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Segmentation of the F2 Leading Edge 1n a
Backscatter Sounder Ionogram

Rafal Sienicki, Manuel A. Cervera, Philip H. W. Leong

Abstract—Backscatter sounder systems co-located with Over-
the-Horizon Radar (OTHR) can be leveraged to provide a
near real-time characterisation of the ionospheric propagation
conditions to aid the OTHR surveillance mission. Ionogram
inversion can be performed using features derived from a
backscatter ionogram to infer the optimum OTHR operational
parameters and to enable the geolocation of the detected targets.
In this paper, we demonstrate the application of a deep learning
segmentation model on a backscatter ionogram dataset obtained
from the Jindalee Operational Radar Network (JORN) frequency
management system to extract the F2 leading edge feature.
QOur results show that deep learning is a viable method for
leading edge feature identification and extraction in backscatter
ionogram imagery.

Index Terms—Ionogram scaling, ionosphere, segmentation,
Over-the-Horizon Radar.

I. INTRODUCTION

HE ionosphere is a region of the Earth’s atmosphere

that contains free electrons and is able to refract High
Frequency (HF)' (3-30 MHz) radio waves. An OTHR exploits
this feature to provide a long range, beyond line-of-sight
surveillance capability. The ionosphere is a highly dynamic
medium that varies temporally and spatially over many differ-
ent scales, hence characterisation of the ionosphere is crucial
for the effective operation of an OTHR.

Tonospheric sounder equipment is used to measure and
quantify the properties of the ionosphere by the transmission
and reception of HF radio waves. Vertical Incidence Sounder
(VIS) and Oblique Incidence Sounder (OIS) systems are com-
monly used for this purpose. A VIS measures the ionospheric
properties directly above it (the transmitter and receiver are co-
located), whilst an OIS measures the ionospheric properties at
the mid-point between a transmitter and receiver separated by
several hundred or thousands of kilometers. A key challenge
for the use of VIS and OIS systems to support OTHR operation
is to ensure the sounder measurement footprints overlap with
OTHR coverage requirements. However, physical, practical
and legal constraints on sounder transmitter and receiver
placement may render the sounder network sub-optimal for
OTHR application. In this situation, a Backscatter Sounder
(BSS) is more suitable for the OTHR use-case. The quasi co-
location of receiver and transmitter systems and similar two-
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Fig. 1: Cropped sample backscatter sounder ionogram image
showing labelled dominant features. The image represents
return signal strength as a function of group range (vertical
axis) and radio wave frequency (horizontal axis). The F2
leading edge (red line) is used as a target for the supervised
segmentation training presented in this research. Returns from
meteors, interference signals and missing data pixels are also
shown.

way propagation mode of the BSS and OTHR systems makes
the BSS attractive for OTHR application [1] [2].

The return signal strength recorded by ionospheric
sounders, when displayed as a function of group range’ vs
radio wave frequency, is known as an ionogram. An example
of a BSS ionogram is presented in Figure 1. These ionograms
are evaluated to identify critical features and parameters that
subsequently can be used to estimate the electron density
vertical profile. This process is known as ionogram scaling?.
Sienicki et al. [3] reviews ionogram features and scaling
techniques for different ionospheric sounders. Traditionally,
ionogram scaling has been performed by ionospheric subject
matter experts; however, manual scaling is a time intensive
and laborious activity and hence numerous automatic scaling

2Time-of-flight of the radio wave multiplied by the speed of light in vacuo.

3In this paper, the term ‘scaling’ is used in reference to all ionograms
recorded by VIS, OIS and BSS sounders. The authors acknowledge that
the term does not have the same meaning for BSS and VIS/OIS ionogram
categories. In the latter case, scaling refers to feature identification and param-
eterisation of ionospheric properties. This is the conventional interpretation of
the term in the ionospheric research community. In the former case, the term
refers to a more limited capability. Here, scaling refers to the identification
of features from which information regarding propagation modes may be
inferred, without any subsequent ionospheric parameterisation.
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techniques have been investigated and developed over the
last few decades. The vast majority of automated scaling
algorithms have been applied to VIS ionograms, and to
a lesser extent, OIS ionograms, with limited attention to
BSS ionograms [3]. The scaling of BSS ionograms is more
challenging and the least mature. The integration of returns
from multiple propagation modes and antenna sidelobes, the
variable ground backscatter, and the reduced number of non-
ambiguous visually discernible image features increases the
scaling complexity.

The Leading Edge (LE) is the primary feature of interest
of a BSS ionogram. A LE is a thin, ledge-like feature that
is visually discernible as a series of connected, steep signal
strength (pixel intensity) changes. It is the minimum time
delay (group range) for the receipt of the backscattered,
ionospherically propagated signal as a function of frequency
[4]. Typically, the LE trace exhibits a smooth, low-order
polynomial-like profile with the contour line trending upwards
as a function of frequency. Each group range coordinate on
the LE trace corresponds to a unique ground range for the
backscattered ray(s) with respect to frequency.

Multiple LE traces, corresponding to propagation via dif-
ferent propagation modes, are commonly observed on a BSS
ionogram. Key LE features are labelled in the backscatter
ionogram depicted in Figure 1. The LE trace associated with
returns from the F2 ionospheric layer, referred to as F2LE, is
the most important BSS ionogram feature that is critical for
ionogram inversion. The F2LE is labelled as a red trace in
Figure 1.

In this work, we train a deep learning segmentation model,
the U-Net [S] model, on a labelled JORN BSS ionogram
dataset to demonstrate an automated F2LE feature extraction
functionality. The main contributions of our research include:

1) The proposal of a novel loss function based on Focal and
Negative Log Likelihood loss terms. As will be shown,
this is optimised for BSS ionogram F2LE accuracy and
leads to improved results over simpler approaches.

2) A new set of metrics customised for BSS ionogram LE
feature extraction. In particular, we propose accuracy and
recall metrics defined in terms of the scaled frequency
error with respect to a surveillance region of interest.

3) Application of deep learning techniques to F2LE segmen-
tation which achieves a 94% accuracy and 93% recall.
To the best of our knowledge, this is the first time deep
learning has been applied to F2LE segmentation.

II. RELATED WORKS

Ionogram scaling features are visually discernible as a
series of curved, connected trace segments representing a
pattern of signal strength variation that is governed by iono-
spheric propagation conditions. Visual discernment of the
critical features in ionograms is complicated by noise, inter-
ference, sounder equipment failures, returns from “unusual”
ionospheric layers (e.g. sporadic E layer) and ionospheric dis-
turbances. The effects of these phenomena can be observed on
an ionogram as distortion, smearing, blurring and masking of
important ionogram features. Consequently ionogram scaling

is a challenging task, particularly for ionograms captured in
disturbed ionospheric conditions.

A significant amount of research has been conducted into
automatic scaling for VIS and OIS ionograms over the last
few decades. Techniques such as data fitting [6]-[8], template
matching [9], [10], computer vision [11], [12], Kalman filter-
ing [13], fuzzy logic [14] and more recently, machine learning
[10], [11], [15] have been investigated for automatic scaling.
This research has produced a number of automatic scaling
tools. POLAN [7], ARTIST [6], Autoscala [16] and DST-IIP
[10] are example scaling tools that have been demonstrated to
reliably extract features in VIS ionograms. For the OIS case,
there is a reduced number of scaling tools; however, details
of several algorithms have been published [10], [11], [15],
[17]. Sienicki et al. [3] provides an up-to-date comprehensive
review of the automatic scaling techniques and tools.

The BSS is significantly larger, more complex and expen-
sive than the VIS and OIS, hence it is not as common and
there is no publically available BSS dataset. Consequently,
the scaling of BSS ionograms is the least mature.

Identification and extraction of LE features in a BSS
ionogram is a challenging undertaking. Firstly, the LE is
a ledge-like feature with undefined start or end points. It
does not resemble visually discernible features such as cusps,
asymptotic lines or vertices that are present in VIS and OIS
ionograms. Secondly, the effects of ionospheric dynamics
and sounder characteristics can profoundly influence the LE
feature. Consequently, the LE may exhibit intensity variation
that can render some aspects of the trace line to be faint,
disconnected, or exhibit localised strong curvature features,
e.g. kinks. Thirdly, discrimination logic is required to separate
the LE traces based on refractions from different ionospheric
layers (including multiple hops). This is complicated by ap-
parent LE features associated with azimuthal sidelobes of the
receive array beamformer.

There are very few publications covering investigations
for BSS ionogram scaling with no authoritative scaling tools
matching the pedigree of VIS scaling tools such as ARTIST.
Techniques based on the Kalman filter [18], minimum group
path theory [19], [20], polynomial line fitting [19] and image
processing [21] are the main approaches investigated. [19] is
the sole reference that includes experimental results, albeit for
a small dataset recorded by a low power BSS.

In this work, we apply a deep learning model on a dataset
recorded by a high power BSS system. Higher power increases
the signal-to-noise ratio, which reveals more ionospheric fea-
tures within the ionograms. This can reveal complications such
as contributions from the receive array sidelobes, which may
be problematic for automated scaling algorithms.

III. DATASET

Data collected from two BSS sub-systems of the Royal
Australian Air Force (RAAF) JORN Frequency Management
System (FMS) [1] are used in this study. Each sounder
performs measurements for 8 azimuthal beams spanning a
bandwidth of 5-45 MHz, with a 200 kHz and 50 km frequency
and range resolution respectively [1]. The measurement data
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originates from the year 2014 spanning a range of diurnal and
seasonal conditions.

A total of 779 ionogram images from the JORN FMS
dataset are used as a basis for this investigation. The first
hop F2LEs were manually labelled by DST Group senior and
junior ionospheric specialists to enable supervised segmenta-
tion model training. The trace label is a continuous line with
arbitrary start and end points. An example of a labelled BSS
ionogram is presented in Figure 1. For this study, only the
F2LE label is used (red line) as a target signal.

The ionogram images were formatted into a 697x924 pixel
image size, converted into greyscale format and normalised.
The x-y coordinates of the F2LE label were used to generate
a pixel level, binary mask.

IV. METHOD

We treat the F2LE identification and extraction task as a
supervised segmentation challenge. In this work, we apply a
deep learning Fully Connected Convolutional (FCN) encoder-
decoder U-Net architecture that has achieved success in the
biomedical field [5].

In many deep learning image segmentation investigations it
is common to use the distribution based Binary Cross Entropy
(BCE) and/or region based soft Dice Loss (DL) functions for
model training [22]. These loss functions demonstrate good
performance for segmentation of natural and medical targets.
However, one drawback for this type of loss function design
is that the shape or contour of the target is not taken into
consideration. It has been found that such a loss function
design is not suitable for application to images that contain
ambiguous or discontinuous boundaries [23].

To address this limitation, we use a distance map to capture
the shape and geometrical profile of the thin, one-dimensional
BSS ionogram F2LE feature. A distance map is a matrix, with
the same dimensions as the original input image, that stores
the values of the Euclidean distance of each pixel to the closest
point on the target mask, defined in the two-dimensional image
coordinate space. The distance map is queried to determine
distance information for each pixel of interest during loss
calculations. Figure 2 shows a sample of a F2LE distance
map mask that is used for model training in this investigation.
The generation of distance map is a computationally expensive
task; however, this task only needs to be performed once, and
can be performed offline.

We apply a Negative Log Likelihood (NLL) function to
enable the U-Net model to learn the segmentation of the F2LE
feature. The pixel-wise distance map is used to derive mean
and standard deviation parameters of the Normal distribution.
This function is used to guide the model to produce a segmen-
tation output that is as close as possible to the F2LE label. The
equation of the NLL function is defined in Equation 1:

L —a(zy 1
o 271'e 0

Lypr = —log

where p and o are respectively the mean and standard devation
of the pixel-wise distance distribution of a segmentation pre-
diction. The NLL function acts to impose a higher loss penalty
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Fig. 2: In this investigation, a U-Net encoder-decoder model
is used to segment the F2LE feature. The model accepts a
backscatter ionogram as input. A binary mask derived from
manual labels is used to compute the focal loss component.
A Euclidean distance map (based on the binary mask) is used
to derive a pixel-wise NLL distribution loss component.

for predictions that are distant from the labelled F2LE trace.
This is in contrast to the DL function, a popular segmentation
loss function, that solely takes into account the degree-of-
overlap without consideration of pixel distance.

To account for the highly imbalanced nature of our dataset,
we integrate a Focal Loss (FL) term into our loss function, a
variant of the BCE function that is designed for application in
highly imbalanced datasets [24]. A lower loss term is imposed
on background pixels to enable increased focus on rare,
foreground pixels. The FL function is defined in Equation 2:

Lp=-1 (1 - Pt)ﬂ{ log (Pt) )

where p; is the estimated pixel probability and -y is a tunable
focussing parameter.

The loss function for the F2LE segmentation model is
composed of focal and NLL terms as follows:

L=Lr+LNLL (3)

An architecture diagram of our design is presented in
Figure 2.

V. EXPERIMENTATION AND METRICS

We apply a 10-fold cross validation scheme with a 90%
train-test split on the dataset to ensure our model does not
overfit on the relatively small dataset.

Table I outlines the main model hyper-parameters that were
used in our experimentation. These parameters were derived
using a manual grid search approach.
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Parameter Value
batch size 4
number of epochs 200

le-4 reduced to le-7, using a cosine
annealing learning rate scheduler

Focal loss focussing 2
parameter -y
mask threshold 0.5

TABLE I: Model hyper-parameters used in this investigation.

Unlike the VIS* ionogram case for which a scaling stan-
dard exists [25] and is used in many automatic VIS scaling
tools to report scaling performance, no equivalent standard
exists for the BSS ionogram scaling application. An obvious
metric is based on the pixel-wise distance between the esti-
mated and truth (manually labelled) LE traces. Given that a
BSS ionogram LE trace exhibits an undefined length with no
fixed start or end coordinates, a decision needs to be made on
how many, and which LE pixels should be used as reference
pixels for metric calculations.

In this work, we use a BSS ionogram scaling domain
specific metric to evaluate segmentation performance. The
scaling error is reported in the ionogram frequency domain’
in terms of accuracy and recall scores. These scores are
calculated for a sample OTHR surveillance region. Inspired by
[26], in this investigation we report a frequency scaling error
referenced to a surveillance region spanning a group-range
interval of 1200-2800km® and evaluated at 400km intervals.
These evaluation group range lines are marked as dotted
horizontal lines in the sample ionogram segmentation results
shown in Figure 3.

Accuracy is defined as the mean pixel-wise distance
between the estimated and truth LE pixels, defined in the
frequency dimension. This is reported as a frequency scaling
error. Instead of reporting the absolute error, as is done by
Crouch [26], we report the scaling error as a ratio of results
that are within an acceptable margin of error. This approach
provides a more meaningful interpretation of segmentation
accuracy to the OTHR operator. In this investigation, we set
the acceptable error margin to 1 MHz.

The recall metric, also reported as a ratio, quantifies the
relative number of segmentation results reported by a segmen-
tation model, and can be used to infer the number of missed
(False Negatives) F2LE detections. In this investigation, a
missed F2LE detection is reported for the case when no F2LE
pixels are returned by the segmentation model for a reference
group range.

For both accuracy and recall metric calculations, a mean
score is reported. This reflects the average performance based
on the five reference group range pixels in each ionogram,

4Whilst no such standard exists for the OIS case, the similary of features
in OIS and VIS ionograms, deems it acceptable for the same standard to be
applied to the OIS ionogram case.

SEvaluation of scaling error in the frequency domain, as opposed to the
group range, is more useful for the OTHR application.

SThis group range region represents a portion of the F2LE trace that exists
in the majority of the ionograms considered in the dataset used for this
investigation.

evaluated on the test dataset. To ensure a consistent and
repeatable evaluation, all five reference pixel coordinates’ in
each test ionogram are used to calculate the metric scores.
This is in contrast to [19], where scaling results are reported
in terms of the number of instances where a minimum number
(three out of five) of estimated LE pixels are within an error
margin.

VI. RESULTS AND DISCUSSION

Table II details the results from our experiments conducted
on the JORN BSS dataset. A U-Net segmentation model
configured with a loss function composed of NLL and FL
terms achieves the best result (shown in bold). This model
performs pixel-wise segmentation of the F2LE feature with
an accuracy corresponding to an upper-bound 1MHz scaling
error for 94% of test cases with a 93% recall rate.

U-Net Loss Accuracy (Frequency Scaling Error) Recall
function (% results with < 1 MHz) (%)
wBCE 90.6 89.9
. wBCE+DL | %20 | 613
R | 926 | 921
. WBCE+NLL | 930 | 81
. FP+NLL | a1 | 926
TABLE II: F2LE segmentation experiment results. wBCE

= weighted Binary Cross Entropy, DL = Dice Loss, NLL =
Negative Log Likelihood, FL = Focal Loss.

Inspection of the segmented F2LE trace generated for the
BSS ionogram test dataset reveals that in the majority of cases
the LE trace is segmented correctly. The segmented LE pixels
are consistent with the human labelled F2LE trace. The first
(top) image presented in Figure 3 represents a good F2LE
segmentation result. In this ionogram, the segmented F2LE
trace overlaps closely with the labelled F2LE trace, including
group range evaluation pixels (identified as horizontal dotted
lines). The second ionogram in Figure 3 also produces accept-
able segmentation results referenced to the evaluation pixels;
however, the performance is slightly reduced relative to the top
ionogram, and certain aspects of the LE trace are disconnected.

Analysis of the results indicates that for some cases,
aspects of the F2LE trace are incorrectly segmented. Many of
these False Positive errors correspond to instances where the
model identifies a leading edge of non-F2 ionospheric layers,
higher order F2 hops or sidelobe returns as an F2LE pixel. The
bottom ionogram in Figure 3 is an example where a portion
of the sidelobe leading edges are falsely segmented as an
F2LE. It is expected that training the model on a larger dataset
will improve the model’s ability to segment and discriminate
LE pixels correctly for ionograms captured in wider set of
ionospheric conditions.

The results also confirm that the segmentation performance
is robust to ionogram interference and missing data artefacts.

Table II also includes results from our experimentation for
different loss functions, including cross-entropy and dice loss

"For ionograms that did not include a LE pixel for the referenced group
range evaluation line, a reduced number of evaluation LE pixels was used.
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Fig. 3: Sample cropped BSS ionogram from the test dataset
showing results from our deep learning segmentation model.
Green trace = human labelled F2LE trace. Red trace = U-Net
model F2LE segmentation output. Dotted horizonal lines = five
reference group range lines used to quantify F2LE frequency
scaling error. Top image: This represents a good segmentation
result. The majority of extracted F2LE trace lies close to the
truth F2LE trace. Middle image: Good segmentation results
returned for all group range line evaluation pixels; however,
some aspects of the F2LE trace are disconnected. Bottom
image: Good segmentation result for the F2LE trace; however,
some aspects of the sidelobe leading edge are also (falsely)
classified as F2LE.

functions that are commonly applied for image segmentation.
The results show that NLL and FL functions enhance the U-
Net segmentation model’s accuracy and recall performance
respectively. An approximate 3% performance improvement
is observed relative to results obtained from the cross entropy
loss function. Fusion of these loss terms in a loss function (FP
+ NLL) serves to further improve the model’s performance
across both metrics.

Results shown in Table II also confirm that the DL function
is not suited for the BSS ionogram LE segmentation applica-
tion. In contrast to the performance improvement observed
for the use of the DL function, when applied to object
segmentation [27], we observe a performance degradation for
the BSS ionogram dataset. The recall performance is reduced
significantly when the loss function includes a DL component.
This result indicates that an IoU based loss function may not
be suitable for segmentation of a BSS ionogram LE feature.

VII. CONCLUSION

In this paper, we have applied the U-Net image segmen-
tation model to the backscatter sounder data from the JORN.
To the best of our knowledge, this is the first application of a
deep learning segmentation model to a backscatter ionogram
dataset. Experimental results show that our approach has
been successful in extracting the F2LE feature in backscatter
ionogram images.

This model can be extended to perform feature extraction
of leading edges corresponding to E, Es (sporadic E), FI,
higher order hops and sidelobe returns.

Future work will consider a larger dataset and integration
of radio wave propagation theory and ionospheric physics
with deep learning to produce a physics guided deep learning
backscatter ionogram scaling model.
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