Tradeoffs in Parallel and Serial Implementations
of the International Data Encryption Algorithm
IDEA

O.Y .H. Cheung', K.H. Tsoi!, P.H.W. Leong', and M.P. Leong'

Department of Computer Science and Engineering,
The Chinese University of Hong Kong,
Shatin, N.T.,
Hong Kong
{yhcheung,khtsoi,phwl,mpleong}@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk

Abstract. A high-performance implementation of the International Data
Encryption Algorithm (IDEA) is presented in this paper. The design was
implemented in both bit-parallel and bit-serial architectures and a com-
parison of design tradeoffs using various measures is presented. On an
Xilinx Virtex XCV300-6 FPGA, the bit-parallel implementation deliv-
ers an encryption rate of 1166 Mb/sec at a 82 MHz system clock rate,
whereas the bit-serial implementation offers a 600 Mb/sec throughput at
150 MHz. Both designs are suitable for real-time applications, such as on-
line high-speed networks. The implementation is runtime reconfigurable
such that key-scheduling is done by directly modifying the bitstream
downloaded to the FPGA, hence enabling an implementation without
the logic required for key-scheduling. Both implementations are scalable
such that higher throughput is obtained with increased resource require-
ments. The estimated performances of the bit-parallel and bit-serial im-
plementations on an XCV1000-6 device are 5.25 Gb/sec and 2.40 Gb/sec
respectively.

Keywords: Cryptographic hardware, digital-design, reconfigurable-computing,
performance-tradeoffs.

1 Introduction

Cryptography is concerned with the transfer of information between parties so
that only the intended parties can read the data. Despite an assumption that
an adversary may have full knowledge of the algorithms used, and has access
to the media where data is transmitted, the aim of cryptography is to make it
intractable to retrieve the data without knowledge of a secret piece of informa-
tion called a key. Cryptography is an ideal application for custom computing
machines since they offer the following advantages over VLSI technologies

— it is possible to use the same Field-Programmable Custom Computing Ma-
chine (FCCM) hardware for many different cryptographic protocols

2 O.Y.H. Cheung et al.

— Moore’s law continues to offer improved silicon technology at exponential
rates which is available to FCCM designers without the costly manufacturing
process required in VLSI

— it is possible to specialize the hardware to an extent not possible in VLSI
devices to improve performance

— the reconfigurable nature makes it feasible to attempt designs employing
more sophisticated algorithms which leads to an improvement in perfor-
mance.

The Data Encryption Standard (DES) algorithm has been a popular secret
key encryption algorithm and is used in many commercial and financial appli-
cations. Although introduced in 1976, it has proved resistant to all forms of
cryptanalysis. However, its key size 1s too small by current standards and its
entire 56-bit key space can be searched in approximately 22 hours [1].

In 1990, Lai and Massay introduced an iterated block cipher known as Pro-
posed Encryption Standard (PES) [2]. The same authors, joined by Murphy,
proposed a modification of PES called Improved PES (TPES) [3], which improves
the security of the original algorithm against differential analysis and truncated
differentials [4-6]. In 1992, TPES was commercialized and was renamed the In-
ternational Data Encryption Algorithm (IDEA). Some believe that, to date,
the algorithm is the best and the most secure block algorithm available to the
public [7].

Although IDEA involves only simple 16-bit operations, software implementa-
tions of this algorithm still cannot offer the encryption rate required for on-line
encryption in high-speed networks. Ascom’s implementation of IDEA (Ascom are
the holders of the patent on the IDEA algorithm) achieves 0.37 x 10° encryp-
tions per seconds, or an equivalent encryption rate of 23.53 Mb/sec, on an Intel
Pentium IT 450 MHz machine. Implementation of IDEA using the Intel MMX
multimedia instructions was proposed by Helger [8] and achieves 0.51 x 108
encryption per seconds or a equivalent encryption rate 32.9 Mb/sec, on an Intel
Pentium IT 233 MHz machine. Our optimized software implementation running
on a Sun Enterprise E4500 machine with twelve 400 MHz Ultra-IIi processor,
performs 2.30 x 10% encryptions per second or a equivalent encryption rate of
147.13 Mb/sec, still cannot be applied to applications such as encryption for
155 Mb/sec Asynchronous Transfer Mode (ATM) networks.

Hardware implementations offer significant speed improvements over soft-
ware implementations by exploiting parallelism among operators. In addition,
they are likely to be cheaper, having lower power consumption and smaller foot-
print than a high speed software implementation. A paper design of an IDEA
processor which achieves 528 Mb/sec on four XC4020XL devices was proposed
by Mencer et. al. [9]. The first VLSI implementation of IDEA was developed and
verified by Bonnenberg et. al. in 1992 using a 1.5 um CMOS technology [10].
This implementation had an encryption rate of 44 Mb/sec. In 1994, VINCI,
a 177 Mb/sec VLSI implementation of the IDEA algorithm in 1.2 ym CMOS
technology, was reported by Curiger et. al. [11,12]. A 355 Mb/sec implementa-
tion in 0.8 pm technology of IDEA was reported in 1995 by Wolter et. al. [13],

Tradeoffs in Parallel and Serial Implementations of IDEA 3

followed by a 424 Mb/sec single chip implementation of 0.7 um technology by
Salomao et. al. [14] was reported. Tn 2000, Leong et. al. proposed a 500 Mb/sec
bit-serial implementation of IDEA on an Xilinx Virtex XCV300-6 FPGA which
is scalable on larger devices [15]. Later, Goldstein et. al reported an implemen-
tation on the PipeRench FPGA which achieves 1013 Mb/sec [16]. A commercial
implementation of IDEA called the IDEACrypt Kernel developed by Ascom
achieves 720 Mb/sec [17] at 0.25 um technology. The implementation dervied
from the IDEACrypt Kernel, called the IDEACrypt Coprocessor, has a through-
put of 300 Mb/sec [18].

In this paper, two Xilinx Virtex Field Programmable Gate Array (FPGA)
based implementations of the IDEA algorithm are described. On an XCV300-6
device, the bit-parallel implementation offers a 1166 Mb/sec encryption rate,
while the bit-serial implementation has a throughput of 600 Mb/sec. The imple-
mentation is scalable so that throughput and area tradeoffs can be addressed.
Applications of these designs include virtual private networks (VPNs) and em-
bedded encryption/decryption devices. To illustrate various design tradeoffs, an
analysis on both of the designs in terms of area, latency, throughput and other
design measures was carried out.

Key-scheduling in both implementations is achieved by modifying the bit-
stream downloading to the FPGA, in a manner similar to that described by
Patterson in an implementation of DES [19]. Instead of doing this using the JBits
Applications Programming Interface (APT), a technique for the direct modifica-
tion of the binary bitstream was used. The approach is advantageous because
dedicated logic for key-scheduling is not required in the designs hence leaving
more logic resources for performing computation.

This paper is organized as follows. In Section 2 the IDEA algorithm as well as
algorithms for multiplication modulo 27 4 1 are described. The bit-parallel and
bit-serial implementations of IDEA are presented in Section 3 and 4 respectively.
In Section 5 the methodology to achieve runtime reconfigurability is described.
In Section 6 results are given. Conclusions are drawn in Section 7.

2 The IDEA Algorithm

IDEA belongs to a class of cryptosystems called secret-key cryptosystems which
is characterized by the symmetry of encryption and decryption processes, and
the possibility of implying the decryption key from the encryption key and vice
versa. IDEA takes 64-bit plaintext inputs and produces 64-bit ciphertext outputs
using a 128-bit key.

The design philosophy behind IDEA is to mix operations from different al-
gebraic groups including XOR, addition modulo 26, and multiplication modulo
the Fermat prime 21% 4 1. All these operations work on 16-bit sub-blocks.

The IDEA block cipher [7] (depicted in Figure 1) consists of a cascade of eight
identical blocks known as rounds, followed by a half-round or output transfor-
mation. In each round, XOR, addition and modular multiplication operations
are applied. IDEA is believed to possess strong cryptographic strength because

4

O.Y.H. Cheung et al.

X] X2 X3 X4
O B 8 O
AL . AU AL . AL
1 2 3 4
>»(Pe
one round IV T\
Y
Z.(.)—»E
Y VH
) 4 E ° Zﬁ(l)v
e O
Y b4
N SN
\V %
seven more l>_<l w:r
rounds ; ; ;
output
transformation
Y Y
Zl(9)_>< .) 22(9) 23(9) (e)4_24(9)

Y, 7Y, Yy, ¥,

€D bitwise XOR of 16-bit sub-blocks

HH addition modulo 2'¢ of 16-bit integers

@ multiplication modulo 2'°+1 of 16-bit integers with the
zero sub-block corresponding to 2!

Fig. 1. Block diagram of the IDEA algorithm.

Tradeoffs in Parallel and Serial Implementations of IDEA 5

— its primitive operations are of three distinct algebraic groups of 2'6 elements

— multiplication modulo 2'® + 1 provides desirable statistical independence
between plaintext and ciphertext

— its property of having iterative rounds made differential attacks difficult.

The encryption process is as follows. The 64-bit plaintext is divided into
four 16-bit plaintext sub-blocks, X; to X4. The algorithm converts the plaintext
blocks into ciphertext blocks of the same bit-length, similarly divided into four
16-bit sub-blocks, Y1 to Ya4. 52 16-bit subkeys, ZZ»(T), where ¢ and r are the subkey
number and round number respectively, are computed from the 128-bit secret
key. Each round uses six subkeys and the remaining four subkeys are used in
the output transformation. The decryption process is essentially the same as
the encryption process except that the subkeys are derived using a different
algorithm [7].

The algorithm for computing the encryption subkeys (called the key-schedule)

involves only logical rotations. Order the 52 subkeys as Z%l), o ,Zél), Z£2), ey

ZéQ), e Z{S), ey Zés), Z{g), . Zz(lg). The procedure begins by partitioning the
128-key secret key 7 into eight 16-bit blocks and assigning them directly to the
first eight subkeys. 7 is then rotated left by 25 bits, partitioned into eight 16-bit
blocks and again assigned to the next eight subkeys. The process continues until

(r)

all 52 subkeys are assigned. The decryption subkeys Z’;"’ can be computed from

the encryption subkeys with reference to Table 1.

r=1 2<r<8& r=29
20 [@y ey ey
Z,gr) Z2(10—r) Zg()lO—r) 22(10—7-)
Z,gr) ZEEIO—T) Z2(10—r) ZB()IO—T)
20 @TT @)y)
7't 7 7z N/A
7' Z{E) Z{e) N/A

Table 1. IDEA decryption subkeys Z'(Ti) derived from encryption subkeys Zﬁi). —7i
and Zl._1 denote additive inverse modulo 2'¢ and multiplicative inverse 216 1 1 of Z;
respectively.

In Electronic Codebook (ECB) mode [7], the data dependencies of the IDEA
algorithm have no feedback paths. Additionally, in practice, latencies of order of
microseconds are acceptable. These features make deeply pipelined implementa-
tions possible.

6 O.Y.H. Cheung et al.

2.1 Multiplication Modulo 2™ + 1

Of the basic operations used in the IDEA algorithm, multiplication modulo 2164
1 is the most complicated and occupies most of the hardware. Curiger et. al. [20]
described and compared several VLSI architectures for multiplication modulo
2" + 1 and found that an architecture proposed by Meier and Zimmerman [21],
using modulo 2" adders with bit-pair recoding offers the best performance.

The C code for the multiplication modulo 2'® + 1 operation by modulo 26
adders using bit-pair recoding is as follows.

1 uint16 mulmod(uintié x, uintié y)
2 A

3 uint16 xd, yd, th, tl;

4 uint32 t;

5 xd = (x - 1) & OxFFFF;

6 yd = (y - 1) & OxFFFF;

7 t = (uint32) xd * yd + xd + yd + 1;
8 tl = t & OxFFFF;

9 th = t >> 16;

10 return (t1 - th) + (t1 <= th);
11 ¥

This algorithm requires a total of six additions and subtractions, one 16-bit
multiplication and one comparison. However, in IDEA one of the operands of a
modular multiplication operation is always a subkey, so the second subtraction
can be eliminated if the associated subkeys are pre-decremented.

3 Bit-Parallel Implementation

3.1 Multiplication Modulo 216 +1

Modulo multiplication is the bottleneck in the IDEA algorithm. In a single round
of the algorithm there are four modular multiplications so a well-designed mul-
tiplication modulo 26 + 1 operator is crucial since it directly affects the system
performance both in terms of area and throughput.

The modular multiplication algorithm described in Section 2.1 was used in
our design, but instead of taking z and y as inputs, the operator takes z and yy
as inputs. As one of the operands is a subkey which is regarded as a constant,
the modification eliminates one subtraction operator by taking the advantage of
pre-decremented subkeys (Section 2.1, pseudocode line 6).

In order to implement a well-designed multiplication modulo 2'¢ 4+ 1 opera-
tor, the throughput of the operator is maximized by introducing more pipeline
stages. In our design, 16-bit mulitplier used in Section 2.1 (pseudocode line 7) is
constructed by Xilinx CORE Generator [22] which has a latency of 4 cycles. And
the multiplication modulo 2'6 4+ 1 operator pipeline has a latency of 7 cycles.

Tradeoffs in Parallel and Serial Implementations of IDEA 7

3.2 Bit-Parallel IDEA Core

The IDEA algorithm is a cascade of eight identical rounds of operations, followed
by a output transformation. By instantiating building blocks, that is, additions,
XORs and modular multiplications, and inserting appropriate stage latches for
time-alignment, a module for one round of computation is formed. For the best
area-efficiency, stage latches are constructed by Virtex SRL16E primitives [23,
24].

Due to limited hardware resources, each round of the algorithm shares the
same physical resource, but with different key-schedules. Qutput transformation
also reuses the resource. In our implementation the key-schedules are stored
inside ROM primitives. The architecture of the bit-parallel IDEA core is shown
in Figure 2.

[— ¥

Feedback |
control

2 3
a9 Q Q=
Half-round
«—
L

output

Feedback

® ® O S

N
€V
N
U

N
\
N
U

| -

Fig. 2. Architecture of the bit-parallel IDEA core.

As mentioned earlier, for ECB mode operations, data dependencies of the
IDEA algorithm have no feedback paths. This property enabled the round ar-
chitecture to take input values until the pipelined is filled, and output values
are redirected to the input of the pipeline subsequently. In an IDEA round,
the data passes through three multiplication modulo 2'® + 1 operators, each of
which has a latency of 7 cycles. Thus the full round pipeline has a latency of

8 O.Y.H. Cheung et al.

21 cycles For an output transformation, the data must pass through a single
multiplication modulo 2'% 4 1 operator with pipeline latency of 7 cycles. There-
fore the core has a total latency of 21 x 8 +7 = 175 cycles. The core takes 21
64-bit plaintexts per 21 x 9 = 189 cycles, equivalently performing encryption at
(21 + 189) x 64 x f Mb/sec with a system clock rate of f MHz. For instance, at
a 82 MHz clock rate, the core delivers an encryption rate of 583 Mb/sec with a
latency of 2.134 ps.

4 Bit-Serial Implementation

The bit-serial implementation mentioned below 1s an improved implementation
of [15]. By register reordering and register duplication, the improved implementa-
tion offers an encryption throughput of 600 Mb/sec, 20% faster than the original
implementation.

Bit-serial architectures are characterized by the property that operators per-
form their computations in a bitwise fashion and communications between op-
erators are multiplexed in time over a single wire. Dataflow begins with either
the least significant bit or the most significant bit, but the former is more com-
monly used due to its compatibility with two’s complement arithmetic. In a
typical bit-serial implementation, each variable is associated with a control sig-
nal which is set high only when the first bit is transferred along associated data
bus. To reduce area, control signals can be shared among the variables. Since
bit-serial operators usually require the first bits of their operands to enter the
operators on the same clock cycle, appropriate stage latches must be inserted
for time-alignment [25].

Two of the primitive operators used in IDEA, namely XOR and addition
modulo 216, can be ecasily implemented bit-serially. These two operators have
latencies of one clock cycle and are capable of taking consecutive bit-serial
operands. The multiplication modulo 2'® + 1 operator has a latency of 35 clock
cycles. As in the parallel implementation, stage latches and constants are imple-
mented using SRL16E primitives. Additionally, constants are also implemented
as SRL16E primitives, with its output connected to its input to form a cyclic
shift register.

4.1 Multiplication Modulo 26 4+ 1

The modular multiplication algorithm described in Section 2.1 was directly ap-
plied in the bit-serial implementation of the algorithm. The operator optimiza-
tion used in the bit-parallel implementation, described in Section 3.1, was not
applied in the bit-serial implementation because comparisons in bit-serial archi-
tectures are not efficient in terms of latency.

An N x N-bit multiplier generates a 2/N-bit result, and requires 2N cycles to
complete. Thus, throughput of bit-serial multipliers are restricted because the
minimum interval between consecutive multiplications must be at least 2N cy-
cles. In the IDEA algorithm one of the operands of every modular multiplication
is a subkey and treated as a constant.

Tradeoffs in Parallel and Serial Implementations of IDEA 9

Recall in the modular multiplication algorithm that the intermediate result ¢
is divided into two portions (Section 2.1, pseudocode line 7-9). The two portions,
tp and t;, are respectively the upper and lower 16-bits of the double-word, which
are operands to subsequent operations. A design that computes the upper and
lower words of ¢ independently is desirable, allowing all the inputs, outputs and
intermediate variables of the operator to be 16-bit long. Using this scheme and
duplicating hardware, the throughput of a modular multiplication operation can
be doubled.

A modified version of Lyon’s parallel-serial multiplier [26] was developed
which addresses this problem. To generate two 16-bit results in 16 cycles, the
throughput of the multiplier must be doubled. We achieved this by duplicating
the hardware for multiplication, as illustrated in Figure 3. Registers storing the
constant are shared among the two multiplication pipelines. The outputs p and
q correspond to the results of two consecutive multiplications, where the two 32-
bit long variables have a time-difference of 16 cycles. The control signal, which
is high one clock cycle before the least significant bit enters the module, toggles
the control register. The vector of input variables a,_1 ...a1aq is consequently
redirected into the two multiplication pipelines alternately. While the vector is
being redirected to one pipeline, logic zero enters the other pipeline carrying out
zero-padding.

A5 ... A)Ag

control

Fig. 3. Parallel-serial multiplier modified for increased throughput.

To obtain the time-aligned upper and lower words of ¢, a 16 stage shift reg-
ister is required. The input and output of the shift register are the upper and
lower words of ¢ respectively, 16 cycles after ¢ is valid. In the implementation
the shift register is implemented as a SRL16E [23] primitive. The complete ar-

10 O.Y.H. Cheung et al.

chitecture for the modular multiplication operation is shown in Figure 4. Upon
initialization, the subkey associated with the operator is passed into the opera-
tor bit-serially. The pre-decremented subkey is shifted into the registers of the
multiplier, and at the same time stored into the SRL16E primitive responsible
for key storage.

constant

switch

carray preset

IA

m, ...mmg

Carry clear

o T —ole

control

Fig. 4. Bit-serial architecture for multiplication modulo 2'® + 1 operations.

Utilizing the idea of multiple pipelines, the modular multiplication operation
offers a throughput of 16 cycles, even though a 32-bit intermediate result is com-
puted. This scheme doubles the throughput but since sharing of the b registers
can occur, the hardware cost is less than double.

4.2 Bit-Serial IDEA Core

The core implementation of IDEA is obtained by cascading eight identical rounds
of operations shown in Figure 5, followed by a output transformation. The core
takes one 64-bit plaintext once every 16 cycles, yielding an effective encryption
rate of f x 64 + 16 Mb/sec at a system clock rate of f MHz. At 150 MHz, for
example, the performance of the core is 600 Mb/sec.

Each round has a latency of 109 cycles. The output transformation has a
latency of 35 cycles. Each serial-to-parallel converter at the outputs has a latency
of 16 cycles. Therefore, the IDEA core has an overall latency of 109 x 8435416 =
923 cycles. At a 150 MHz system clock rate, the equivalent latency is 6.153 us.

5 Bitstream Reconfiguration

The basic building block of the Virtex FPGA is the logic cell (LC). A LC includes
a 4-input function generator, carry logic and a storage element. Each Virtex
Configurable Logic Blocks (CLB) contains four LCs, organized in two slices.
The 4-input function generator are implemented as 4-input LUTs. Each of them

Tradeoffs in Parallel and Serial Implementations of IDEA 11

latency x @ x,0 x" x0
0
1 4 v
Zl")—><D 34 Co)<—Z4(">
35
36
71
72
107
(V) (V
73 7 73
108 7
Py
y
S P
109
| l>_<l |
I Oy

Fig. 5. Bit-serial architecture for one round of IDEA algorithm.

can provide the functions of one 4-input LUT or a 16 x 1-bit synchronous RAM
(called “distributed RAM”). Furthermore, two LUTs in a slice can be combined
to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16 x 1-bit dual-port
synchronous RAM.

The contents of the LUTs upon initialization are encoded in the bitstream.
Xilinx disclosed the format of bitstream for Virtex series FPGA [27, 28], hence it
is possible to edit the bitstream and alter the contents of LUTs. Our approach to
achieve runtime reconfigurability is to build all configurable blocks from LUTs
and later modify the bitstream.

More specifically, the key-schedule is stored only inside ROM or SRLI16E
primitives which are implemented as LUTs. After technology-mapping, place-
ment and routing, a circuit description (with a .ncd extension) is generated.
Using the nedread tool provided by Xilinx, the contents of the circuit descrip-
tion can be converted into a human-readable format. It is possible to extract the
physical location of individual LUTs from the output of ncdread.

We have developed software to customize bitstreams for different key-schedules.
In the first step (which need only be performed once for a given design), infor-
mation concerning the physical location of individual LUTs which are used in
the key schedule is extracted from the .ncd file and written to a location file
(Locfile). To modify a bitstream, the LUTs are directly modified by a program
to use a given key-schedule. The pseudocode below describes the technique that
was used.

12 O.Y.H. Cheung et al.

1 changekeys(locfile, bitstream)

2 A

3 locdb = read(locfile);

4 foreach bit in the key

5 {

6 Find location of the LUT using locdb;
7 Modify the value of the bit in the LUT;
8 X

9 Recompute CRC for the bitstream;

10 Write bitstream;

11}

On an Intel Pentium III 866 MHz machine, the reconfiguration process re-
quires the modification of 6 x 16 LUTs and changing a key takes approximately
0.12 seconds.

In some applications, runtime reconfiguration may not be desirable e.g. if
the bitstream is placed in a ROM or in an Application-Specific Integrated Cir-
cuit (ASIC) implementation. For these cases, shift registers can be employed
for the key-schedule. The shift registers are linked to form a large shift regis-
ter when key-schedules are being fetched. This long shift register breaks down
into the original shift registers after initialization. This method requires minimal
logic and routing resources.

6 Results

Both the bit-parallel and bit-serial IDEA processor was verified with Synopsys
VHDL Simulator, and was synthesized using Synopsys FPGA Express 3.5 and
Xilinx Foundation Series 3.1i, with Xilinx Virtex XCV300-6 as target device.

Our serial and parallel implementations of IDEA were successfully imple-
mented on Annapolis Micro Systems Wildcard Reconfigurable Computing En-
gine [29]. The device is a Type I PCMCIA Card with a 33 MHz 32-bit CardBus
interface, consisting of an Xilinx Virtex XCV300-6 FPGA as Processing Ele-
ment (PE) and two 64k x 32-bit SDRAMs. A single core parallel implementation
was also tested using a Pilchard card [30] which uses a memory slot interface
instead of a CardBus interface.

6.1 Performance of IDEA Core

For the bit-parallel implementation, a single core/round of the algorithm requires
1178 Virtex slices. An XCV300 device can accommodate two rounds of the al-
gorithm, accounting for 2444 slices (including extra logic required for scaling),
or 79.56% of the total 3072 slices.

For the bit-serial implementation, the fully-pipelined implementation (8 rounds
plus output transformation), with parallel-to-serial converters at inputs and
serial-to-parallel converters at outputs, requires 2878 Virtex slices which occupies

93.68% of CLB resources.

Tradeoffs in Parallel and Serial Implementations of IDEA 13

It was observed that the building blocks offer faster computations in the
stand-alone configuration, but performance degrades when they are being used
as components in the hierarchical design. Hence, core performance improvement
may be obtained by floorplanning, such that inter-component routing is mini-
mized. The performance of the cores (assuming a high-bandwidth interface to
the data sources and sinks) is summarized in Table 2.

Bit-parallel

Bit-serial

Number of Cores
Clock rate (MHz)

Encryptions per
second (x10%)

Encryption rate

(Mb/sec)

Latency (us)

2

82.0

18.220

1166.08

2.134

150.0

9.375

600.0

6.153

Table 2. Summary of performance for the two implementations on an Virtex XCV300-

6 device.

In an attempt to explore tradeoffs between performance and area, the core
was generated for FPGAs of different capacities. Since there are no data depen-
dencies, the implementations can be easily scalable by instantiation of multiple
cores. The designs were maximally scaled within the resource limitation of each
device to produce the results summarized in Table 3.

Bit-parallel

Bit-serial

XCV300 XCV600 XCV1000

Device (speed grade -6) XCV300 XCV600 XCV1000
Scaling 2%

Number of slices 2444

Device utilization 79.56%

Encryptions per second (x10°) | 18.220

Encryption rate (Mb/sec) 1166.1

5% 9x

6368 11602

1x 2% 4x

2878 5756 11512

92.13% 94.42% | 93.68% &83.28% 93.68%

45.551 81.991

2915.3 5247.4

9.375 18.750 37.500

600.0 1200.0 2400.0

Table 3. Tradeoffs between performance and area of the IDEA cores on different

devices.

14 O.Y.H. Cheung et al.

6.2 Performance

On the Wildcard implementation, the time taken to complete a transaction be-
tween the FPGA and host is dominated by the setup time of CardBus interface.
When designing the interface between the IDEA core and the host, it is crucial
that the number of discrete transactions is minimized and the amount of data
transfered per transaction is maximized.

Data from host is written directly to the core using a burst mode transfer of
1024 64-bit plaintext blocks. After the latency period, the ciphertext is written
to consecutive locations in the BlockRAM. For XCV300 devices, there are eight
256 x 32-bits BlockRAM [31] on the chip and they are all used in the host/TDEA
interface. The results are read by the host from the IDEA processor by doing a
burst mode transfer of the contents of the BlockRAM. The decryption process
is similar except the ciphertext is written to the IDEA core and the plaintext
appears in the BlockRAM.

The interface between host and IDEA core on Wildcard requires approxi-
mately an additional 160 slices, resulting in a total of 2606 slices (84.83%) and
3039 slices (98.93%) utilization of the XCV300 for the bit-parallel and bit-serial
implementations respectively.

The burst transfer rate of CardBus is 33 x 32 = 1056 Mb/sec. However, due to
large overheads in the CardBus transactions, both the implementations achieve
a measured performance of 0.61 x 10® encryptions per second (39 Mb/sec) on
a 300 MHz Intel Pentium IT laptop computer. The situation could be improved
by using Direct Memory Access (DMA) channels. In addition, utilizing the two
64k x 32-bits SDRAMs on Wildcard could provide a larger buffer for ciphertext
storage hence reducing the number of transactions.

6.3 Pilchard

In an attempt to improve the PC to FPGA data transfer rate, the bit-parallel
implementation was ported to a Pilchard card [30] which utilizes a memory
slot interface for improved performance over a CardBus interface. The Pilchard
card used the same XCV300-6 device as in the Wildcard. The implementation
uses only a single IDEA core/round and requires a total of 1319 slices (42.93%
utilization). Pilchard offers a higher bandwidth between the PC and FPGA and
the implementation achieved a measured encryption performance of 146 Mb/sec
on an Intel Pentium IIIT 866 MHz desktop PC.

7 Conclusion

Two high-performance runtime reconfigurable implementations of the IDEA al-
gorithm were presented in this paper. In both designs, the bitstream is customize
for a particular key and this procedure saved hardware resources in our design. In
implementations on the same XCV300-6 part, the bit-parallel version achieved
an encryption rate of 1166 Mb/sec using an 82 MHz clock, whereas the bit-serial

Tradeoffs in Parallel and Serial Implementations of IDEA 15

implementation achieved a 600 Mb/sec throughput at a clock rate of 150 MHz.
The bit-parallel implementation achieved a higher throughput with lower latency
than the bit-serial implementation, while the bit-serial implementation permits
a minimal area fully-pipelined design.

References

10.

11.

12.

13.

14.

15.

Electronic Frontier Foundation, “DES challenge III broken in record 22 hours,”
January 1999. (http:// www.eff.org/ pub/ Privacy/ Crypto_misc/ DESCracker/
HTML/ 19990119_deschallenge3.html).

X. Lai and J. Massay, “A proposal for a new block encryption standard,” in Ad-
vances in Cryptology, Proceedings of Furocrypt 1990, pp. 389-404, 1990.

X. Lai, J. Massay, and S. Murphy, “Markov ciphers and differential cryptanalysis,”
in Advances in Cryptology, Proceedings of Furocrypt 1991, pp. 17-38, 1991.

M. Hellman and S. Langford, “Differential-linear cryptanalysis,” in Advances in
Cryptology, Proceedings of Eurocrypt 1994, pp. 26-36, 1994.

L. R. Knudsen, “Truncated and higher order differentials,” in Proceedings of the
Second International Workshop on Fast Software Encryption, pp. 196-211, 1995.

. J. Borst, “Differential-linear cryptanalysis of IDEA,” ESAT-COSIC Technical Re-

port 96—2, Department of Electrical Engineering, Katholieke Universiteit Leuven,
February 1997.

B. Schneider, Applied Cryptography. John Wiley & Sons, second ed., 1996.

H. Lipmaa, “Idea: A cipher for multimedia architectures?,” in Selected Areas in
Cryptography 98, pp. 253-268, August 1998.

. O. Mencer, M. Morf, and M. J. Flynn, “Hardware software tri-design of encryption

for mobile communication units,” in Proceedings of the IFEFE International Con-
ference on Acoustics, Speech and Signal Processing, vol. 5, pp. 3045-3048, May
1998.

H. Bonnenberg, A. Curiger, N. Felber, H. Kaeslin, and X. Lai, “VLSI implementa-
tion of a new block cipher,” in Proceedings of the IEEE International Conference
on Computer Design: VLSI in Computer and Processors, pp. 501-513, 1991.

A. Curiger, H. Bonnenberg, R. Zimmerman, N. Felber, H. Kaeslin, and W. Ficht-
ner, “VINCI: VLSI implementation of the new secret-key block cipher IDEA,” in
Proceedings of the IEFE Custom Integrated Circuits Conference, pp. 15.5.1-15.5.4,
1993.

R. Zimmermann, A. Curiger, H. Bonnenberg, H. Kaeslin, N. Felber, and W. Ficht-
ner, “A 177Mb/sec VLSI implementation of the international data encryption al-
gorithm,” IFEFE Journal of Solid-State Circuits, vol. 29, pp. 303-307, March 1994.
S. Wolter, H. Matz, A. Schubert, and R. Laur, “On the VLSI implementation of
the international data encryption algorithm IDEA.” in Proceedings of the IEEE
International Symposium on Circuits and Systems, vol. 1, pp. 397-400, 1995.

S. L. C. Salomao, V. C. Alves, and E. M. C. Filho, “HiPCrypto: A high-performance
VLSI cryptographic chip,” in Proceedings of the Eleventh Annual IEEE ASIC Con-
ference, pp. 7-11, 1998.

M. P. Leong, O. Y. H. Cheung, K. H. Tsoi, and P. H. W. Leong, “A bit-serial imple-
mentation of the international data encryption algorithm (IDEA),” in Proceedings
of the IEEFE Symposium on Field-Programmable Custom Computing Machines,
pp. 122-131, April 2000.

16

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

O.Y.H. Cheung et al.

S. C. Goldstein, H. Schmit, M. Budiu, M. Moe, and R. R. Taylor, “PipeRench:
A reconfigurable architecture and compiler,” Computer, vol. 33, pp. 70-77, April
2000.

Ascom, IDEACrypt Kernel Data Sheet, 1999. (http:// www.ascom.ch/ in-
fosec/ downloads/ IDEACrypt_Kernel.pdf).

Ascom, IDEACrypt Coprocessor Data Sheet, 1999. (http:// www.ascom.ch/ in-
fosec/ downloads/ IDEACrypt_Coprocessor.pdf).

C. Patterson, “High performance DES encryption in Virtex FPGAs using JBits,”
in Proceedings of the IFEFE Symposium on Field- Programmable Custom Computing
Machines, pp. 113121, April 2000.

A. V. Curiger, H. Bonnenberg, and H. Kaeslin, “Regular VLSI architectures for
multiplication modulo 2™ + 1,” IFEE Journal of Solid-State Circuits, vol. 26,
pp. 990-994, July 1991.

C. Meier and R. Zimmerman, “A multiplier modulo (2" + 1),” Diploma thesis,
Institut fur Integrierte Systeme, E'TH, Zirich, Switzerland, February 1991.
Xilinx, Inc., Xilinz Coregen Reference Guide, 2000. Version 3.1i.

Xilinx, Inc., Xilinz Libraries Guide, 1999.

M. George and P. Alfke, Linear Feedback Shift Registers in Virtex Devices. Xilinx,
Inc., August 1999. Application Note XAPP210, Version 1.0.

R. Hartley and K. K. Parhi, Digit-Serial Computation. Kluwer Academic Publish-
ers, 1995.

R. F. Lyon, “Two’s complement pipeline multipliers,” [EFE Transactions on Com-
munications, vol. 12, pp. 418-425, April 1976.

S. Kelem, Virtex Configuration Architecture Advanced Users’ Guide. Xilinx, Inc.,
September 1999. Application Note XAPP151, Version 1.2.

C. Carmichael, Virtex FPGA Series Configuration and Readback. Xilinx, Inc.,
September 1999. Application Note XAPP152, Version 1.2.

Annapolis Micro Systems, Inc., Wildcard Reference Manual, 1999. Revision 1.1.
P. H. W. Leong, M. P. Leong, O. Y. H. Cheung, T. Tung, C. M. Kwok, M. Y. Wong,
and K. H. Lee, “Pilchard - a reconfigurable computing platform with memory slot
interface,” in Proceedings of the IEFE Symposium on Field- Programmable Custom
Computing Machines (to appear), April 2001.

Xilinx, The Programmable Logic Data Book, 2000.

