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CSPs and GENET

Constraint satisfaction problems (CSPs) can be
used to model problems in a wide variety of applica-
tion areas, such as time-table scheduling, bandwidth
allocation, and car-sequencing [2]. To solve a CSP
means �nding appropriate values for its set of variables
such that all of the speci�ed constraints are satis�ed.

Almost all CSPs have exponential time complex-
ity and instances of them may require a prohibitively
large amount of time to solve. Consequently, much re-
search has been done in developing e�cient methods
to solve CSPs. In particular, a generic neural network
(GENET) model, developed by Wang and Tsang [3],
has been demonstrated to work extremely well in solv-
ing many CSPs, often �nding solutions where other
methods fail.

Figure 1 shows how a graph coloring problem1

with 5 vertices (variables) and 3 colors (values) is
transformed into a neural network under the GENET
model. The nodes in the network are organized into
clusters, one for each variable in the CSP. Each node
in the cluster represents a possible value for the cor-
responding variable. Each node can be either ON or
OFF. At any given time, each cluster has exactly one
ON node, which represents the value currently as-
signed to the corresponding variable. A connection
between two nodes in the neural network indicates a
constraint that would be violated if both these nodes
are ON. For instance, the upper left horizontal con-
nection indicates that vertex z0 and vertex z1 cannot
both be assigned the color 0.

Once a CSP has been transformed into a network,
the steps outlined below are performed to �nd one of
its solutions. First, each connection in the network is

1In the context of constraint programming, a solution for
a graph-coloring problem is any consistent color assignment.
Whether the number of colors used is minimal or not is of no
importance.
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Figure 1: The GENET network (with an initial as-
signment) corresponding to a graph coloring problem
with 5 vertices (z0 to z4) and 3 colors (f0, 1, 2g)

assigned an initial weight of 1 and exactly one random
node within each cluster is turned ON. Then, each
node x in the network computes its input , which is
de�ned to be the sum of the weights of the connections
that are incident to x and have an ON node other than
x. Afterward, each cluster updates itself by turning
ON a node with the minimuminput, giving preference
to the node that is currently ON.

The network repeatedly performs these last two
steps | compute-inputs and update-clusters | until
it reaches a steady state. If no constraints are violated
in that state, then a solution is reported. Otherwise,
the neural net learns to avoid this state by increment-
ing the weight of any constraint that is violated there
so as to decrease the likelihood of reaching that state
again in the future. The network then goes back to
the compute-inputs and update-clusters steps and the
procedure continues until a solution is found or a pre-
set amount of time has elapsed.

System Design
Figure 2 illustrates the overall architecture of our

design for implementing GENET using FPGAs. Each
GENET network is implemented as a ring of process-
ing elements (PEs), one PE for each cluster. Each PE
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Figure 2: Overall system architecture

has access to a local memory module which contains
the weights of all the connections incident to the cor-
responding cluster. A microprogramming unit is used
to control the individual PEs.

The values of the ON nodes in all the clusters are
propagated to every other cluster in the network, con-
currently, in N � 1 cycles. Consequently, each node
can compute its input and each cluster can perform
the appropriate update. The microprogramming unit
is then informed of whether any of the PE has changed
state and whether any constraint is violated. Using
this information, the system then either performs the
compute-inputs and update-clusters steps again or en-
ters the learning phase, where the appropriate weights
in the memory modules will be incremented.

When compared to [4], our design is more scalable
as only a �xed fanin/fanout per PE is required. In ad-
dition, it o�ers two novel features in the �eld of hard-
ware implementation of GENET. First, according to
the GENET algorithm, ties for nodes with the same
minimum input are to be broken randomly but fairly.
In our design, this is done e�ciently by executing a
one-pass algorithm where the k-th candidate encoun-
tered with the current minimum input is chosen with
probability 1

k
.

Second, it turns out that when all the clusters
are updated simultaneously, the network may oscil-
late perpetually between two (or more) states. To
prevent this occurrence, each PE, independently, has
a 1

�
probability of cancelling an update. Consequently,

we believe that we have eliminated the possibility of
network-wide oscillations.

Implementation and Results

The functional speci�cation of our design has been
written in VHDL and compiled using Synopsys' FPGA
compiler with Xilinx 4000 series FPGAs as the target
platform. A PE for 25 nodes can be realized using
289 con�gurable logic blocks (CLBs). Using a Gigaops
G900 PCB motherboard with two Xilinx XC4013E(-3)
FPGAs, we have constructed a prototype system con-
sisting of two PEs | each PE containing only four

No. of No. of Times Total No. of
� Updates Learning is Done Clock Cycles
2 12483 2095 2308873
4 8374 1798 1647073
8 4484 1031 898882
16 6236 1417 1246093

Table 1: Simulation results from solving g125.18

nodes due to the need to accommodate the interface
circuitry | which executes successfully at 8.3 MHz.
Work has begun on building a larger system.

Table 1 shows the simulation results when our de-
sign is used to solve g125.18, a graph coloring problem
with 125 nodes and 18 colors that is one of the stan-
dard benchmarks from the archive of the Center for
Discrete Mathematics & Theoretical Computer Sci-
ence (DIMACS). For a given value of � ( 1

�
is the

probability of cancelling the update of a cluster), the
average statistics gathered from solving 20 instances
of the problem is listed in each row.

From these empirical results, it appears that � = 8
gives the best performance. Assuming a clock period
of 120ns, our system, on average, should be able to
solve an instance of g125.18 in 0.11s when � = 8.
In comparison, the average performance of published
software implementations2 of GENET ranges from
150s to 23s [1]. Therefore, a full implementation of our
system is expected to produce a performance speedup
of around two orders of magnitude and may provide
a means to solve many CSPs that are currently in-
tractable.
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