFLOPs performance with 5.5μS latency
using 10−4 J can be achieved in a soft processor. A crucial factor is that FPGAs allow the
data converters and/or network interface controller to be tightly integrated with high-
speed processing, giving single-chip online implementations an order of magnitude
improvement in power, size, throughput, and latency over stored-program technologies.
As examples, it can lead to improved speed in predicting events in a wide variety of
application domains including algorithmic trading [Lockwood et al. 2012], diagnostic
and prognostic monitoring of machines [Jardine et al. 2006], and electricity blackout
prevention [Makarov et al. 2005].

Kernel algorithms are based on linear algebra operations, which can be implemented
efficiently on all types of computing technology including microprocessors, vector pro-
cessors, FPGAs, and very large-scale integration (VLSI) technology. In this article, we
propose a microcoded architecture for a kernel processor that combines high perfor-
mance, low latency, and programmability at the microcode level. While the present
work focuses on an FPGA implementation with a customizable data path and mi-
crocode, the architecture is adaptable to a higher-performance but less flexible VLSI
implementation. The contributions of the work include:

—A novel scalable, pipelined vector processor architecture for kernel methods, which
has advantages in terms of reusability, extensibility, and performance over a straight-
forward hardware description language (HDL) design approach.

—The first reported FPGA-based online kernel methods implementation. To the best of
our knowledge, at 5.5μS, this implementation has the lowest latency of any reported
kernel method to date.

—Results describing the performance, latency, power, and area of the design in terms of
prediction accuracy and performance, and a detailed performance comparison with
central processing unit (CPU), digital signal processor (DSP), and Altera OpenCL
implementations.

Domain-specific processors such as the one described herein enable high perfor-
mance without the need to be familiar with reconfigurable computing. Compared with
high-level synthesis tools, different algorithms can be implemented without a time-
consuming resynthesis and implementation step by simply changing the contents of
microcode memory. This article is an extended version of Pang et al. [2013], which
described a similar processor. Improvements presented here include instruction execu-
tion pipelining leading to a greatly improved clock rate, a more thorough description of
the processor including design tools, configurable precision, OpenCL comparison, low-
latency external peripheral support, implementation results for a more recent FPGA,
and extension of the examples beyond sliding-window KRLS.
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The remainder of the article is organized in the following manner. In Section 2,
the kernel algorithms are described. The proposed architecture and implementation
are introduced in Section 3, and an analysis of its performance, power consumption,
and latency is given in Section 4. Conclusions are drawn in Section 5. Algorithmic
descriptions of fixed-budget KRLS and KNLMS are provided in the appendix.

2. KERNEL-BASED MACHINE LEARNING

Linear regression is commonly used in many machine-learning problems. In the case of
online learning, the recursive least squares (RLS) algorithm provides a computationally
efficient way to perform linear regression. For nonlinear machine-learning problems,
the RLS algorithm can be modified to make use of a kernel function. The resulting
KRLS algorithm provides a computationally efficient means to apply online learning
to nonlinear processes.

In this section, a concise summary of the linear regression, RLS, and SW-KRLS algo-
rithms are given. Fixed-budget KRLS (FB-KRLS) and KNLMS were also implemented
and compared for our processor. Their descriptions are given in Appendix A.

2.1. Linear Regression

Let X = [x1, x2, . . . , xn]T ∈ R
N×M be the input training set of N observations of di-

mension M, and the target be y ∈ R
N. Linear regression attempts to find the optimal

vector h ∈ R
M that minimized the following cost function: J(h) = ‖y − Xh‖2

2. If (XT X)
is nonsingular, a direct solution can be computed for h as follows:

h = (XT X)−1XT y. (1)

The dual representation can be obtained by premultiplying Equation (1) by the identity
(XT X)(XT X)−1 to obtain h = XT α, making h = ∑N

i=1 αixi a linear combination of the
training set.

For an online problem, not all training data is known in advance and the solution
must be recalculated as new observations are provided. The RLS algorithm provides
a direct and computationally efficient, O(M2), solution for h for every new sample,
without needing to recalculate the matrix inverse. It uses the Matrix Inversion Lemma
[Higham 1996], (A + xnxT

n )−1 = A−1 − A−1xnxT
n A−1

1+xT
n A−1xn

, where xn is the latest vector of

observations and A = XT
n−1Xn−1, where Xn−1 is given by Xn−1 = [x1, x2, . . . , xn−1]T .

2.2. Kernel Regression

A common way to adapt linear regression to nonlinear problems is to apply a nonlinear
mapping, �(x) ∈ R

M → F, to the input data. Linear regression can then be applied to
this new data to find h̃. The KRLS algorithm, described in Engel et al. [2004], uses
the “kernel trick” to compute an inner product in the feature space without explicitly
computing the feature vectors.

Let K = X̃X̃
T

be the kernel matrix where Ki, j , the entry corresponding to the ith row
and jth column of the kernel matrix, is given by the kernel function, κ(xi, x j). With this
new representation, the cost function can be rewritten as J(α) = ‖y − Kα‖2

2, where α
is an N × 1 vector of weights.

A common kernel function is the Gaussian kernel, κ(xi, x j) = exp(−‖xi−x j‖2
2

2σ 2 ). Other
kernel functions include the polynomial kernel, the hyperbolic tangent kernel, and
the Laplacian kernel. Anguita et al. [2007] used a modified Laplacian kernel, given
by κ(xi, x j) = 2−γ‖xi−x j‖1 , since it can be implemented efficiently in hardware. The
Gaussian kernel is used throughout this article.
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Fig. 1. Pseudocode: a training step for the SW-KRLS algorithm.

The minima of J using the dual representation is given by α = K−1y. A problem with
many kernel-based machine-learning functions is that the computational complexity of
these algorithms scales superlinearly with the number of training samples [Engel et al.
2004]. Traditionally this has limited their use for online machine-learning applications.
The KRLS algorithm uses a recursive method to compute K−1 efficiently for each new
sample with a computational complexity of O(N2 + NM).

There are several methods for minimizing the computational cost of the KRLS algo-
rithm. Most methods attempt to represent all of the training set using a small subset
of training samples, referred to as the dictionary. In Engel et al. [2004], a sparsification
procedure is employed to prevent any samples from being admitted to the dictionary set
if they can be represented by linear combinations of the previous samples. This helps
to reduce the computational complexity but does not bound the computational require-
ments. The SW-KRLS algorithm [Van Vaerenbergh et al. 2006] and the FB-KRLS algo-
rithm [Van Vaerenbergh et al. 2010] set a limit, N′, to the number of training samples
that can be stored in the dictionary, enforcing a bound on the computation cost.

2.3. Sliding-Window KRLS

The SW-KRLS algorithm removes any training samples that are not in a fixed time
window, N′. Given a stream of input/output pairs, {(x1, y1), (x2, y2), . . . }, at training
sample n, the input matrix becomes Xn = [xn, xn−1, . . . , xn−N′+1]T and the output vector
becomes yn = [yn, yn−1, . . . , yn−N′+1].

In order to calculate αn, the nth estimate of the weights, the inverse kernel matrix,
K−1

n , must be calculated. K−1
n can be calculated using K−1

n−1, Xn, and xn−N′ . K̂−1
n can be

calculated using

K̂−1
n =

[
K−1

n−1(I + knkT
n K−1T

n−1 g) −K−1
n−1kng

−(K−1
n−1kn)T g g

]
, (2)

where kn = [κ(xn−N′ , xn), ..., κ(xn−1, xn)]T ; g is given by g = (knn − kT
n K−1

n−1kn)−1; and
knn = κ(xn, xn) + c, where c is a regularization constant. K−1 is then calculated as
follows:

K−1
n = G − ffT

/e, (3)

where G, e, and f are given by K̂−1
n = [ e

f
fT

G ], and G is an N′ × N′ matrix, f is an N′ × 1
vector, and e is a scalar. αn is then calculated as αn = K−1

n yn.
The SW-KRLS algorithm removes the oldest training pair from its dictionary when

a new sample is encountered, allowing it to track nonstationary processes. Psuedocode
for the SW-KRLS algorithm, derived from Van Vaerenbergh et al. [2006] and Van
Vaerenbergh [2012], is provided in Figure 1. The corresponding number of arithmetic
operations for SW-KRLS with a Gaussian kernel are summarized in Table I. This value
is 7.5N2 + (3M + 31.5) × N + 3M + 31 for training and N2 + (3M + 21) × N − 1 for
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Table I. Arithmetic Operations for the SW-KRLS Algorithm

Operation Add/Sub Multiply Divide Exponential

Calculate kn and knn (N + 1) × (2M − 1) + 1 (N + 1) × (M + 1) 0 N + 1

Calculate K̂−1
n−1 from Equation (2) 2N2 + 1 2.5N × (N + 1) 1 0

Calculate K−1
n from Equation (3) 0.5(N + 1) × (N + 2) 0.5N × (N + 1) N 0

Calculate αn using αn = K−1
n yn N × (N − 1) N2 0 0

Fig. 2. Vector processor block diagram.

evaluation. Since floating point is used in the processor, the total number of floating-
point operations is

FLOP = 8.5N2 + (6M + 52.5) × N + 3M + 30. (4)

The algorithms described in this article, along with previous works [Van Vaerenbergh
et al. 2006, 2010], use a regularization parameter to help prevent overfitting. With
regularization, the cost function becomes

J′(h̃) = ‖y − X̃h̃‖2
2 + c‖h̃‖2

2

J′(α) = ‖y − Kα‖2
2 + cαT Kα, (5)

and the solution becomes α = (K + cI)−1y, where I is the identity matrix.

3. ARCHITECTURE

3.1. System Overview

Our vector processor is a scalable floating-point processor that utilizes single-
instruction multiple-data (SIMD)-style execution to operate upon vectors. The number
of parallel arithmetic logic units (ALUs) and the precision are customizable. Figure 2
shows a block diagram of the processor architecture, formed from a program counter
(PC), microcode memory, vector memory, and ALU and peripheral adapter. Microcode
memory is used for storage of the microprogram.

Each independent data path lane includes a vector lane and vector memory. The
targeted FPGA device accommodates up to 128 single-precision data path lanes or 32
double-precision data path lanes, which is larger than previous FPGA-based vector
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Fig. 3. Microcode and vector memory architecture.

processors [Chou et al. 2011]. Since all vector memory is on-chip, as the number of
lanes is increased, the maximum vector memory depth is reduced [Yiannacouras et al.
2012].

Since kernel methods typically require a modest amount of microcode memory,
4K×128-bit is sufficient for all the implementations in this article. Most of the code
is completely unrolled so the size of the microcode is very close to the number of ma-
chine cycles in Figure 6(a). An external memory interface is not included, and vector
memory is directly connected to the ALU. There are two kinds of ALUs in the vector
processor. ALU 1 to ALU (N-1) are called homogeneous ALUs and support multiplica-
tion, addition, subtraction, comparison, and absolute value. ALU 0 is a heterogeneous
superset that additionally supports exponentiation, square root, division, and adder
tree operators.

3.2. Memory Interface

A vector scratchpad memory, as introduced in VEGAS [Chou et al. 2011] and
VINCE [Severance and Lemieux 2012], is employed to reduce load/store operations
from memory. Both input and output ports of the vector memory and microcode mem-
ory are registered to get the maximum frequency. The microcode memory directly
drives the vector memory to eliminate the need for address registers [Yu et al. 2009].
In the current implementation, Altera Embedded Memory Blocks [Altera 2016c] are
used for all memories. As illustrated in Figure 3, microcode memory is configured as
a 4K×128-bit single-port ROM memory and utilizes 32 M20K block memories. As the
vector processor supports single- or double-precision floating point, the data width can
be 32 or 64 bit. The capacity of each vector scratchpad memory is 2,048×32/64 bits,
constructed from 4/8×M20K block memories.

The vector memory is used to store all intermediate data and constants. In our
implementations of kernel methods, the kernel matrix, its inverse, and other variables
are stored in the range 0x0000 to 0x03FF; temporary outputs from the ALU are stored
in a region from 0x0400 to 0x7F3; vector memory is initialized in the bitstream; and
the remaining 12 words of the memory are used to store constant vectors.

3.3. Vector Lane Architecture

Figure 4(a) illustrates the ALU 1 to ALU (N-1) design, and Figure 4(b) illustrates
the additional components that reside in heterogeneous ALU. Each data path lane
includes two vector scratchpad memories, a single- or double-precision floating-point
adder/subtractor, a single- or double-precision multiplier, a single- or double-precision
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Fig. 4. ALU architectures.

comparator, and a single- or double-precision absolute value operator. Lane widths
are limited to powers of 2 to reduce hardware complexity. We chose powers of 2 as
they fit neatly into binary numbers, but arbitrary lane widths could be supported with
minor modifications. In addition to vector add, subtract, and multiply operations, the
architecture supports vector divide, dot product, exponentiation, and square root. All
floating-point operations are implemented using the Altera floating-point arithmetic
library [Altera 2016a] and advanced DSP blockset.

Division, exponentiation, and square root consume more resources than other
floating-point arithmetic modules but are used less frequently; for example, in Stratix V,
a single-precision exponentiation module utilizes nine DSP blocks, while a single-
precision multiplier requires a single one [Altera 2016a]. If exponentiation was in-
cluded in each vector lane, resource utilization would increase significantly. For this
reason, complex operators are only included in ALU 0. Though the vector exponentia-
tion, division, and square root operations require more cycles to complete, the reduction
in resources allows for more lanes to be implemented, increasing overall performance.
With minor modifications, other functions such as sin/cos, tan/atan, inverse, and log
can be added. Conversely, any unnecessary functional units can be excluded to save
resources.

The scalar-to-vector, vector dot product, and adder tree function units are also im-
plemented in ALU0. The scalar-to-vector function unit shares multiplexers with the
exponentiation and division modules. The vector dot product instruction utilizes a
parallel N input adder tree.

3.4. Peripheral Adaptor

The peripheral adapter implements a low-latency interface to standard bus arbiters
such as PCI Express, USB, UART, or any other custom peripheral such as an
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Table II. Microcode Format

Vector A Vector B Vector C Lane Operation Immediate
Function Address Address Address Index Code Data
Symbol A B C L OP I

Bits 16 16 16 12 4 64

Table III. Microcode Instructions (All i , j , and L Indexes Range from 0 to N-1)

Microcode (Opcode) Description Function
VNOP (0000) No operation -
VADD (0001) Vector add V Mi[C] = V Mi[A] + V Mi[B]
VSUB (0010) Vector subtract V Mi[C] = V Mi[A] − V Mi[B]
VMUL (0011) Array multiply V Mi[C] = V Mi[A] × V Mi[B]
SDIV (0100) Scalar divide V ML[C] = V ML[A]/V ML[B]
SEXP (0101) Scalar exponentiation V ML[C] = EXP(V ML[A])
VDOT (0110) Vector dot product V ML[C] = ∑N−1

i=0 V Mi[A] × V Mi[B]
S2VE (0111) Clone a vector N times V Mi[C] = V ML[A]
LSET (1000) If less than, then set If V Mi[A] < V Mi[B], then V Mi[C] = 1
Branch If Equal (1001) Conditional branch If V Mi[A] = V Mi[B], M = C
VCOPY (1010) Vector copy with alignment If i < L, V Mi[C] = V Mi[A], Else V Mi[C] = V Mi+1[A]
SLOAD (1011) Load a scalar V ML[C] = Immedeiate
SMOV (1100) Move to/from peripheral If A = 0, V ML[C] = InData, Else OutData = V ML[B]
SSQRT (1101) Scalar sqrt V ML[C] = sqrt(V ML[A])
SCOPY (1110) Scalar copy V ML[C] = V MB[A]
VABS (1111) Vector absolute V Mi[C] = |V Mi[A]|

analog-to-digital converter. This allows data to be directly transferred from periph-
erals to vector memory, minimizing latency.

As illustrated in Figure 2, it has separate input and output FIFOs, which we assume
are directly connected to other hardware devices. The “Full” and “Empty” signals indi-
cate the FIFO status, according to which the peripheral adapter generates appropriate
read and write requests, “Wreq” and “Rreq.” Data can be transferred to/from the FI-
FOs using the SMOV instruction, as they are also memory mapped. In each training
iteration, an input vector is read from the input FIFO and processed, and the predic-
tion is written to the output FIFO. Peripheral I/O proceeds in parallel with instruction
execution.

3.5. Microcode

The architecture enables the processor to be easily programmed for different kernel
algorithms at both the instruction set and data path levels. The microcode is 128
bits wide, with all vector and microcode addresses being 16 bits. MATLAB code from
KAFBOX [Van Vaerenbergh 2012] was manually vectorized and converted to microcode.

The microcode format is summarized in Table II. “A” and “B” are used to specify their
respective input vector address. The vector memory for the ith lane is represented as
V Mi. Vector address “C” specifies the destination address. The Lane Index “L” is a
12-bit value that specifies the vector memory lane for storing the result of a VDOT
instruction. The opcode is given in the “OP” field and the immediate value field “I”
specifies a floating-point constant that can be loaded to vector memory.

As can be seen in Figure 3, both write ports are driven with the same address and
data signals (Vector ADDR C and Vector Data), so identical data are written to both
ports. Table III describes the function of each opcode.

An assembler has been developed to translate a textual description of a pro-
gram to binary microcode, which can be directly uploaded to the microcode memory.
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Table IV. Instruction Pipeline Depths on Stratix V and Arria 10

Device Stratix V Arria 10
Precision Single Double Single Double
VNOP (0000) 1 1 1 1
VADD (0001) 14 16 9 22
VSUB (0010) 14 16 9 22
VMUL (0011) 12 12 9 16
SDIV (0100) 40 68 31 53
SEXP (0101) 24 32 24 48
VDOT (0110) 12 + 8log2(N) 12 + 10log2(N) 9 + 3log2(N) 16 + 16log2(N)
S2VE (0111) 7 7 7 7
LSET (1000) 7 7 7 7
Branch If Equal (1001) 6 6 6 6
VCOPY (1010) 6 6 6 6
SLOAD (1011) 4 4 4 4
SMOV (1100) 4 4 4 4
SSQRT (1101) 35 64 18 38
SCOPY (1110) 7 7 7 7
VABS (1111) 7 7 7 7

Fig. 5. Vector processor pipelining scheme.

Writing software in assembly is straightforward (albeit tedious) since vector and matrix
operations are supported by the processor.

3.6. Pipelining

To maximize the clock frequency, we employ pipelined instruction execution, with mi-
crocode instructions requiring a different number of cycles to complete. Table IV shows
the microcode instruction pipeline depths for both Stratix V and Arria 10 devices.

As can be seen in Figure 5(a), the CPU has a four-stage pipelined data path with
instruction fetch (IF), instruction decode (ID), execute (EX), and write-back (WB). Each
lane operates on independent data. The pipeline latency for IF, ID, and WB are fixed
at two cycles, two cycles, and one cycle, respectively. Latencies for EX are instruction
dependent.

Taking the VDOT instruction as an example, the multiplier latency is six cycles,
the adder latency is eight cycles, and the adder tree has 8log2(N) cycle latency. One
additional cycle is required to pipeline the vector data multiplexer. The latency of the
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execute stage is thus 7 + 8log2(N) and total latency 12 + 8log2(N). Performance could
be improved using a parallel accumulator with lower latency (e.g., Sun and Zambreno
[2009]).

For SLOAD and SMOV instructions, access to vector memory is not required and the
ID stage is omitted. One cycle of latency is required by EX so the total latency is 4. For
all the other instructions, the total latency equals the execute stage latency plus five
cycles (IF, ID, and WB).

Data hazards require VNOPs to be inserted because pipeline interlocks are not
implemented. To prevent a read-after-write data hazard, an instruction dependent on
the result of a previous instruction must wait until the computed result is written
back to the vector memory. The top part of Figure 5(b) illustrates pipeline behavior
in this case. The VADD instruction (on the Arria 10) requires six VNOPs to resolve a
read-after-write hazard, and the processor must wait for $3 to be written before it can
be read in the ID stage of the following instruction. The same sequence on the Stratix
V requires 11 VNOPs, demonstrating the advantages of lower latency.

Write-after-write hazards can also occur, as illustrated in the bottom half of
Figure 5(b). Since only one port of vector memory can be written per cycle, an instruction
with a smaller pipeline depth than previous instructions must wait until the previous
write-back stages to finish before moving to its write-back stage. Since VADD requires
two more cycles than VMUL, two additional VNOPs are required to resolve this hazard.

4. RESULTS

An implementation of the KRLS vector processor was made using Verilog Hardware
Description Language (Verilog HDL) and Altera MegaWizard [Altera 2016b]-generated
RTL files. Quartus Prime 16.0 was used for FPGA synthesis, place, and route. Both
single- and double-precision versions of the vector processor were implemented, and
furthermore, the design was written in such a way that key parameters such as the
memory sizes and number of vector lanes can be configured at compile time. The target
platform was an Altera DE5 board populated with a medium size Stratix V 5SGXEA7C2
device. We also report synthesis and simulation results for a newer FPGA, the Arria
10 10AX115N3F45E2 device in an Altera DE5a board, this having a new DSP block
that supports fixed- and floating-point arithmetic [Langhammer and Pasca 2015].

Altera OpenCL implementations of the same kernel adaptive filtering (KAF) algo-
rithms are used for comparison. The host system is an HP workstation, with an Intel
Xeon 5570 CPU running the Windows 7 64-bit operating system. The same Altera DE5
board was connected via a 16-lane Gen2 PCI Express slot. Microsoft Visual Studio 2013
was used to compile the host program and source code pragmas used in OpenCL to
maximize task parallelism. OpenCL was chosen as the comparison point as recent stud-
ies have shown that it can generate implementations with comparable performance to
other techniques [Rashid et al. 2014].

The current implementation assumes online input data are present in the input
FIFO, as explained in Section 3.4. Any I/O is supported by using a customized periph-
eral adapter as described in Section 3.1. The prediction output can be monitored at
the “Output” port of the output FIFO, as shown in Figure 2. Performance is limited by
processing rather than bandwidth as we can obtain new data every cycle but it takes
many cycles to perform a training iteration.

4.1. FPGA Resource Usage

Table V shows resource usage on the Stratix V. The FPGA used features 234K ALMs,
256 DSP blocks (configurable as one 27×27-bit multiplier or two 18×18-bit multipliers),
and 2,560 M20K memory blocks. In the DE5, due to the availability of ALMs and 27-bit
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Table V. Vector Processor Resource Usage

Device Sliding- ALM (K) M20K Mem DSP Blocks
and Window (Used/ (Blocks Used/ (Used/

Precision Length % of Total) % of Total) % of Total)

Stratix V
15 24/10% 153/6% 25/10%
31 45/19% 281/11% 41/16%

Single
63 85/36% 537/21% 73/29%
127 162/69% 1047/41% 137/54%

Stratix V 15 43/18% 262/10% 100/39%
Double 31 82/35% 486/19% 164/64%

Arria 10
15 7/2% 159/6% 60/4%
31 14/3% 287/11% 108/7%

Single
63 24/6% 543/20% 204/13%
127 48/11% 1055/39% 396/26%

Arria 10 15 46/11% 289/11% 116/8%
Double 31 87/20% 513/19% 180/12%

Table VI. Altera OpenCL KRLS Implementation Resource Usage

Sliding- ALM (K) M20K Mem DSP Blocks
Window (Used/ (Blocks Used/ (27 Bit) (Used/

Precision Length % of Total) % of Total) % of Total)

Single
15 90/38% 947/37% 36/14%
31 90/38% 998/38% 36/14%
63 90/38% 1050/41% 36/14%
127 90/38% 1178/46% 36/14%

Double

15 92/39% 973/38% 54/21%
31 92/39% 998/39% 54/21%
63 92/39% 1075/42% 54/21%
127 92/39% 1223/48% 54/21%

DSP blocks, the maximum number of single-precision lanes that can be supported is
128, and the maximum number of double-precision lanes is 32.

The floating-point cores in the ALUs dominate the area of the vector processor. On the
Stratix V for single precision, a single DSP is required for the floating-point multiplier
in each of the N lanes, and an additional nine DSPs are required for the exponentiation
unit in ALU0. Similarly, memory usage is dominated by the vector memory, which
grows linearly with N. ALM usage is mainly that required to implement the floating-
point adders in the vector lanes and ALU0 adder tree, plus additional operators and
multiplexers in ALU0. Minimal resources are required for control as it is stored in
microcode memory. In summary, for single precision on the Stratix V, DSP, memory, and
ALM resources scale linearly with the number of vector lanes, N. As would be expected,
going to double precision roughly quadruples the number of DSPs and doubles memory.

Table V also shows the resource usage for the Arria 10, which features 427K
ALMs, 1,518 hardened single-precision floating-point DSP blocks (one single-precision
floating-point DSP block is configurable as two 18×19-bit multipliers), and 2,713 M20K
memory blocks. Note that one additional DSP block is used per lane over the Stratix
V for the single-precision adder. N − 1 additional DSP blocks are used for the adder
tree, and four additional DSP blocks are used for division and square root units. For
double precision, soft logic is used to implement adders, and DSPs are only used in the
multiply and exponential, division, and square root operators.

Table VI shows the resource usage of the Altera OpenCL implementation of SW-
KRLS, as reported by the Altera OpenCL tool. Increasing sliding-window length
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Table VII. Vector Processor Performance Results

Sliding- DSP CPU OpenCL Kernel Vector Processor
Window (Single/Double) (Single/Double) (Single/Double) (Single/Double)

Example Length (μS)@1.0GHz (μS)@3.1GHz (μS)@261.7MHz (μS)@250.0MHz

SW-KRLS

15 55.6 56.8 1.7 2.0 88.3 103.3 3.2 4.8
31 199.6 200.8 7.2 7.2 90.6 105.9 4.6 6.9
63 364.8 366.0 23.8 31.4 93.8 107.2 7.4 -
127 4,475.6 4,732.4 113.7 143.6 99.7 113.6 12.6 -

FB-KRLS

15 74.0 76.4 2.4 3.0 91.7 109.2 3.4 4.9
31 249.2 255.6 8.8 9.2 93.5 111.8 5.0 7.2
63 406.8 409.2 25.8 35.4 97.8 113.0 8.0 -
127 5,642.4 6,057.2 118.8 152.6 103.9 121.4 13.9 -

KNLMS

15 16.8 17.2 0.8 1.2 38.3 41.6 1.9 2.5
31 36.6 36.0 1.5 2.3 39.4 43.2 2.6 3.4
63 45.2 45.6 2.8 4.9 41.2 45.0 3.6 -
127 75.2 75.6 4.9 8.5 43.0 47.5 5.8 -

consumes more on-chip memory but maintains the same ALMs and DSP blocks. Com-
pared with the vector processor, OpenCL always consumes more block memory. For
the largest sliding-window length designs (128 for single and 32 for double), the direct
OpenCL implementation consumes fewer resources than the vector processor.

4.2. Performance Analysis

We compare processing performance for all platforms, over all kernel algorithms. The
CPU configuration is a desktop PC with the following specifications: an Intel Core i5-
2400 CPU at 3.10GHz, 4GB of memory, running Linux Ubuntu 13.10 using GCC version
4.8.1. The DSP configuration is a Texas Instruments TMS320C6678 DSP development
kit running at 1GHz. The MSGQ APIs provided by the SYS/BIOS system are employed
to do multicore communication between the eight-processor core in this KeyStone DSP
processor. Some extra efforts are made to make the original code run faster on this
multicore DSP processor. The vector processor on the Stratix V device uses 250MHz
for the system clock frequency.

Note that an N lane processor is used to implement a sliding-window length of N−1.
An optimized C code implementation was developed for the CPU and DSP platforms,
and the ATLAS [Whaley and Petitet 2005] library was used for linear algebra. Although
a multithreaded ATLAS library [Whaley and Petitet 2005] was tested, the highest
performance on the CPU was achieved with a single-threaded implementation. We
believe this was because our matrix sizes were too small to benefit from multiple cores
because in our current implementation, vector lengths cannot exceed the number of
lanes.

Table VII shows the vector processor performance on the Stratix V device versus the
CPU, DSP, and Altera OpenCL designs for sliding-window lengths between 15 and 127.
The input vector size was chosen as M = 7. A total of 12 cases were tested for both
single and double precision. For small sliding-window sizes, the CPU outperforms all
other platforms. The vector processor outperforms the CPU and DSP for N ≥ 32 on
SW-KRLS and FB-KRLS, and for the case N = 128, the speedup is 9.

For the KNLMS algorithm, the CPU achieved the highest performance. In contrast
to the computations of Equations (2), (3), (8), and (9) for SW-KRLS and FB-KRLS, in
the case of KNLMS, the computations of Equations (13) and (14) involve mostly scalar
operations and take more than half of the execution time, limiting what can be achieved
through vectorization.
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Fig. 6. SW-KRLS single-precision performance comparison between pipelined and nonpipelined processors.

In Table VII, the OpenCL design runtime is the kernel time, with PCI Express
transfer time excluded. In the vector processor, the PCI Express bus is not used during
training as I/O is done through the Peripheral Adaptor (Section 3.4). Similarly, PCI
Express is not used for the other implementations. The vector processor achieves the
highest performance of the four implementations when the window length is large.

We compare the performance of the fully pipelined vector processor to our previously
published nonpipelined SW-KRLS implementation [Pang et al. 2013] using the same
Stratix-V device. As shown in Figure 6(a), the vector processor with fully pipelined
architecture uses fewer cycles and achieves higher clock frequency and higher perfor-
mance. Figure 6(a) provides detailed information on the maximum frequency, Fmax, for
each different lane configuration of the vector processor.

A higher clock frequency is obtained using the Arria 10 device, and the performance
is approximately 1.4 times higher than Stratix V. Figure 6(b) shows floating-point
operations per second (FLOPs) for the Stratix V, Arria 10, and CPU implementations.
Peak performance is calculated as (number of multipliers + number of adders) × Fmax.
Sustained performance is measured as the number of floating-point operations divided
by the execution time, where the number of floating-point operations is calculated using
Equation (4).

4.3. Precision Analysis

The MG-30 Mackey-Glass [Mackey and Glass 1977] benchmark, modeled by the dif-
ferential equation dx(t)

dt = −ax(t) + bx(t−τ )
1+x(t−τ )10 with (a = 0.1, b = 0.2, τ = 30), was used to

test the SW-KRLS implementation. A regularization parameter of c = 0.01 and ker-
nel parameter σ = 0.6 was chosen. The single-precision floating-point vector processor
was compared with KAFBOX [Van Vaerenbergh 2012], an open-source double-precision
implementation. As shown in Figure 7, the difference in mean squared error (MSE)
between KAFBOX and our processor was less than 0.07%, and the maximum relative
error was less than 0.5%. We consider this error negligible for our purposes and thus
conclude that single-precision floating point is sufficient for the MG-30 problem.

The Lorenz dataset can be created by Runge-Kutta integration of the Lorenz equa-
tions and is available in KAFBOX [Van Vaerenbergh 2012].

Figure 8 shows the maximum relative error, MRE, of the SW-KRLS, FB-KRLS,
and KNLMS algorithms with a sliding-window length of 127. The error for sample i
is calculated by comparing the output of each of the hardware platform simulation
results with a double-precision reference generated by KAFBOX over 1,000 training
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Fig. 7. The left-hand plot shows the KAFBOX output compared with the vector processor. The right-hand
plot shows their relative error. Results are for single-precision floating-point and a sliding-window length of
127.

Fig. 8. Error compared to KAFBOX golden reference in single and double precisions with a sliding-window
width of 127.

and prediction pairs, that is, MRE = maxi(|(xiobs−xire f )/xire f |), where xire f is the Matlab
output and xiobs is the observed prediction output. For the Lorenz problem using SW-
KRLS and FB-KRLS, single precision was not sufficient for convergence so only double-
precision results are reported.

4.4. Dynamic Instruction Frequency

In this subsection, we provide a dynamic instruction analysis for the SW-KRLS mi-
crocode using a lane width of 32. Instruction frequency was measured via simulation
and shown in Figure 9. From this figure, we can see that SDIV, SEXP, and SSQRT only
take a small portion of the total instruction cycles, justifying a single heterogeneous
ALU. Results for the SW-KRLS, FB-KRLS, and KNLMS microcode over different lane
widths yield similar results, with the VDOT and VMUL instructions consuming the
highest machine cycles for all applications.

4.5. Energy Consumption

This section details the energy consumption of the Vector Processor, Altera OpenCL,
DSP, and CPU implementations. The power dissipation of the vector processor on
Stratix V and Altera OpenCL implementations was measured using an Agilent U8001A
power supply. The Arria 10 power consumption was obtained using the PowerPlay
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Fig. 9. SW-KRLS microcode dynamic execution analysis, lane width 32.

Fig. 10. SW-KRLS energy consumption (N = 128).

Power Analyzer tool in Quartus Prime 16.0 at 300MHz. Results will be optimistic
as they do not include the consumption of other chips required to make the system
function. The DSP power dissipation was measured from the DC input jack using a
Fluke 15B multimeter. The CPU power dissipation was estimated using OS reported
battery usage over a 15-minute test on a laptop using battery power with the LCD
screen switched off. We also provide energy usage per training/prediction pair using
E = Pt, where E is energy usage, P is power usage, and t is the prediction time.
In this section, in order to select a system optimized for power dissipation, the CPU
configuration is an Apple MacBook Air laptop with the following specifications: Intel
Core i5 CPU 2467M @ 1.6GHz, 4GB of memory, running Mac OSX 10.9 using Apple
LLVM 5.1. Note this machine also uses flash storage as opposed to a hard disk drive.

From Figure 10, it can be seen that the Arria 10 implementations require the least
amount of power. When the computational time is also taken into consideration, the
vector processor outperforms all other implementations in terms of energy consumption
for all sliding-window lengths. For the SW-KRLS algorithm with N = 128, energy
consumption of the Stratix V FPGA and Arria FPGA is a factor of 8 and 24 lower
than that of the CPU. Results for the FB-KRLS algorithm are similar. For KNLMS,
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Fig. 11. Latency test results (SW-KRLS, N = 64).

significant vectorization is not possible and hence the execution time and energy of the
vector processor are similar to the CPU.

4.6. Latency Test

We define latency to be the time taken from the arrival of a new input at a device’s
input pins (32 bits or 4 bytes for single precision) to when the output prediction changes
the device’s output pins. On an FPGA, this can be minimized by avoiding any buffering
and off-chip transfers. While double buffering can improve throughput by amortizing
overheads over many inputs, it does not improve latency. FPGAs have a clear latency
advantage as they can avoid off-chip I/O and buffering.

Latency tests for performing online learning and prediction from analog data sources
were conducted. For Stratix V and OpenCL, we used a DE5 board equipped with a
Terasic High-Speed A/D and D/A Development Kit. The same input/output latencies
were used for the Arria 10. The vector processor runs at 250MHz on the Stratix V
device and at 300MHz on the, Arria 10 device. For the CPU we used the National
Instruments 5781 Baseband Transceiver and NI 7954 FPGA modules, and the DSP
latency assumed an LTC2422 ADC and LTC2607 DAC connected via a serial peripheral
bus operating at the highest frequency. Results for the SW-KRLS example are shown
in Figure 11, with those for FB-KRLS and KNLMS being similar. The vector processor
outperforms the other platforms in terms of latency due to its fast processing time
and minimal I/O overhead. In comparison, the DSP suffers from both high I/O latency
and high processing latency, and the CPU implementation is capable of providing low
processing latency but suffers from high I/O latency during data acquisition, due to
PCI bus and kernel overheads. The OpenCL implementations used PCI Express DMA
data transfer to initialize the kernel and read back data. This results in high input and
output latency.

4.7. Related Work

4.7.1. Hardware Implementations of Machine Learning. Module generators, which can cre-
ate a family of parameterized designs rather than a single one, are common in re-
configurable computing. Anguita et. al. [2011] described an FPGA-based fixed-point
core generator for SVMs that allows submodules with different speed, resource, and
accuracy tradeoffs to be included. Papadonikolakis and Bouganis [2008] developed a
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scalable SVM module generator that allows for the use of different kernel types and
uses different numbers of parallel tiles to optimize performance. The design was par-
titioned into fixed- and floating-point parts to achieve high speed without sacrificing
accuracy. Majumdar et. al. [2012] described the many-core MAPLE architecture, which
was designed to accelerate a number of learning and classification problems, including
SVMs. Vector processing elements in a two-dimensional grid were used to perform lin-
ear algebra, and independent off-chip memory banks were utilized to allow the solution
of large problems.

Lin et. al. [2010] developed a deeply pipelined Bayesian computing machine (BCM)
using floating-point arithmetic to evaluate probabilistic networks. A system with 16
processing nodes achieved average 80/15× speedups over a CPU/GPU implementation,
respectively.

Shan et. al. [2010] developed a map-reduce framework and applied it to the acceler-
ation of the RankBoost algorithm using floating-point arithmetic. They also described
how their work could be applied to the PageRank and SVM algorithms.

Perhaps most similar architecturally to this work is a fixed-point implementation of
the Restricted Boltzman Machine (RBM) by Ly [2010]. A microprogrammed controller
was employed, and a new technique to implement transcendental functions in a highly
pipelined manner by combining lookup tables with linear interpolators was introduced.
Virtualization through time multiplexing was employed to allow larger problems to be
solved.

In this work, a parallel data path is combined with microcoded control logic to produce
a soft vector processor. While both Ly [2010] and Majumdar [2012] targeted maximum
performance in batch learning tasks, ours is designed for single-FPGA, floating-point
embedded applications in which minimizing latency and compactness are the key de-
sign goals. Our designs could be considered complementary to some previous work in
that module generators, scheduling, map-reduce, MPI, and so forth can be combined
with our architecture.

4.7.2. Soft Vector Processors. A soft vector processor is a processor implemented using
FPGA resources [Yiannacouras et al. 2012]. Most well-known previous soft vector
processors [Yiannacouras et al. 2012; Chou et al. 2011; Severance and Lemieux 2012;
Yu et al. 2009] have not supported floating-point operations. The FPVC, or floating-
point vector coprocessor, developed by Kathiara and Leeser [2011] adds a floating-point
vector unit to the hard Xilinx PowerPC cores, which can exploit SIMD parallelism as
well as pipelining. A recent soft vector processor with streaming pipelines [Severance
et al. 2014] allows custom vector instructions, which can be floating-point operations.

In terms of data representation, while the performance benefits of fixed-point and
reduced-precision floating-point implementations are undeniable, we advocate single-
and double-precision floating point. The proposed architecture could be easily modified
for fixed-point and mixed fixed-floating-point arithmetic.

We also assume that there is only one data stream to process. This makes parallelism
through multithreading difficult as the next data item can only be processed after the
state has been updated.

General-purpose graphics processing unit (GPGPUs) are an alternative acceleration
technology to FPGAs, CPUs, and DSPs. They offer massive amounts of computing
power but are optimized for throughput rather than latency. For a 4-byte transfer,
CPU-to-GPGPU and GPGPU-to-CPU latency has been measured as 40.4μs and 41.9μs,
respectively [Bittner and Ruf 2012]. Since the round-trip transfer time alone is similar
to the FPGA and CPU total latency including processing, we concluded that GPGPUs
were not suitable for latency-critical applications and hence were not included in this
study.
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Similar to previous soft vector processors [Yiannacouras et al. 2012; Chou et al.
2011; Severance and Lemieux 2012; Yu et al. 2009], this vector processor architecture
offers scalable performance and area via control of the number of vector lanes. We
are not aware of other soft vector processors specifically targeting kernel methods or
low-latency machine learning.

5. CONCLUSIONS

In this work, a microcoded vector processor optimized to reduce latency for kernel-
based machine-learning algorithms was presented. The architecture allows efficient
computation of dot product, matrix-vector multiplication, and kernel evaluation op-
erations, and features simplicity, programmability, and compactness. For SW-KRLS
and FB-KRLS, significant improvements in execution time, latency, and energy con-
sumption were observed compared with a CPU and DSP. As limited opportunities are
available for vectorization of the KNLMS algorithm, execution time and energy are
similar to the CPU, with an order of magnitude reduction in latency.

We showed that the microcoded vector processor can be efficiently implemented
on both Stratix V and Arria 10 devices. Floating-point cores on these devices have
very different latencies, but this can be handled by adjusting pipeline stage latencies.
Newer FPGA architectures will further improve the performance of our processor, and
we believe they can be utilized efficiently with minor changes to the pipeline structure
and microcode.

The microcoded architecture presented herein is a flexible processor capable of im-
plementing many different algorithms without resynthesis of the design. Future work
includes incorporating a parallel accumulator to improve performance of the “VDOT”
instruction, and development of tools to allow the architecture to be customized to
an even wider range of applications. It would also be interesting to investigate the
feasibility of using techniques such as Dekker’s algorithm [Dekker 1971] to achieve
higher precision using only single-precision operations. This may better utilize the
hard single-precision floating-point cores available in Arria 10 and future FPGAs.

APPENDIX

A. DESCRIPTIONS OF THE FB-KRLS AND KNLMS ALGORITHMS

In this appendix, we provide concise descriptions of the FB-KRLS and KNLMS algo-
rithms implemented in the article.

A.1. Fixed-Budget KRLS

The FB-KRLS algorithm has a fixed dictionary size and employs a scheme that attempts
to keep the most useful training examples in the dictionary. Using a fixed dictionary
size bounds the computational cost of the algorithm. Thus, the computational cost can
be determined at design time, a useful property for real-time and high-performance
implementations. A comparative study of KAF algorithms [Van Vaerenbergh and San-
tamaria 2013] suggests that for stationary systems, the FB-KRLS achieves the lowest
MSE at the smallest computational cost.

Let Dn ∈ R
N′×M be the dictionary at time n, which contains N′ selected training

examples from all inputs, {x1, . . . , xn}, such that one input vector is stored in each row;
and yn ∈ R

N′
be the solution vector, {y1, . . . , yn}, corresponding to the selected examples

of Dn. Using Dn and yn, at time n, the least squares weights are αn and the inverse
matrix is K−1

n .
The pseudocode in Figure 12 lists the steps required to update the model. Given a new

training example, (xn+1, yn+1), an augmented dictionary D̃n+1 and augmented solution

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 5, Publication date: September 2016.



A Microcoded Kernel Recursive Least Squares Processor Using FPGA Technology 5:19

Fig. 12. Pseudocode of the FB-KRLS algorithm.

vector ỹn+1 are obtained by appending xn+1 and yn+1 to Dn and yn, respectively. The
kernel vector, k̃n, is then given by

p = [κ(d̃0, d̃N′+1), . . . , κ(d̃N′ , d̃N′+1)]T (6)

k̃n = [pT , C]T , (7)

where d̃i is the ith entry of D̃n+1, C = κ(d̃N′+1, d̃N′+1) + c, and c is a regularization
constant.

K−1 is then calculated by first computing

K̂−1
n+1 =

[
K−1

n (I + ppT K−1T
n−1 g) −K−1

n pg
−(K−1

n p)T g g

]
, (8)

where g is given by g = (C − pT K−1
n p)−1, and then

K−1
n+1 = G − ffT

/e, (9)

where e is the diagonal entry on the jth row/column of the K̂−1
n+1, f vector of the entries

in the jth row/column of K̂−1
n+1 excluding e, and G is a matrix made from all remaining

entries of K̂−1
n+1. Note that f is defined as the jth row and column since K̂−1

n+1 is symmet-
rical. The value for j is determined by selecting the index corresponding to the smallest
entry of s, which is given by

s = ∣∣K̂−1
n+1ỹn+1

∣∣./diag
(
K̂−1

n+1

)
, (10)

where diag(K̂−1
n+1) returns a vector of the diagonal entries of K̂−1

n+1 and “./” denotes
element-wise division. Dn+1 and yn+1 are found by removing the jth row of D̃n+1 and
ỹn+1, respectively.

A.2. Kernel Normalized Least Mean Squares Algorithm

The KNLMS [Richard et al. 2009] provides a computationally efficient way to approx-
imately calculate the least squares solution. The KNLMS algorithm also provides an
effective and computationally inexpensive online method to sparsify the dictionary,
known as the coherence criterion. The result is an online approximate kernel regres-
sion algorithm with worst-case computational complexity of O(NM) to update the state
for each new training example. KNLMS can be derived by considering the instanta-
neous approximation of the solution to the following affine projection problem at time
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Fig. 13. Pseudocode of the KNLMS algorithm with Coherence Criterion.

step n:

min
α

‖α − α̂n−1‖2
2 subject to yn = kT

n α, (11)

where kn is the kernel vector given by the kernel function between the latest input, xn,
and each entry currently in the dictionary. Assuming that the current can be adequately
represented by the current dictionary, and thus we don’t wish to add it the dictionary,
Equation (11) can be solved by minimizing the following Lagrangian function:

J(α, λ) = ‖α − α̂n−1‖2
2 + λ

(
yn − kT

n α
)
. (12)

The solution of α̂n is found by differentiating Equation (12) with respect to α and λ
and setting the derivatives to zero, 2(α̂n − α̂n−1) = λkn.

By premultiplying each term by kT
n and substituting in yn from the constraint in

Equation (11), an expression for λ can be found: λ = 2(kT
n kn)−1(yn − kT

n α̂n−1). This is
then used to obtain the following recursive update equation:

α̂n = α̂n−1 + η

ε + ∥∥kn
∥∥2

2

(
yn − kT

n α̂n−1
)
kn, (13)

where η is a step-size parameter and ε is a regularization factor. If the current training
example cannot be adequately represented by the current dictionary, then the dictio-
nary is appended with the current input, xn, and the update equation becomes:

α̂n =
[

α̂n−1
0

]
+ η

ε + ∥∥kn
∥∥2

2

(
yn − kT

n

[
α̂n−1

0

])
kn. (14)

In order to determine whether or not the current dictionary can adequately rep-
resent the current input example, the coherence criterion is used, which is given by
max j=1...md |κ(xn, d j)| ≤ μ0, where md is the current size of the dictionary. If true, the
current input example is appended the dictionary; otherwise, the dictionary remains
the same. Richard et al. [2009] show that under reasonable conditions, this produces a
finite dictionary as n approaches infinity. This also implies that after an initial period,
the computational cost for each training step only depends on the final size of the dic-
tionary, Md. Pseudocode for the KNLMS algorithm, adapted from Richard et al. [2009]
and Yukawa [2012], is provided in Figure 13.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 5, Publication date: September 2016.



A Microcoded Kernel Recursive Least Squares Processor Using FPGA Technology 5:21

REFERENCES

Altera. 2016a. Altera Floating-Point IP Cores User Guide. (2016). http://www.altera.com.
Altera. 2016b. Altera Megawizard User Guide. (2016). http://www.altera.com.
Altera. 2016c. Altera Stratix V Device Handbook. (2016). http://www.altera.com.
Davide Anguita, Luca Carlino, Alessandro Ghio, and Sandro Ridella. 2011. A FPGA core generator for

embedded classification systems. Journal of Circuits, Systems and Computers 20, 02 (2011), 263–282.
DOI:http://dx.doi.org/10.1142/S0218126611007244

Davide Anguita, Alessandro Ghio, Stefano Pischiutta, and Scitidro Ridella. 2007. A hardware-friendly sup-
port vector machine for embedded automotive applications. In International Joint Conference on Neural
Networks, 2007 (IJCNN’07). 1360–1364. DOI:http://dx.doi.org/10.1109/IJCNN.2007.4371156

Ray Bittner and Erik Ruf. 2012. Direct GPU/FPGA communication via PCI express. In 2012 41st Interna-
tional Conference on Parallel Processing Workshops (ICPPW’12). 135–139. DOI:http://dx.doi.org/10.1109/
ICPPW.2012.20

Christopher H. Chou, Aaron Severance, Alex D. Brant, Zhiduo Liu, Saurabh Sant, and Guy G. F. Lemieux.
2011. VEGAS: Soft vector processor with scratchpad memory. In Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA’11). ACM, New York, NY, 15–24.
DOI:http://dx.doi.org/10.1145/1950413.1950420

Theodorus J. Dekker. 1971. A floating-point technique for extending the available precision. Numerical
Mathematics 18, 3 (1971), 224–242. DOI:http://dx.doi.org/10.1007/BF01397083

Yaakov Engel, Shie Mannor, and Ron Meir. 2004. The kernel recursive least-squares algorithm. IEEE
Transactions on Signal Processing 52, 8 (Aug. 2004), 2275–2285. DOI:http://dx.doi.org/10.1109/TSP.
2004.830985

Jerome H. Friedman. 2006. Recent advances in predictive (machine) learning. Journal of Classification 23
(2006), 175–197.

Nicholas J. Higham. 1996. Accuracy and Stability of Numerical Algorithms. Number 48. Siam.
Andrew K. S. Jardine, Daming Lin, and Dragan Banjevic. 2006. A review on machinery diagnostics and

prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing 20,
7 (2006), 1483–1510. DOI:http://dx.doi.org/10.1016/j.ymssp.2005.09.012

Jainik Kathiara and Miriam E. Leeser. 2011. An autonomous vector/scalar floating point coprocessor for FP-
GAs. In 2011 IEEE 19th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM’11). 33–36. DOI:http://dx.doi.org/10.1109/FCCM.2011.14

Martin Langhammer and Bogdan Pasca. 2015. Floating-point DSP block architecture for FPGAs. In Proceed-
ings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’15).
ACM, New York, NY, 117–125. DOI:http://dx.doi.org/10.1145/2684746.2689071

Daniel Le Ly and Paul Chow. 2010. High-performance reconfigurable hardware architecture for re-
stricted Boltzmann machines. IEEE Transactions on Neural Networks 21, 11 (Nov. 2010), 1780–1792.
DOI:http://dx.doi.org/10.1109/TNN.2010.2073481

Mingjie Lin, Ilia Lebedev, and John Wawrzynek. 2010. High-throughput Bayesian computing ma-
chine with reconfigurable hardware. In Proceedings of the 18th Annual ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays (FPGA’10). ACM, New York, NY, 73–82.
DOI:http://dx.doi.org/10.1145/1723112.1723127

John W. Lockwood, Adwait Gupte, Nishit Mehta, Michaela Blott, Tom English, and Kees A. Vissers.
2012. A low-latency library in FPGA hardware for high-frequency trading (HFT). In 2012 IEEE
20th Annual Symposium on High-Performance Interconnects (HOTI’12). 9–16. DOI:http://dx.doi.org/
10.1109/HOTI.2012.15

Michael C. Mackey and Leon Glass. 1977. Oscillation and chaos in physiological control systems. Science
197, 4300 (1977), 287–289.

Abhinandan Majumdar, Srihari Cadambi, Michela Becchi, Srimat T. Chakradhar, and Hans Peter Graf.
2012. A massively parallel, energy efficient programmable accelerator for learning and classification.
ACM Transactions on Architecture and Code Optimization 9, 1, Article 6 (March 2012), 30 pages.
DOI:http://dx.doi.org/10.1145/2133382.2133388

Yuri V. Makarov, Victor I. Reshetov, Vladimir A. Stroev, and Nikolai I. Voropai. 2005. Blackout preven-
tion in the United States, Europe, and Russia. Proceedings of the IEEE 93, 11 (2005), 1942–1955.
DOI:http://dx.doi.org/10.1109/JPROC.2005.857486

Yeyong Pang, Shaojun Wang, Yu Peng, N. J. Fraser, and P. H. W. Leong. 2013. A low latency kernel re-
cursive least squares processor using FPGA technology. In 2013 International Conference on Field-
Programmable Technology (FPT’13). 144–151. DOI:http://dx.doi.org/10.1109/FPT.2013.6718345

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 5, Publication date: September 2016.

http://www.altera.com
http://www.altera.com
http://www.altera.com
http://dx.doi.org/10.1142/S0218126611007244
http://dx.doi.org/10.1109/IJCNN.2007.4371156
http://dx.doi.org/10.1109/ICPPW.2012.20
http://dx.doi.org/10.1109/ICPPW.2012.20
http://dx.doi.org/10.1145/1950413.1950420
http://dx.doi.org/10.1007/BF01397083
http://dx.doi.org/10.1109/TSP.2004.830985
http://dx.doi.org/10.1109/TSP.2004.830985
http://dx.doi.org/10.1016/j.ymssp.2005.09.012
http://dx.doi.org/10.1109/FCCM.2011.14
http://dx.doi.org/10.1145/2684746.2689071
http://dx.doi.org/10.1109/TNN.2010.2073481
http://dx.doi.org/10.1145/1723112.1723127
http://dx.doi.org/ ignorespaces 10.1109/HOTI.2012.15
http://dx.doi.org/ ignorespaces 10.1109/HOTI.2012.15
http://dx.doi.org/10.1145/2133382.2133388
http://dx.doi.org/10.1109/JPROC.2005.857486
http://dx.doi.org/10.1109/FPT.2013.6718345


5:22 Y. Pang et al.

Markos Papadonikolakis and Christos-Savvas S. Bouganis. 2008. A scalable FPGA architecture for non-
linear SVM training. In International Conference on ICECE Technology, 2008 (FPT’08).. 337–340.
DOI:http://dx.doi.org/10.1109/FPT.2008.4762412

Rafat Rashid, J. Gregory Steffan, and Vaughn Betz. 2014. Comparing performance, productivity and scal-
ability of the TILT overlay processor to OpenCL HLS. In 2014 International Conference on Field-
Programmable Technology (FPT’14). 20–27. DOI:http://dx.doi.org/10.1109/FPT.2014.7082748

Cedric Richard, J. C. M. Bermudez, and Paul Honeine. 2009. Online prediction of time series data with
kernels. IEEE Transactions on Signal Processing 57, 3 (March 2009), 1058–1067. DOI:http://dx.doi.
org/10.1109/TSP.2008.2009895

Bernhard Scholkopf and Alexander J. Smola. 2001. Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. MIT Press, Cambridge, MA.

Aaron Severance, Joe Edwards, Hossein Omidian, and Guy Lemieux. 2014. Soft vector processors
with streaming pipelines. In Proceedings of the 2014 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA’14). ACM, New York, NY, 117–126. DOI:http://dx.doi.org/
10.1145/2554688.2554774

Aaron Severance and Guy Lemieux. 2012. VENICE: A compact vector processor for FPGA applications. In
2012 IEEE 20th Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM’12). 245–245. DOI:http://dx.doi.org/10.1109/FCCM.2012.55

Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu, and Huazhong Yang. 2010. FPMR: MapReduce
framework on FPGA. In Proceedings of the 18th Annual ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA’10). ACM, New York, NY, 93–102. DOI:http://dx.doi.org/
10.1145/1723112.1723129

Song Sun and J. Zambreno. 2009. A floating-point accumulator for FPGA-based high performance computing
applications. In International Conference on Field-Programmable Technology, 2009 (FPT’09). 493–499.
DOI:http://dx.doi.org/10.1109/FPT.2009.5377624

Steven Van Vaerenbergh. 2012. Kernel Methods Toolbox KAFBOX: A Matlab benchmarking tool-
box for kernel adaptive filtering. Grupo de Tratamiento Avanzado de Señal, Departamento de
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