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Abstract. We propose a novel methodology to predict high-dimensional
time series with exogenous variables using Koopman operator framework,
by assuming that the time series are generated by some underlying un-
known dynamical system with input as exogenous variables. In order to
do that, we first generalize the definition of the original Koopman op-
erator to allow for input to the underlying dynamical system. We then
obtain a formulation of the generalized Koopman operator in reproduc-
ing kernel Hilbert space (RKHS) and a new derivation of its numerical
approximation methods, namely, Extended Dynamic Mode Decompo-
sition (EDMD) and its kernel-based version. We also obtain a statis-
tical interpretation of kernel-based EDMD developed for deterministic
Koopman operator by utilizing the connection between RKHS and Gaus-
sian processes regression, and relate it to the stochastic Koopman and
Perron-Frobenius operator. In applications, we found that the prediction
performance of this methodology is promising in forecasting real world
high-dimensional time series with exogenous variables, including financial
markets data. We believe that this methodology will be of interest to the
community of scientists and engineers working on quantitative finance,
econometrics, system biology, neurosciences, meteorology, oceanography,
system identification and control, data mining, machine learning, com-
putational intelligence, and many other fields involving high-dimensional
time series and spatio-temporal data.
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1 Introduction

In many application fields, a high-dimensional time series {xt} may be consid-
ered as being generated by or sampled from some underlying dynamical system
(RN , t,F t) that is often nonlinear and stochastic, where xt 7→ F τ (xt) = xt+τ ∈
RN is the N -dimensional state vector evolved by the flow F . However, these
high-dimensional state vectors are usually extrinsic measurements or outputs of
the underlying lower dimensional true state’s dynamics zt+τ = F̂ τ (zt). When
the task is to predict each component of the output xt, using some machine
learning techniques to learn its superficial dynamics F t without identifying the
true state dynamics zt+τ = F̂ τ (zt) may be computationally heavy and not op-
timal. Nevertheless, if there is no need for identification other than prediction
of outputs, it is often favorable to find some intrinsic feature maps {ϕi(xt)}Mi=1
(where M < N and the M -dimensional feature vector ϕ(xt) is not necessarily
the same as the underlying true state zt) to embed the high-dimensional output
to lower dimensional intrinsic manifold, or in other words, to learn both the ge-
ometry and dynamics for simultaneous dimensionality reduction and prediction,
as shown in the schematic Figure 1. Therefore, the question is how to find such
{ϕi(xt)}Mi=1 that given the latest output xt, one can predict feature maps’ future
values ϕ(xt+τ ) and transform back to the pre-image xt+τ , and how is ϕ(xt+τ )
related to ϕ(xt) on the intrinsic manifold. The key to these questions is the
Koopman operator of dynamical systems [1–3], whose eigenfunctions can serve
as the desired intrinsic feature maps {ϕi(xt)}. The Koopman operator is a linear
operator that enables investigation of a nonlinear dynamical system using linear
theories and techniques, and since it has been developed as a data-driven frame-
work [4, 5], most of its applications up to now are dealing with high-dimensional
time series. There have been several major numerical methods developed to ex-
tract the spectral properties of Koopman operator from time series data, and
utilizing these properties for time series prediction has several major advantages
[6].
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Fig. 1 Manifold learning that is capable of simultaneous dimensionality reduction
and prediction.

In this paper, we generalize the Koopman operator framework to systems
with inputs as exogenous variables. By taking the simplest generalization ap-
proach [7], we found that the techniques and methods that we developed for
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Kernel KMR [6] methodology can be utilized almost directly with minimal modi-
fication. Hence we can generalize Kernel KMR to Kernel GKMRX (Kernel-based
Generalized Koopman Mode Regression with eXogenous variables) to predict
high dimensional time series with exogenous variables. In the theory part of
this paper, we formulate the Koopman operator in reproducing kernel Hilbert
space (RKHS), which is the most important function space in modern machine
learning, and we obtain a new derivation of the Extended Dynamic Mode Decom-
position (EDMD) algorithm [5] and its kernel-based extension [8] by exploiting
the Dirac bra–ket notation [9]. Moreover, we obtain a statistical interpretation
of these numerical methods developed for deterministic Koopman operator by
exploiting the connection between RKHS and Gaussian processes regression, and
relate it to the stochastic Koopman and Perron-Frobenius operator. In the ap-
plication part, we test our new prediction methodology for various types of data
from different fields and obtain promising initial results.

2 Theory

2.1 Koopman operator of dynamical system and its generalization
to systems with input

Consider a high dimensional time series {xn} sampled from an underlying dy-
namical system (M, n,F ), where n ∈ Z is discrete time, M ⊂ RN is the N -
dimensional state space containing the {xn}, and xi 7→ F (xi) = xi+1 defines
the evolution law. For continuous-time dynamical system (M, t,F t), the flow F t
evolves the system state as x0 7→ F t(x0) = xt. Since time series data are often
sampled with a fixed time gap τ , the adjacent two snapshots of the system are
related by F τ (xt) = xt+τ . When the context is clear, we will drop the τ in F τ to
denote either the discrete time map or continuous time flow of a fixed time gap
τ . Here we restrict to stationary time series, or at least locally stationary time
series, which can be considered as being sampled from autonomous dynamical
systems. We will generalize the Koopman operator to systems with input later.

The (deterministic) Koopman operator K : F → F is defined as (Kφ)(x) =
(φ ◦ F )(x) = φ(F (x)), where ◦ denotes the composition of φ with F , and F is
the “feature space” consisting of scalar observables or functions of state space
φ :M→ C. Since Kφ is another element in F , the Koopman operator defines a
new dynamical system (F , n,K) where K evolves an observable or feature φ ∈ F
to a new function Kφ that gives the value of φ at “one step in the future”.
Unlike F which is finite dimensional, K is infinite dimensional because it acts on
function space F . However, it is also linear even when F is nonlinear, and hence
one can investigates its spectral properties, i.e., eigenvalues and eigenfunctions,
which we refer to as Koopman eigenvalues {µk} and eigenfunctions {ϕk}.

Technical results showed that K fully characterizes F under very general
conditions [2, 3], so dynamical systems (M, n,F ) and (F , n,K) are two different
representations of the same evolution, as shown in the schematic Figure 2. The
link between these two representations is the “full state observable” g(x) = x,
where x 7→ F (x), and gi 7→ (Kgi) = gi◦F where gi ∈ F is the i-th component of
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the vector-valued observable g :M→ RN . Assuming gi is in the span of a set of
K Koopman eigenfunctions {ϕk}Kk=1, where K could (and often will) be infinite,
then it can be projected as gi =

∑K
k=1 ξikϕk with ξik ∈ C. Hence g can be

obtained by “stacking” these weights into vectors (i.e., ξj = [ξ1j , ξ2j , . . . , ξNj ]T ).
As a result,

x = g(x) =
K∑
k=1

ξkϕk(x), (1)

where ξk is the k-th Koopman mode corresponding to the eigenfunction ϕk. To
make prediction or arrive at the system state of “one step in the future”, one
can either evolve x through F directly, or evolve the full state observable g(x)
through the Koopman operator K as g(F (x)) = (Kg) (x) =

∑K
k=1 ξk(Kϕk)(x)

=
∑K
k=1 µkξkϕk(x). Similarly, for continuous time case, we have xt+τ = F τ (xt)

= g(F τ (xt)) = (Kτg) (xt) =
∑K
k=1 eλkτξkϕk(xt), where λk and ϕk are the k-th

eigenvalue and eigenfunction of the infinitesimal generator K̂ , d
dt of the semi-

group of Koopman operators {Kt}t∈R+ , and µk = eλkτ is the k-th eigenvalue of
finite-time Koopman operator Kτ = eτK̂.
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Fig. 2 Koopman operator is the “pullback” of F : when the system evolves from xt

to F (xt) in state space, a function φ defined on the state space is evolved by K such
that the new function Kφ evaluated at old state xt is taking the value of old function
φ evaluated at new state F (xt).

In order to compute {(µk, ϕk, ξk)}Kk=1 of Koopman eigenvalues, eigenfunc-
tions, and modes from data, one has to find a matrix representation of K by
projecting it into some subspace of F spanned by a basis {ψk(x)}Kk=1. For
computational feasibility and convenience, we usually require ψk(·) ∈ L2(M),
such that we can compute inner products using training data {(x1,y1), . . . ,
(xM ,yM )} where yi = F (xi), in order to require {ψk(x)}Kk=1 to be orthonormal
by computing the Moore–Penrose pseudoinverse of the data matrix Ψ+

x , where
[Ψx]ij = ψj(xi). Exploiting Dirac’s bra–ket notation [9] to write functions, func-
tionals, inner products, and linear operators in a compact way, we denote the
i-th row of Ψ+

x as 〈ψi| such that the inner product 〈ψi|ψj〉L2 = δij , where δij
is the Kronecker delta. Hence in this “feature space” FK , span{ψk(·)}Kk=1,
the identity operator can be written as 1FK

=
∑K
k=1 |ψk〉〈ψk|, and K projected

to FK can be written as K = K1FK
= K

∑K
k=1 |ψk〉〈ψk| =

∑K
k=1 |ψk ◦ F 〉〈ψk|.

Therefore, the elements of matrix representation K of K is Kij = 〈ψi|K|ψj〉L2 =
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〈ψi|ψj ◦ F 〉L2 , and K = Ψ+
xΨy, where the j-th column of Ψy is |ψj ◦ F 〉 and

[Ψy]ij = ψj ◦ F (xi) = ψj(yi). Eigenvalue problem K|ϕk〉 = µk|ϕk〉 becomes
eigenvalue equation of K as Kvk = µkvk, where the i-th component of vk is
(vk)i = 〈ψi|ϕk〉L2 , so the eigenfunction |ϕk〉 =

∑K
i=1 |ψi〉(vk)i, or Φx = ΨxV

in matrix notation, where [Φx]ij = ϕj(xi) and columns of V are {vk}. The
continuous-time eigenvalue can be computed as λk , log(µk)/τ , and according
to Eq. (1), Koopman modes {ξk} can be computed by projecting g(x) = x
onto {ϕk(x)} as Ξ = Φ+

xX, where the i-th rows of Ξ and X are ξTi and xTi ,
respectively. This procedure is called extended Dynamic Mode Decomposition
(EDMD)[5] and it has become one of the most widely adopted numerical meth-
ods for data-driven Koopman spectral analysis, even outside the fluid dynamics
community where the Koopman operator’s spectral properties was throughly
investigated for the first time [2].

Furthermore, there are several ways to generalize Koopman operator to sys-
tems with input [7]. One of the simplest ways is to augment the system state
xt with the current input ut ∈ RN ′ , such that the dimension of the extended
system state x̃ will be N + N ′. The time evolution of the system will be ex-
tended as x̃t+τ = F̃ τ (x̃t) = F̃ τ (xt,ut), where the first N components of F̃
and x̃ are xt+τ = F τ (xt,ut), and we assume that there is a purely formal map
or flow that “shifts” the input as ut+τ = Sτ (xt,ut), since there is not neces-
sarily any “dynamics” of the input. The generalized Koopman operator can be
defined on this extended system as before Kφ(x̃t) = φ ◦ F̃ τ (x̃t). For prediction
purposes, we are only interested in the original system state x, so there is no
need to project N ′ dimensional full state observable of input gu(xt,ut) = ut
on Koopman eigenfunctions in order to compute the corresponding Koopman
modes for input. Except for this trivial difference, all the available numerical
procedures for Koopman spectral analysis and prediction can be applied with
very little modification. Notice that this augmentation trick can be also applied
to previous state and input, such that one can investigate a system with finite
amount of memory in the same way as investigating a system without memory.
For simplicity, we only consider memoryless system in this paper, and this topic
will be left for future investigation.

2.2 Reproducing kernel Hilbert space and Gaussian processes
regression

In this subsection, we briefly summarize the basic theory of reproducing kernel
Hilbert space (RKHS) and its relation to Gaussian processes regression. For a
more complete exposition of this topic with technical details, we refer the readers
to Refs. [10, 11].

The RKHS is a Hilbert space of functions equipped with inner product 〈·|·〉Hk

satisfying: (1) ∀x fixed, k(x,y) = kx(·) ∈ Hk is a function of y; (2) k(·, ·)
has the “reproducing” property: ∀f ∈ Hk, 〈f(·)|kx(·)〉Hk

= f(x). It follows
from (2) that 〈ky(·)|kx(·)〉Hk

= ky(x) = kx(y) = k(y,x). Each RKHS has
a unique k, and according to Moore-Aronszajn theorem, given any symmetric
positive definite function k(y,x), there is a unique RKHS such that k(y,x) is
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the reproducing kernel. In fact, this theorem showed that this unique RKHS
{f ∈ Hk|f(·) =

∑M→∞
i=1 αik(·,xi)} can be built from defining the inner product

〈f |g〉Hk
=

∑M ′→∞
j=1

∑M→∞
i=1 αiβjk(yj ,xi), where g(·) =

∑M ′→∞
j=1 βjk(·,yj). It

satisfies the reproducing property 〈f(·)|kx(·)〉Hk
=

∑M→∞
i=1 〈αik(·,xi)|kx(·)〉Hk

=
∑M→∞
i=1 αik(x,xi) = f(x). The reproducing kernels can be considered as a

basis of this RKHS, and they are also called “point evaluation functionals”.
Another representation of RKHS is from Mercer’s theorem, which states

that a positive (semi-)definite function can be eigen-decomposed as k(x,x′) =∑∞
i=1 σiqi(x)qi(x′), where {qi(·)} are orthonormal in L2, and {σi}M→∞i=1 is a

non-increasing sequence of eigenvalues with σM → 0 when M → ∞. It fol-
lows from this theorem that the unique RKHS associated to this k(x,x′) is
{f ∈ L2|

∑∞
i=1

〈qi|f〉2L2
σi

< ∞}, and the inner product is given by 〈f |g〉Hk
=∑∞

i=1〈f |qi〉L2
1
σi
〈qi|g〉L2 . One consequence of this inner product is that the in-

duced norm is ‖f‖2
Hk

= 〈f |f〉Hk
=

∑∞
i=1

〈qi|f〉2L2
σi

, and in order to be bounded, the
components fi = 〈qi|f〉L2 must decay quickly when i increases, which effectively
imposes a smoothness requirement on L2 in order for it to become a RKHS. An-
other consequence of this inner product is that one can define {pi(·) = √σiqi(·)}
such that it is an orthonormal basis of this unique RKHS, and as an analogue
to the Dirac delta which can be represented by δx(·) =

∑∞
i=1 qi(x)qi(·), the

reproducing kernel functions can be written as kx(·) =
∑∞
i=1 pi(x)pi(·).

For a regularized optimization problem J [f ] = 1
2λ2

M

∑M
i=1(yi − f(xi))2 +

1
2‖f‖

2
Hk

given some training data or observations {(x1, y1), (x2, y2), . . . , (xM , yM )},
where xi ∈ RN and yi ∈ R, the representer theorem [12] asserts that the min-
imizer f̂(·) =

∑M
i=1 αik(·,xi), such that one can effectively minimize J [αi] by

setting the derivatives with respect to αi equal to zeros, and then the αi’s can be
solved as a column vector α = (G+λ2

MI)−1y, where y = [y1, · · · , yM ]T are the
training outputs, I is the identity matrix, and G is the kernel Gramian matrix
where Gij = k(xi,xj). Given a new test data x∗, the predicted function output
is f̂(x∗) = k(x∗)T (G + λ2

MI)−1y, where k(x∗)T = [k(x∗,x1), · · · , k(x∗,xM )].
This is the same as the posterior mean of Gaussian processes regression with
i.i.d. noise variance λ2

M .
A more heuristic view of predicting the function output given a new test

data is from the point evaluation at this new data. As an analogue to the point
evaluation in L2 using Dirac delta f(x∗) = 〈δx∗ |f〉L2 =

∫
f(x)δ(x − x∗)dx

(which is computationally infeasible using training data), one can work in the
RKHS using the reproducing kernel function k(x,x′) as: f(x∗) = 〈kx∗ |f〉Hk

=∑M
i=1〈kx∗ |qi〉L2

1
σi
〈qi|f〉L2 , where the inner products in L2 can be approximated

by summation using training data as 〈g|f〉L2 =
∫
g(x)f(x)dx ≈

∑M
i=1 g(xi)f(xi)

=
∑M
i=1〈g|kxi

〉Hk
〈kxi
|f〉Hk

. Hence one can obtain
∑M
i=1〈kx∗ |qi〉L2

1
σi
〈qi|f〉L2 ≈∑

ijl〈kx∗ |kxj 〉Hk
〈kxj |qi〉Hk

1
σi
〈qi|kxl

〉Hk
〈kxl
|f〉Hk

. Notice that the kernel Gramian
matrix has eigen-decomposition G = QΣ2QT , where Qij = qj(xi) = 〈kxi |qj〉Hk

and Σ is diagonal with Σii = √
σi. Hence G−1 = QΣ−2QT and (G−1)ij
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=
∑M
l=1〈kxi |ql〉Hk

1
σl
〈ql|kxj 〉Hk

. Finally one arrives at

f(x∗) = 〈kx∗ |f〉Hk
= k(x∗)TG−1[f(x1), · · · , f(xM )]T , (2)

which is the same as the posterior mean in noiseless Gaussian processes regres-
sion. Replacing G−1 by the Moore–Penrose pseudoinverse G+ will be equivalent
to regularization, or adding noise in Gaussian processes regression. A typical
way of regularization using G+ is to truncate out some small eigenvalues σi’s
and the corresponding eigenvectors qi(x)’s, although a more sophisticated way
to perform this truncation is using a smooth cutoff developed in Ref. [6]. A useful
result following the above derivation is that the inner product in RKHS can be
approximated using training data as 〈g|f〉Hk

≈
∑
ij〈g|kxi

〉Hk
[G−1]ij〈kxj

|f〉Hk
,

which means that the “resolution of the identity” or the projection operator into
this RKHS can be approximated by training data as 1Hk

=
∑M
i=1 |pi〉〈pi| ≈∑

ij |kxi
〉Hk

[G−1]ij Hk
〈kxj
|.

In summary, deterministic approximation of a function in RKHS, or point
evaluation of a function on new data can have a statistical interpretation via
Gaussian processes regression. Moreover, since k(x∗)TG−1 is a row vector of
weights on the training outputs [f(x1), · · · , f(xM )]T , and if it sums up to 1
and if the amount of training data is sufficiently large, it may be considered
as a density estimation for the posterior distribution of Gaussian processes,
which will induce a density on the training data [x1, · · · ,xM ]T . A special case is
the point evaluation on training data f(xi) = k(xi)TG−1[f(x1), · · · , f(xM )]T ,
where k(xi)TG−1 will become a row vector with every element equal to zero
except for the i-th one equal to 1, which is a probability mass function con-
centrated on xi that approximates the Dirac delta distribution δxi

(·). Again,
replacing G−1 by the Moore–Penrose pseudoinverse G+ effectively corresponds
to Gaussian processes with additive noise such that the Dirac delta will become
a narrow Gaussian centered at the training data.

2.3 Koopman operator in reproducing kernel Hilbert space

To interpret Koopman operator in RKHS, first notice that it can be also defined
as an integral operator [13–16], which enables a better and uniform formulation of
both deterministic and stochastic Koopman operator, and its Hermitian adjoint,
namely the Perron-Frobenius operator L = K†, where the † denotes Hermitian
adjoint. Again, consider the dynamical system (M, t,F t). When F t is highly
nonlinear and/or stochastic, starting from an initial point on M and keeping
track of its single trajectory along the time evolution will become meaningless, as
any finite initial difference will blow up exponentially. Instead, a better strategy
is to investigate the statistical behavior of a swarm of points’ time evolution,
which leads to the investigation of (probability) measure/density on M and its
time evolution induced by F t. Consider a probability density function ρ defined
on M, and for computational convenience, we require ρ ∈ F ⊆ L2(M). When
F evolves an arbitrary swarm of points of system states on M, i.e., evolves the
pre-image F−1(A) of any measurable domain A ⊆ M to A at time τ later, the



8 Jia-Chen Hua et al.

density ρ on F−1(A) will be evolved by a linear operator to a new density on A as∫
A(Lτρ)(y)dy =

∫
F−1(A) ρ(x)dx, such that the probability measure in conserved,

where the Lτ is the Perron-Frobenius operator that evolves probability densities.
If F is stochastic, which means that F (x) follows a transition probability density
pτ (y|x), the Perron-Frobenius operator can be also defined as

(Lτρ)(y) =
∫

F−1(A)
ρ(x)pτ (y|x)dx. (3)

A special case is the deterministic system, where pτ (y|x) will become a Dirac
delta distribution δF (x)(y) = δ(y − F (x)), such that the center of an initial
Dirac delta distribution δx will be moved in consistence with the dynamics as
Lτδx(y) =

∫
F−1(A) δ(x − x

′)δ(y − F (x′))dx′ = δF (x)(y). Analogous to this,
notice that Koopman operator for deterministic system is defined as (Kτh)(x) =
(h ◦ F )(x) = h(F (x)), it can be also written as (Kτh)(x) =

∫
A h(y)δ(y −

F (x))dy, and following this idea, the Koopman operator for stochastic system
should be defined as

(Kτh)(x) =
∫
A
h(y)pτ (y|x)dy = E[h(F (x))|x], (4)

which is the conditional expectation of observable h’s value at time τ later.
Using these definitions, one can check that the Koopman operator and Perron-
Frobenius operator are adjoint to each other for both deterministic and stochastic
systems, by considering how the expectation value of an observable over some
region evolves in time:

E[h(y)] =
∫
A

(Lτρ)(y)h(y)dy = 〈Lτρ|h〉L2 =
∫
A

∫
F−1(A)

ρ(x)pτ (y|x)dxh(y)dy

=
∫

F−1(A)
E[h(F (x))|x]ρ(x)dx =

∫
F−1(A)

(Kτh)(x)ρ(x)dx = 〈ρ|Kτh〉L2 ,

(5)
where Kτ acting to the left on 〈ρ| is 〈ρ|Kτ |h〉L2 = 〈K†τρ|h〉L2 = 〈Lτρ|h〉L2 . This
formulation enables us to predict the expectation of a function’s value at a later
time when tracking and predicting a single trajectory is not meaningful due to
high nonlinearity and/or stochasticity of F , and we can relate this formulation
to Koopman and Perron-Frobenius operators in RKHS as follow:

Recall from Eq. (2) that point evaluation in RKHS is the same as computing
some expectation value such as the posterior mean of Gaussian processes, for
example, 〈kxi |f〉Hk

= k(xi)TG−1[f(x1), · · · , f(xM )]T , where k(xi)TG−1 is a
row vector with all zero elements except for the i-th equal to 1, which may be
considered as discrete approximation to Dirac delta distribution δxi

. Replacing
G−1 by pseudo-inverse G+ will be equivalent to regularization or adding noise
to the Gaussian processes, such that k(xi)TG+ can approximate some narrow
Gaussian centered at xi. Similarly, consider the projection of Koopman operator
in RKHS by point evaluation of a function |h〉 evolved by K at a new state x∗
as 〈kx∗ |K|h〉Hk

= k(x∗)TG−1[Kh(x1), · · · ,Kh(xM )]T , where the k(x∗)TG−1 is
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expected to approximate the initial density ρ(x) before time evolution in Eq. (3),
in the limit of infinite amount of training data, i.e., M →∞.

On the other hand, recall that the identity operator in RKHS 1Hk
=

∑
i |pi〉〈pi|

≈
∑
ij |kxi

〉Hk
G−1

Hk
〈kxj
|, and inner product can also be approximated as

〈g|1Hk
|f〉Hk

≈
∑
ij〈g|kxi

〉Hk
[QΣ−2QT

y ]ij〈kyj
|f〉Hk

, where [QT
y ]ij = 〈qi|kyj

〉Hk

=
∑
l〈qi|ql〉L2

1
σl
〈ql|kyj

〉L2 ≈
∑
l

1
σi
〈qi|kxl

〉Hk
〈kxl
|kyj
〉Hk

= [Σ−2QTKT ]ij , and
Kij = 〈kxi

|K|kxj
〉Hk

= kxj
(F (xi)) = k(yi,xj) = 〈kyi

|kxj
〉Hk

. It follows that
QΣ−2QT

y = QΣ−2QTQΣ−2QTKT = G−2KT , and hence 1Hk
can also be

approximated by 1Hk
≈

∑
ij |kxi

〉Hk
[G−2KT ]ij Hk

〈kyj
|. After substituting the

1Hk
’s in 〈kx∗ |1Hk

K1Hk
|h〉Hk

with appropriate approximations, one can obtain

〈kx∗ |K|h〉Hk
≈ k(x∗)TG−1KG−2KT [h(y1), · · · , h(yM )]T . (6)

When the number of training snapshots pairs M → ∞, we would expect that
k(x∗)TG−1 approximates ρ(x), and KG−2KT approximates the transition
density pτ (y|x), such that the matrix multiplication between G−1 and K in
Eq. (6) approximates the integral over x in Eq. (3), and the matrix multipli-
cation between KT and [h(y1), · · · , h(yM )]T in Eq. (6) approximates the in-
tegral over y in Eq. (4). Finally, we can consider Eq. (6) as an appropriate
discrete approximation of Eq. (5) using training data, and the point evalua-
tion of a function h evolved by Koopman operator in RKHS at a new data
point 〈kx∗ |K|h〉Hk

is equivalent to predicting its expectation value E[h(y)] over
training data at a later time. Notice that during the derivation of Eq. (6), we
did not use the definition of stochastic Koopman operator, but by using training
data, we can indeed approximate (Kτh)(x) =

∫
A h(y)pτ (y|x)dy = E[h(F (x))|x]

by the rows of KG−2KT [h(y1), · · · , h(yM )]T , and approximate (Lτρ)(y) =∫
F−1(A) ρ(x)pτ (y|x)dx by the columns of k(x∗)TG−1KG−2KT . These nice re-

lations are induced by the connection between deterministic approximation of
a function in RKHS and Gaussian processes regression, and replacing G−1 by
G+ will turn these almost singular densities to narrow Gaussians, which have
even better statistical interpretation and correspond to regularized optimiza-
tion in RKHS and noisy Gaussian processes regression that usually have better
prediction accuracy.

In order to predict the future state of the system using the spectral proper-
ties of Koopman operator in RKHS, we first need to obtain a matrix represen-
tation of K projected in this space. Following the derivation of EDMD proce-
dure in previous section, one can write 1Hk

=
∑
i |pi〉〈pi| =

∑
i |qi〉L2

1
σi L

2〈qi| =∑
ij |qj〉L2

1
σj
〈qj |pi〉L2〈pi| ≈

∑
il |kxl

〉Hk
〈kxl
|qi〉Hk

1√
σi
〈pi| =

∑
il |kxl

〉Hk
[QΣ+]li〈pi|

=
∑
il |pi〉Hk

[Σ+QT ]il Hk
〈kxl
|, where |pi〉 = √σi|qi〉 (in some literature they are

called canonical features or Mercer’s features due to Mercer’s theorem). Then
K can be written as K1Hk

=
∑
k |pk ◦ F 〉〈pk|, and its matrix representation

is K̂ij = 〈pi|K|pj〉Hk
= 〈pi|1Hk

K1Hk
|pj〉Hk

= [Σ+QTKQΣ+]ij , where we
plugged in the last two expressions of 1Hk

above, and Kij = 〈kxi |K|kxj 〉Hk

= kxj (F (xi)) = k(yi,xj) = 〈kyi |kxj 〉Hk
can be computed directly on train-

ing data. Similarly, the eigenvalue problem can be solved by computing eigen-
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values and eigenvectors of K̂, where the i-th component of eigenvector vj is
(vj)i = 〈pi|ϕj〉Hk

, so the eigenfunction |ϕj〉 =
∑
i |pi〉(vj)i. The point evaluation

of an eigenfunction on training data is 〈kxi
|ϕj〉Hk

= ϕj(xi) =
∑
l〈kxi

|pl〉Hk
(vj)l

=
∑
nl〈kxi

|kxn
〉Hk
〈kxn
|ql〉Hk

1√
σl

(vj)l = [GQΣ+V ]ij , where columns of V are
{vj}. By defining [Φx]ij = 〈kxi |ϕj〉Hk

and [Φy]ij = 〈kyi |ϕj〉Hk
, we can write

the matrix of eigenfunctions evaluated on training data in a compact form as
Φx = GQΣ+V and Φy = KQΣ+V . Following the same convention and no-
tation in derivation of EDMD, the matrix of Koopman modes can be solved
as Ξ = Φ+

xX = Φ+
y Y = [diag(eλτ )]+Φ+

x Y , where rows in Y are {yT } and
[diag(eλτ )] is the diagonal matrix containing the finite time eigenvalues µi = eλiτ .
This procedure is called kernel-based Koopman spectral analysis [8] and it is
currently being adopted as a better approach for other applications [6]. Finally,
given a new system state x∗, the prediction of the l-th component of system
state Fl(x∗) will be a point evaluation of the K-evolved observable gl at x∗ as

〈kx∗ |Fl〉Hk
= 〈kx∗ |K|gl〉Hk

=
M∑
i=1
〈kx∗ |K|ϕi〉Hk

Ξil =
M∑
i=1
〈kx∗ |ϕi〉Hk

eλiτΞil

=
M∑
i=1

k(x∗,xi)[QΣ+V [diag(eλτ )]Ξ]il,

(7)

where Ξil is the Koopman mode associated with the i-th eigenfunction when
projecting gl(x) on Φx.

Another benefit of working in RKHS is that when properly choosing and/or
designing the kernel functions (e.g., Gaussian RBF kernel), the unique associ-
ated RKHS is dense in the space of continuous bounded functions, which means
that these kernel functions are universal approximators to any function in this
very large and general function space, and hence they should achieve better
approximation and prediction in most cases, especially in computing Koopman
eigenfunctions via point evaluation ϕj(xi) = 〈kxi |ϕj〉Hk

.

3 Numerical algorithm

Recall Eq. (7), if one needs to predict all state variables at a future time, one
can simply compute

F (x∗) = k(x∗)TQΣ+V [diag(eλτ )]Ξ, (8)

where k(x∗)T = [k(x∗,x1), · · · , k(x∗,xM )]. Notice that for system with input,
all the x∗, xi, and yi are extended states with input, but the Koopman modes
Ξ will only contain N columns corresponding to the first N components of the
extended state, which eliminates meaningless prediction on input. Another ob-
servation is that if we substitute Ξ in Eq. (8) with Ξ = [diag(eλτ )]+Φ+

x Y , after
some simplification, we will get k(x∗)TG+Y , which is exactly the regularized
optimization in RKHS or Gaussian processes regression on each state variable
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one-by-one. As we elaborated in Ref. [6], one of the major advantages of utiliz-
ing the spectral properties of Koopman operator is to linearly decompose the
system dynamics as a summation over individual modes, such that it is possible
to regularize, sort, perform more “physical” cross-validation, and optimize these
modes in order to generate an ensemble of predictors to achieve better predic-
tion. When investigating time series with exogenous variables as a dynamical
system with input, since the only major change on the numerical procedure
is to neglect the Koopman modes associated with input, one can simply work
with the remaining Koopman modes and all techniques and methods developed
for Kernel-based Koopman modes regression (Kernel KMR)[6] can be employed
almost unchanged. Hence we achieved a simple yet useful extension of Kernel
KMR, which we refer to as Kernel-based Generalized Koopman Mode Regression
with eXogenous variables (Kernel GKMRX). For more details on the techniques
and methods constituting the Kernel KMR, we suggest referring to Ref. [6].

4 Numerical examples and applications

We tested this new methodology by predicting high-dimensional stock prices’ log
returns while considering trading volumes of these stocks as exogenous variables.
Due to the page limit rule, we refer the readers to Ref. [6] for detailed description
of the stock markets data that we used. Compared to Kernel KMR, the Kernel
GKRMX can achieve about 0.1% improvement on both root-mean-squared error
(RMSE) and mean absolute error (MAE). This insignificant improvement is
due to the fact that stock returns time series are very close to random walk,
and trading volume as extra information will not change this fact to improve
the prediction significantly. However, when applying to electricity generation
and consumption time series with weather condition as exogenous variables, we
expect some major improvement over Kernel KMR as reported in Ref. [6], and
we are currently testing and summarizing these results.

5 Conclusion and outlook

In this paper, we generalized our previously developed Kernel KMR methodol-
ogy to Kernel GKMRX (Kernel-based Generalized Koopman Mode Regression
with eXogenous variables) for prediction of high dimensional time series with ex-
ogenous variables, by utilizing a simple yet useful generalization of Koopman op-
erator to dynamical systems with input that generates the time series. We found
that the techniques and methods that we developed for Kernel KMR can be em-
ployed in Kernel GKMRX with minimal modification. By formulating Koopman
operator in reproducing kernel Hilbert space, we obtained a new derivation of the
kernel-based EDMD and the original EDMD algorithms by using Dirac bra–ket
notation. Moreover, we obtained a statistical interpretation of these numerical
methods developed for deterministic Koopman operator by exploiting the con-
nection between RKHS and Gaussian processes regression, and relate them to
the stochastic Koopman and Perron-Frobenius operators. This connection and



12 Jia-Chen Hua et al.

statistical interpretation are crucial to justify the application of existing data-
driven deterministic Koopman spectral analysis to non-deterministic dynamical
systems, and account for the advantage of kernel-based EDMD over original
EDMD which relies on explicit choice of basis functions spanning the space
where the Koopman operator is projected and approximated. In applications,
we found that the prediction performance of this methodology is promising in
forecasting real world high-dimensional time series with exogenous variables,
e.g., stock returns time series with trading volume as exogenous variables.

This generalization of Koopman operator to systems with input is not unique,
and we are keen to investigate other generalization for prediction purposes. More-
over, even the very simple trick in this generalization that we used in this paper
can be developed further to investigate system with memory in the same way
as for memoryless systems. These will be left for future work. Another possible
improvement, which is still an open question, is the design of kernel functions.
When utilizing Gaussian RBF kernels, it should be possible to optimize the ker-
nel widths as hyper-parameters by some other more sophisticated techniques in
machine learning. This, again, will be left for future investigation.
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