
A Hybrid Feature Selection and Generation Algorithm for
Electricity Load Prediction using Grammatical Evolution

Anthony Mihirana de Silva, Farzad Noorian, Richard I. A. Davis, Philip H. W. Leong

School of Electrical and Information Engineering, University of Sydney, Sydney, NSW 2006, Australia
{anthonymihirana.desilva, farzad.noorian, richard.davis, philip.leong}@sydney.edu.au

Abstract—Accurate load prediction plays a major role in
devising effective power system control strategies. Successful
prediction systems often use machine learning (ML) methods.
The success of ML methods, among other things, depends
on a suitable choice of input features which are usually
selected by domain-experts. In this paper, we propose a novel
systematic way of generating and selecting better features for
daily peak electricity load prediction using kernel methods.
Grammatical evolution is used to evolve an initial popula-
tion of well performing individuals, which are subsequently
mapped to feature subsets derived from wavelets and technical
indicator type formulae used in finance. It is shown that the
generated features can improve results, while requiring no
domain-specific knowledge. The proposed method is focused
on feature generation and can be applied to a wide range of
ML architectures and applications.

Keywords-Load prediction; grammatical evolution; feature
selection; context-free grammar; machine learning

I. INTRODUCTION

Electricity load prediction is the first phase in power

system planning and control. While overestimation leads to

an undesired spinning reserve and excess supply, underesti-

mation causes insufficient reserve supply, implying higher

costs. The inherent non-linear and non-stationary nature

of electricity load time-series makes supervised machine

learning (ML) methods more appealing for prediction than

model-based approaches [1].

In a time-series prediction task, the ML algorithm is

presented with training samples (x1,y1),(x2,y2), . . . ,(xn,yn),
where x j ∈ R

N is a vector of input features and y j ∈ R is

the target, e.g. daily peak electricity load. The learner has

to infer a general function (a hypothesis) that can predict yk
for unseen xk. This generalization is achieved by searching a

hypothesis space H for a solution hypothesis h∈H that best

fits the structure of the training samples. The performance

of ML algorithm depends strongly on the formalism of h
using different input feature vectors, x.

The input features used in some electricity load prediction

applications are summarised in Table I. In each case, the

input features selected by human experts were similar with

some overlap between different works. However, the choice

is generally ad-hoc. It would therefore be useful to have a

framework that can automatically generate and select useful

features that have a meaningful interpretation.

A framework for function-based feature generation using

context-free grammars was first proposed by Markovitch

and Rosenstein [2]. Such grammars are used in linguistics

to describe sentence structure and words of a natural lan-

guage and in computer science to describe the structure of

programming languages. Markovitch and Rosenstein gener-

ated features strongly related to the target using decision

trees. Unfortunately, the technique was only suitable for

problems where the features are apparent from the problem

definition. In other related work, Eads et. al [3] and Pachet

and Roy [4] addressed supervised time-series classification

using genetic programming (GP) operators defined in a

grammatical structure. GP was also used by Ritthof et. al

[5] to combine feature generation and selection and applied

to the interpretation of chromatography time-series.

Automatic feature generation can generate irrelevant and

redundant features. Feature selection (FS) eliminates such

features thereby improving the accuracy and speed of ML

algorithms. Genetic algorithms have been used for FS as a so

called wrapper to avoid enumerating the entire space [12]–

[14]. Muni et. al. [15] proposed a GP based FS algorithm

which evolved a population of classifiers to choose accurate

classifiers with the minimum number of features. Multi-

population GP has also been used in [16] to develop a

method for simultaneous feature extraction and selection.

In this paper, we use a modified version of grammatical

evolution (GE) [17] to generate and select parametrized

features for peak electricity load prediction. Some of the

generated features in this work use the concept of technical
indicators, as used in finance. These are formulae that

identify patterns and market trends in financial markets,

developed from models for price and volume. To the best

of our knowledge, this is the first time (i) GE is applied as

a feature discovery technique in time-series prediction, and

(ii) technical indicator type formulae are used for predicting

Table I: Common features in electricity load time-series prediction.

• Previous week’s hourly load information
• Temperature and calendar information [6]–[8]

• Previous load information and its differenced values [9], [10]
• Daubechies wavelets and its differenced values

• EMD transform and its differenced values [11]

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $26.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.125

211

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $31.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.125

211

< expr >

((lag(< var >, k)) < op > (< var − op >)) < op > (< der − var >)

(2.a)

((< var − op >) < op > (< var − op >)) < op > (< der − var >)

(3.a)

((lag(H, k)) < op > (< var − op >)) < op > (< der − var >)

((lag(H, k))− (< var − op >)) < op > (< der − var >)

((lag(H, k))− (lag(< var >, k)) < op > (< der − var >)

((lag(H, k))− (lag(C, k)) < op > (< der − var >) ((lag(H, k))− (lag(C, k))÷ (< der − var >)

((lag(H, k))− (lag(C, k))÷ ((< var − op >) < op > (< var − op >))

((lag(H, k))− (lag(C, k))÷ ((lag(< var >, k)) < op > (< var − op >))

((lag(H, k))− (lag(C, k))÷ ((lag(H, k)) < op > (< var − op >))

((lag(H, k))− (lag(C, k))÷ ((lag(H, k))− (< var − op >))

((lag(H, k))− (lag(C, k))÷ ((lag(H, k))− (lag(< var >, k)))

((lag(H, k))− (lag(C, k))÷ ((lag(H, k))− (lag(L, k)))

(5.a)

(4.b)

(3.a)

(5.c)
(4.a)

(2.a)

(3.a)

(5.a)

(4.b)

(3.a)

(5.b)

Final Terminal ElementStarting Element

(< der − var >) < op > (< der − var >)

(1.a)

Figure 1: Feature generation using GE. The circles represent the leftmost non-terminal to apply the production rules on. The rules are
chosen based on the MOD operator result on codons. If the first codon of the chromosome is 224, since the first non-terminal is <expr> and
the number of rules available in grammar family 2 is 2, the rule is (224) MOD (2) = 0, hence rule (1.a) is chosen, and so on.

electricity load time-series.

Define the solution hypothesis of a particular ML archi-

tecture formulated using expert suggested features h1 and

the solution hypothesis formulated using a feature subset

discovered through the proposed framework h2. The main

contribution of our work is to demonstrate that the prediction

accuracy can be better with h2 than with h1.

This paper is organized as follows. Sec. II provides a brief

review of context-free grammar and GE. Sec. III presents the

main part of our work on how grammar families are evolved

to generate informative features. The results are given in

Sec. IV and the performance of our approach is compared

with other approaches. Finally, the paper is concluded with

remarks for future work in Sec. V.

II. BACKGROUND

A. Context-free Grammar

A context-free grammar (CFG) is used to generate pat-

terns and strings using hierarchically organized production

rules [18]. Using the Backus-Naur form (BNF), a CFG

can be described by the tuple (T ,N ,R ,S) where T is a

set of terminal symbols and N is a set of non-terminal

symbols with N ∩T =∅. The non-terminal symbols in N
and terminal symbols in T are the lexical elements used in

specifying the production rules of a CFG. A non-terminal

symbol is one that can be replaced by other non-terminal

and/or terminal symbols. Terminal symbols are literals that

symbols in N can take. A terminal symbol cannot be altered

by the grammar rules R , a set of relations (also referred to

as production rules) in the form of R → α with R ∈ N ,

α∈ (N ∪T). S ∈N is the start symbol. If rules are defined

as R = {x→ xa,x→ ax}, a is a terminal symbol since no

rule exists to change it, and x is a non-terminal symbol.

B. Grammatical Evolution

GE is a grammar-guided GP technique, which has been

used in computational finance, credit rating & corporate

failure prediction, music and robot control applications (refer

to [19] for a survey). GE can be used to evolve complete

programs in an arbitrary language. Similar to GP, GE

evolves a population towards a certain goal. GE performs

evolutionary operations on integer individuals which are then

mapped using the defined grammar to feature subsets; on

the other hand GP directly operates on the actual program’s

tree structure [17]. In GE, a suitable grammar developed for

the problem at hand is specified in BNF. A chromosome is

represented as an integer string, with each integer creating a

codon. The codon values are then used to select production

rules from the grammar definition using the modulus (MOD)

operator. A group of codons which is used to create a feature

is called a gene. Detailed explanation on GE can be found

in [17] and is omitted here for space. Fig. 1 illustrates how

the grammar family 2 in Table II can generate a feature.

With C lagged by k = 1 and L and H lagged by k = 0,

we obtain (Ht −Ct−1)/(Ht − Lt). This formula is popular

as the accumulation/distribution oscillator which is a widely

used technical indicator by financial analysts. The proposed

grammar can produce many such popular indicators.

212212

III. METHODOLOGY

Fig. 2 shows the proposed architecture. Chromosomes

are selected from the population which are then mapped

to feature subsets using CFG in Tables II and III. These

subsets are evaluated and best feature subsets are selected by

a wrapper approach. The population is evolved such that the

learner architecture has a minimum mean cross validation

error on randomized samples drawn from a validation set.

Chromosome

Evolutionary Operators

Feature Subset Goodness Evaluation

Feature
Subsets

ML
Algorithm Fitness

Criteria?Selection

Cross-over

Mutation
Exit

CFG

Initial Population

Yes

No

Figure 2: The architecture of the prediction system.

A. Grammar Definition

The grammar families in Table II can generate trend,

momentum and volatility type indicators. This grammar con-

struction was inspired by 30 common technical indicators.

A single grammar capable of generating all the features

generated by the grammar families can be designed but such

a grammar would have many production rules, leading to

a large search space and long computational times. In the

financial literature, data is represented by H, L and C which

are the daily highest, lowest and closing (last) prices. The up-

ward and downward price changes are U= max(0,Ht−Ht-1)
and D = min(0,Ht − Ht-1), Ht is the current time-sample

highest price. In this paper, the same notation is adapted

to half-hourly electricity load data, with the daily high, low

and close electricity load used in place of price. The basic

operators lag, abs, diff and delt respectively refer to

lagged (xt−k), absolute (|xt |), first difference (Δx = xt−xt−1)

and the relative first difference values ((xt − xt−1)/xt) of

a time-series where xt is the load at time t and k is a

constant. The operators ema, sma, max, min, sd, meandev
and histwin extract the exponential moving average, simple

moving average, maximum, minimum, standard deviation,

mean deviation and a history sequence for a moving window

of size n.

The discrete wavelet transform is widely used as a

multi-resolution decomposition technique which can eluci-

date otherwise hidden relationships in non-stationary time-

series like electricity load data. We perform the maximal

overlap discrete wavelet transform using the Daubechies

mother wavelet. For a time-series x(k) with N samples,

each resolution scale would have N samples for each level,

enabling the usage of wavelet coefficients as features. The

m-level wavelet decomposition coefficients of x(k) are Dj(k)
and S j(k), j = 1,2, . . . ,m. The D coefficients capture local

fluctuations and S are smoothed (trend) versions at each

scale. The mth level wavelet decomposition of a time-series

is then given by: Dm =
n
∑

i=0
Dm(k+i) and Sm =

n
∑

i=0
Sm(k+i). The

grammar in Table III uses wavelets. H is the maximum daily

electricity load time-series. D1, D2, D3 and S = S3 are the

3-level decomposition components of H. Empirical mode

decomposition (EMD) is an alternative to wavelets but an

EMD based grammar was not used for this paper.

Table II: High, low, close electricity load multi-family grammar.

Grammar family 1 (moving average)

N = {expr, der-var, base-var, pre-op, base-op, var}
T = {÷, delt, diff, ema, sma, max, min, meandev, H, L, C, n, (,) }
S = <expr>

R Production rules

〈expr〉 ::= (〈expr〉)÷(〈expr〉) | 〈der-var〉 | 〈base-var〉 (1.a), (1.b),
(1.c)

〈der-var〉 ::= 〈pre-op〉(〈base-var〉, n) (2.a)

〈base-var〉 ::= 〈base-op〉(〈var〉) | 〈pre-op〉(〈var〉, n)| 〈var〉 (3.a), (3.b),
(3.c)

〈pre-op〉 ::= ema | sma | max | min | meandv (4.a), (4.b), (4.c), (4.d), (4.e)

〈base-op〉 ::= delt | diff (5.a), (5.b)

〈var〉 ::= H | L | C (6.a), (6.b), (6.c)

Grammar family 2 (momentum)

N = {expr, der-var, var-op, op, var}
T = {÷, -, lag, ema, U, D, H, L, C, n, k, (,) }
S = <expr>

R Production rules

〈expr〉 ::= 〈der-var〉÷〈der-var〉 (1.a)

〈der-var〉 ::= 〈var-op〉〈op〉〈var-op〉 | 〈var-op〉 (2.a), (2.b)

〈var-op〉 ::= lag(〈var〉, k) | ema(〈var〉, n) (3.a), (3.b)

〈op〉 ::= ÷ | - (4.a), (4.b)

〈var〉 ::= H | L | C | U | D (5.a), (5.b), (5.c), (5.d) (5.e), (5.f)

Grammar family 3 (volatility)

N = {expr, var-op, var}
T = {+, -, abs, sma, sd, H, L, C, n, (,) }
S = <expr>

R Production rules

〈expr〉 ::= sma(〈var-op〉, n) + sd(〈var-op〉) (1.a)
| sma(〈var-op〉, n) - sd(〈var-op〉) (1.b)

〈var-op〉 ::= abs(〈var〉) | 〈var〉 (2.a), (2.b)

〈var〉 ::= H-L | H-C | C-L | H (3.a), (3.b), (3.c), (3.d)

B. Feature Generation

Feature generation is guided through GE. Each chromo-

some is dissected to 25 genes where each gene is considered

a feature and GE is applied independently on each gene. To

have a good mix of trend, momentum and volatility type

formulae in HLC grammar, the first 10 gene partitions were

213213

Table III: Wavelet based grammar.

N = {expr, der-var, base-var, pre-op, base-op,var}
T = {abs, delt, diff, lag, sma, sd, meandev, histwin, H, D1, D2, D3, S,
n, k, (,)}
S = <expr>

R Production rules

〈expr〉 ::= histwin(〈base-var〉, n) (1.a)
| 〈der-var〉 (1.b)
| 〈base-var〉 (1.c)

〈der-var〉 ::= 〈pre-op〉(〈base-var〉, n) (2.a)

〈base-var〉 ::= 〈base-op〉(〈var〉) (3.a)
| lag(〈var〉, k) (3.b)
| 〈pre-op〉(〈var〉, n) (3.c)

〈pre-op〉 ::= sma | sd | meandev (4.a), (4.b), (4.c)

〈base-op〉 ::= delt | diff | abs (5.a), (5.b), (5.c)

〈var〉 ::= H | D1 | D2 | D3 | S (6.a), (6.b), (6.c), (6.d), (6.e)

mapped to the moving average grammar family, the next

10 to the momentum family and the final 5 to the volatility

family. A single grammar was used for wavelet based feature

generation with no such gene mapping.

Individuals were selected for recombination using fitness

proportionate selection (also known as roulette wheel se-

lection). We employed random mutation and a modified

version of multiple-point crossover, such that the cross-

over is performed across all individual genes (see Fig. 3).

The chromosome is represented as set of stacked genes

for clarity. This crossover ensures that inter-grammar-family

crossover is avoided. Elite individuals, i.e. the chromosomes

that rank best in each generation were passed directly to the

next generation without mutation or crossover.
Parent 1 Parent 2

Child 1 Child 2

Cross-over points

Gene 1

Gene 2

.......

Gene n

n integers in
N partitions

N partitions

Child 1 unwrapped

n integers

Figure 3: The proposed multiple-point crossover approach. A
random number of crossover points at random locations are chosen.

We placed some specific chromosomes in the initial

population which map to subsets of standard technical

indicators such as disparity, momentum, stochastic oscillator

(K), stochastic indicator (D), William’s oscillator (R), ROC

(rate of convergence), RSI (relative strength index), CCI

(commodity channel index) and moving averages. This en-

sured that the initial population was healthy and encouraged

the generation of high performing feature subsets. The rest of

the population consisted of randomly generated individuals.

In making the final predictions, we also added calendar

information to the feature subset. Temperature information

was not used since we investigated the effect of features

derived from the time-series history itself.

C. Feature Subset Evaluation

The last step of the procedure was to evaluate the

performance of a generated feature subset. Some of the

generated features were parametrized by the window-size

n = 2,3,5,7,14 and lag k = 0,1,2,3,4,5,6,7,14.

Algorithm 1 Feature subset evaluation procedure

Input current integer chromosome

1: Extract individual genes from the current chromosome

2: Map genes into grammar families (if necessary)

3: Derive symbolic features

4: Generate numeric feature subset Yk for each time stamp

5: Append calendar information to Yk (see Sec. IV)

6: for i in 1:N do
7: err[i] = ML algorithm MAPE in validation sample i
8: end for
9: Calculate the average MAPE e(Yk) = mean(err)

10: Calculate the final score J(Yk) = e(Yk)+q(Yk) + c(NNT)
Output J(Yk)

The feature subset evaluation steps are shown in Al-

gorithm 1. The individuals with the lowest score were

deemed to be the best. e(Yk) is the MAPE (mean absolute

percentage error), given by 100
n

n
∑

i=1

∣
∣
∣

yi−ŷi
yi

∣
∣
∣ where n is the number

of predictions, y is the target and ŷ is the predicted value.

To choose robust features providing good generalization,

the mean MAPE was calculated by the average error on

N = 15 random samples of size 30 drawn from a validation

dataset, e.g. the validation dataset Oct. 1998 - Dec. 1998

for predicting Jan. 1999. q(·) is an assessment of the

symbolic feature expression complexity, taking into account

the length, the number of operations and pre-operations.

c(·) was calculated based on the number of non-terminal

elements NNT in subset Yk (a subset containing many non-

terminal elements was considered as poor).

IV. RESULTS

The EUNITE dataset [20] has been extensively used

as a benchmark to test load prediction algorithms. It was

originally published for a competition to predict the peak

daily load for January 1999 using half-hourly recordings in

the years 1997 and 1998.

In our approach, first the data was scaled to ensure

that each feature was independently normalized. Calendar

information was encoded as 7 binary values to represent the

day-of-week and a single binary value for holidays as the

competition winners in [6]. A self organising map (SOM)

was used to identify data clusters using a peak load history

window of 7 days, temperature and calendar information as

214214

SOM inputs. This showed a very strong seasonality, dividing

the data into cold and hot seasons (season 1 and 2 in

Fig. 4 respectively). Based on the SOM result, we only

used data from season 1 months to construct models in

our experiments, e.g. to predict Jan. 1999, the model was

constructed using Jan. 1997 - Mar. 1997, Oct. 1997 - Mar.

1998 and Oct. 1998 - Dec. 1998 data.

Jan 01
1997

Apr 01
1997

Jul 01
1997

Oct 01
1997

Jan 01
1998

Apr 01
1998

Jul 01
1998

Oct 01
1998

Jan 01
1999

50
0

60
0

70
0

80
0

Season 1

Season 2

Season 1

Season 2

Season 1

Figure 4: Clustering days to different seasons using a SOM.

Two different experiments were performed on the dataset.

In the first trial, we used the wavelet based grammar in

Table III in a month-ahead manner of prediction. Here,

after predicting a load value for January 1st, 1999, we

used this predicted value with the historical values before

January 1st to predict January 2nd, 1999. This process was

continued until the predicted load value of January 31st was

obtained. For the second approach, we used the grammar

in Table II. This requires the previous day’s high, low and

close values, and is more suited to a day-ahead prediction

approach. Therefore, the actual historical HLC values are

used in predicting each day.
For initial performance comparison, autoregressive inte-

grated moving average (ARIMA) and exponential smoothing

(ETS) models were chosen as analytical methods. Support

vector machine (SVM) and kernel recursive least squares

(KRLS) algorithm were used as kernel based ML methods.

Table IV summarizes the results of the different techniques

used for different feature subsets on different months. It

was observed that the best results were produced by kernel

methods with a radial basis kernel function parametrized

by γ, i.e. K(xi,x j) = exp(−γ‖xi− x j‖2), where xi,x j are the

input training vectors, i, j = 1,2, . . . ,m. As KRLS requires

one less parameter (σ and λ) than SVM regression (C, γ and

ε) consuming less hyper-parameter tuning time, KRLS was

chosen for feature subset evaluation as explained in section

III-C. The optimal parameters for the KRLS feature subset

evaluator, σ = 256 and λ = 0.0625 were chosen by 10-fold

repeated cross validation using a peak load history window

of 7 days and encoded calendar information as features.
Based on the features used in previous load prediction

work, we compared the performance of 5 domain-expert

suggested feature subsets in Table IV and observed that the

result stability for different months is poor, e.g. the feature

subset Hk,ΔHk,ΔD1
i ,ΔD2

i ,ΔD3
i ,ΔSi(∀i ∈ {k − 1, ...,k − 6})

performed remarkably well only in Jan. 1999 but the av-

erage accuracy was inferior to other subsets considered. We

suspect that some related work on the EUNITE dataset have

used specific subsets in a trial and error fashion to report

good performance only on the test dataset, Jan. 1999.

A chromosome of the proposed GE algorithm comprised

of 24 codons and 25 genes, i.e. a total 25 features with

each feature represented by 24 codons making the integer

chromosome size 600. The population size was 24 and 100

generations were iterated. The best 2 chromosomes in each

generation were considered to be elite individuals.

10 GE trials were performed and the results are brought

at the bottom of Table IV. The HLC based grammar pro-

duced significantly better results for each of the 3 months

(1.15%, 1.73% and 1.39%), and even the worst performing

HLC feature subset outperformed all other methods for

average day-ahead predictions. Although the best wavelet

feature subset (1.81%) outperformed other domain-expert

suggested feature subsets for day-ahead predictions, the

average performance of each month (1.96%) was poor.

However, its performance for month-ahead prediction was

promising. This leads us to state that the HLC grammar

incorporates more information about the daily variations of

load and significantly improves day-ahead predictions while

the wavelet grammar elucidates long-term trends and hence

is more suited for month-ahead predictions.

Table V compiles selected features from all GE trials

filtered using the minimum-redundancy-maximum-relevance

(mRMR) criterion. While some features are obvious and

straightforward (e.g. ΔH, H, delt(H), histwin(H, 14)),

Table V: Selected features from 10 GE runs.

HLC features Wavelet features

1 (|C-L|-|L|)/|C-L| D1

2 (|L|-|H-L|)/L delt(H)
3 (ema(ΔC, 2))/(ema(delt(C), 2)) ΔD1

4 (ema(H, 5))/(min(ema(H, 2), 2)) ΔH
5 delt(H) ΔS
6 delt(L) H
7 ΔH lag(D3,5)
8 ema(C, 3) lag(delt(H), 2)
9 ema(C-L, 5) + sd(H-L, 3) lag(ΔD1, 1)

10 ema(D, 3) lag(ΔD3, 4)
11 ema(ema(H, 5), 3) lag(meandev(D1, 14), 3)
12 ema(H, 7) lag(sd(H, 7), 3)
13 ema(H, 7) - sd(H-C, 2) lag(S, 6)
14 ema(H-C, 2) + sd(H, 14) lag(sma(D1, 7), 6)
15 ema(lag(D,7), 3) histwin(ΔH, 7)
16 ema(lag(U, 3), 3) lag(sma(H, 5), 4)
17 lag(H, 7) histwin(H, 14)
18 lag(U, 1) meandev(D1,14)
19 max(H, 14) sd(D1, 14)
20 max(L, 3)-lag(H, 7) sd(H, 14)
21 max(lag(H, 1), 3) S
22 min(D, 5) sma(D1, 14)
23 min(ΔC, 5) sma(D1,7)
24 sd(H, 5)-lag(D, 7) sma(D2,3)
25 sma(ΔL, 2) sma(D3,3)

215215

Table IV: Kernel method performance comparison for different feature subsets on 3 different months.

Method and Features Month-ahead MAPE % Day-ahead MAPE %

Jan. 1999 Dec. 1998 Nov. 1998 Avg. Jan. 1999 Dec. 1998 Nov. 1998 Avg.

Last Year’s Data 2.29 4.79 3.22 3.43 2.29 4.79 3.22 3.43
ARIMA 2.08 4.97 3.45 3.50 2.60 2.55 2.71 2.62
ETS 1.87 4.66 3.47 3.33 2.11 2.48 2.10 2.23

Linear SVM with Hi(∀i ∈ {k, ...,k−6}) 2.32 3.84 1.82 2.66 1.62 2.39 1.99 2.00
Polynomial SVM with Hi(∀i ∈ {k, ...,k−6}) 2.22 3.50 1.82 2.52 1.72 2.39 1.99 2.03
Radial SVM with Hi(∀i ∈ {k, ...,k−6}) 1.96 2.87 1.75 2.19 1.68 2.19 1.81 1.89
Polynomial KRLS with Hi(∀i ∈ {k, ...,k−6}) 3.93 4.71 3.46 4.03 3.91 4.62 3.38 3.97
Radial KRLS with Hi(∀i ∈ {k, ...,k−6}) 1.67 3.06 1.76 2.16 1.61 2.31 1.85 1.92

Using radial KRLS with feature subsets
Hi(∀i ∈ {k, ...,k−6}) + Temp. 3.59 3.05 2.06 2.90 2.25 2.52 1.86 2.21
Hi(∀i ∈ {k, ...,k−6}) 1.67 3.06 1.76 2.16 1.61 2.31 1.85 1.92

D1
k ,D

2
k ,D

3
k ,Sk 1.88 3.25 1.70 2.27 1.62 2.05 1.84 1.84

Hk,ΔHk,ΔD1
k ,ΔD2

k ,ΔD3
k ,ΔSk 1.64 3.49 1.96 2.36 1.62 2.08 1.93 1.88

Hk,ΔHk,ΔD1
i ,ΔD2

i ,ΔD3
i ,ΔSi(∀i ∈ {k−1, ...,k−6}) 1.55 3.98 2.56 2.70 1.25 2.61 2.25 2.04

HLC grammar - best of each month - - - - 1.15 1.73 1.39 1.48
HLC grammar - average of each month - - - - 1.34 1.89 1.56 1.60
HLC grammar - worst of each month - - - - 1.62 2.03 1.68 1.68

Wavelet grammar - best of each month 1.42 2.45 1.35 1.84 1.61 1.93 1.66 1.81
Wavelet grammar - average of each month 1.82 2.89 1.54 2.08 1.77 2.31 1.79 1.96
Wavelet grammar - worst of each month 2.42 3.32 1.76 2.31 1.90 2.89 1.98 2.26

many others are not so apparent to human experts. We

defer the interpretation of the features in this paper and

make our code and results of individual GE trials available

at http://www.ee.usyd.edu.au/cel/ICMLA2013 to facilitate

further research as suggested in our conclusion or by any

other means.

V. CONCLUSION

In this paper, GE was used to combine the generation

and selection of seemingly unconventional input features

for electricity load prediction, compactly represented using

CFGs. It was found empirically that the approach can

improve the 3-month average MAPE for a KRLS based pre-

dictor from 1.84% to 1.48% for day-ahead predictions and

from 2.16% to 1.84% for month-ahead predictions. Although

the EUNITE dataset was used for empirical evaluation, the

technique is general and is applicable to many other time-

series applications by defining appropriate CFGs based on

domain knowledge.

Previous electricity load prediction research has mostly

focused on improving different ML algorithms and utilized

similar features. This paper described a new approach to

automatically generate better features which is independent

of the ML algorithm. The approach can be easily applied to

other ML architectures as well. By comparing the results to

previous work on the dataset [21], we see that even without

using any sophisticated ML architectures encouraging results

can still be obtained by better formalizing the solution

hypothesis using better features. Future research will utilize

ensemble FS techniques to ensure that the selected feature

subsets are robust for non-stationary time-series and will aid

in minimising the gap between the best and worst performing

feature subsets in Table V.

ACKNOWLEDGMENT

This work was supported by the Australian research

council under the linkage project LP110200413.

REFERENCES

[1] P. Brockwell and R. Davis, Introduction to time series and
forecasting. Springer, 2002.

[2] S. Markovitch and D. Rosenstein, “Feature generation using
general constructor functions,” in Machine Learning, vol. 49.
The MIT Press, 2002, pp. 59–98.

[3] D. Eads, K. Glocer, S. Perkins, and J. Theiler, “Grammar-
guided feature extraction for time series classification,” in
Proceedings of the 9th Annual Conference on Neural Infor-
mation Processing Systems, 2005.

[4] F. Pachet and P. Roy, “Analytical features: a knowledge-based
approach to audio feature generation,” EURASIP Journal on
Audio, Speech, and Music Processing, vol. 1, 2009.

[5] O. Ritthof, R. Klinkenberg, S. Fischer, and I. Mierswa, “A
hybrid approach to feature selection and generation using an
evolutionary algorithm,” in U.K. Workshop on Computational
Intelligence, 2002, pp. 147–154.

[6] B. J. Chen, M. W. Chang et al., “Load forecasting using
support vector machines: A study on EUNITE competition
2001,” IEEE Transactions on Power Systems, vol. 19, no. 4,
pp. 1821–1830, 2004.

216216

[7] M. Espinoza, J. Suykens, and B. De Moor, “Load forecast-
ing using fixed-size least squares support vector machines,”
Computational Intelligence and Bioinspired Systems, vol. 1,
pp. 488–527, 2005.

[8] H. Mao, X. J. Zeng, G. Leng, Y. J. Zhai, and J. Keane,
“Short-term and mid-term load forecasting using a bilevel
optimization model,” IEEE Transactions on Power Systems,
vol. 24, no. 2, pp. 1080–1090, 2009.

[9] A. Reis and A. da Silva, “Feature extraction via multiresolu-
tion analysis for short-term load forecasting,” IEEE Transac-
tions on Power Systems, vol. 20, no. 1, pp. 189 – 198, Feb.
2005.

[10] J. Yao and C. L. Tan, “A case study on using neural networks
to perform technical forecasting of forex,” Neurocomputing,
vol. 34, no. 14, pp. 79 – 98, 2000.

[11] L. Ghelardoni, A. Ghio, and D. Anguita, “Energy load
forecasting using empirical mode decomposition and support
vector regression,” IEEE Transactions on Smart Grid, vol. 4,
no. 1, pp. 549–556, 2013.

[12] I. S. Oh, J. S. Lee, and B. R. Moon, “Hybrid genetic algo-
rithms for feature selection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1424
–1437, Nov. 2004.

[13] J. Yang and V. Honavar, “Feature subset selection using
a genetic algorithm,” IEEE Intelligent Systems and Their
Applications, vol. 13, no. 2, pp. 44–49, 1998.

[14] C. L. Huang and C. J. Wang, “A GA-based feature selection
and parameters optimization for support vector machines,”
Expert Systems with Applications, vol. 31, no. 2, pp. 231 –
240, 2006.

[15] D. Muni, N. Pal, and J. Das, “Genetic programming for
simultaneous feature selection and classifier design,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 36, no. 1, pp. 106 –117, Feb. 2006.

[16] J. Y. Lin, H. R. Ke, B. C. Chien, and W. P. Yang, “Classifier
design with feature selection and feature extraction using
layered genetic programming,” Expert Systems with Appli-
cations, vol. 34, no. 2, pp. 1384–1393, 2008.

[17] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE
Transactions on Evolutionary Computation, vol. 5, no. 4, pp.
349–358, 2001.

[18] M. Sipser, “Context-free grammars,” in Introduction to the
Theory of Computation. PWS Publishing, 1997, ch. 2, pp.
91–122.

[19] R. McKay, N. Hoai, P. Whigham, Y. Shan, and M. ONeill,
“Grammar-based genetic programming: a survey,” Genetic
Programming and Evolvable Machines, vol. 11, pp. 365–396,
2010.

[20] EUNITE. (2001) World-wide competition within the
EUNITE network. [Online]. Available: http://neuron-ai.
tuke.sk/competition/

[21] M. Moazzami, A. Khodabakhshian, and R. Hooshmand, “A
new hybrid day-ahead peak load forecasting method for
iranian national grid,” Applied Energy, vol. 101, pp. 489 –
501, 2013.

217217

