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Abstract—Respiratory artefact removal for the forced os-
cillation technique can be treated as an anomaly detection
problem. Manual removal is currently considered the gold
standard but this approach is laborious and subjective. Most
existing automated techniques used simple statistics and/or re-
jected anomalous data points. Unfortunately, simple statistics are
insensitive to numerous artefacts, leading to low reproducibility
of results. Furthermore, rejecting anomalous data points causes
an imbalance between the inspiratory and expiratory contribu-
tions. From a machine learning perspective, such methods are
unsupervised and can be considered simple feature extraction.
We hypothesize that supervised techniques can be used to find
improved features that are more discriminative and more highly
correlated with the desired output. Features thus found are then
used for anomaly detection by applying quartile thresholding
which rejects complete breaths if one of its features is out
of range. The thresholds are determined by both saliency and
performance metrics rather than qualitative assumptions as in
previous works. Feature ranking indicates that our new landmark
features are among the highest scoring candidates regardless
of age across saliency criteria. F1-scores, receiver operating
characteristic, and variability of the mean resistance metrics show
that the proposed scheme outperforms previous simple feature
extraction approaches. Our subject-independent detector, 1IQR-
SU, demonstrated approval rates of 80.6% for adults and 98%
for children, higher than existing methods.

Index Terms—Respiratory artefacts, lung, machine learning.

I. INTRODUCTION

THE forced oscillation technique (FOT) [1] is a lung func-
tion test that can provide useful information from short

duration recordings, and only requires passive cooperation
from the subject [2]. FOT assesses breathing mechanics by
superimposing small external pressure signals to the sponta-
neous breathing of the subject. A total respiratory mechanical
impedance (Zrs) which includes airway resistance together
with elastic and inertive behavior of the lungs and the chest
wall is then measured at one oscillation frequency (mono-
frequency oscillations) or several (multi-frequency). Zrs is
described as a complex number with real and imaginary com-
ponents, called the resistance (Rrs) and reactance (Xrs) respec-
tively. A primary reason hindering its widespread adoption lies
in difficulties associated with removing artefacts. This results
in lower reproducibility than the most common pulmonary
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function test, spirometry. Manual removal of artefacts, called
the human-based method, is currently considered the gold
standard. This, however, is typically done in an ad-hoc manner
which is laborious, and subjective.

Several recent studies have explored the role of FOT in
telemedicine [3–5]. The ability to automatically and objec-
tively detect artefacts, enabling quality control on a patient’s
unsupervised self-measurements, would greatly facilitate the
use of FOT in such applications.

To detect artefacts, several automated refinements include
detecting low (e.g., transducer noise) and high frequency
artefacts (e.g., light coughing, mouth piece leak, swallowing,
glottic closure and tongue occlusion). According to the quality
control guidelines [6], low frequency noise removal rejects
low magnitude-squared coherence values of pressure and flow
[7]. Several transient artefacts are removed by identifying
deviations from the norm.

To exclude respiratory artefacts, two different strategies are
point rejection [8–10] and complete-breath rejection [7, 11].
For example, the 3SD point-based method [8] introduced a
statistical filter that rejected any impedance points greater
than three standard deviations (SD) from the mean Rrs or
Xrs value. Alternatively, the B-3SD complete-breath approach
rejects entire breaths as defined by the starting and ending
points of breath cycles in which at least one data point is
out of the 3SD range [7]. Complete-breath rejection has been
reported to be more accurate than the point approach as it
can avoid an imbalance between the inspiratory and expiratory
contributions to each breath [7]. Nonetheless, these automated
techniques still miss numerous artefacts.

From a machine learning perspective, each breath is repre-
sented by a vector of features. Features are then classified by a
model (detector) constructed from domain-knowledge and/or
human annotations (labels). The aforementioned methods are
unsupervised techniques in which simple feature extraction is
used and threshold values are chosen as a number of standard
deviations away from the mean of a single measurement.
We hypothesize that more sophisticated two-dimensional (2D)
features may alleviate the above limitations of current auto-
mated methods. The relevancy of features can be confirmed
quantitatively by supervised techniques (feature selection),
e.g., correlation of feature candidates with artefacts can be
measured by mutual information (Shannon’s information the-
ory [12]).

The clusterability of a candidate [13] indicates the efficiency
of using threshold values to detect artefacts. Two typical ways
to assess clusterability are the variance ratio of clusters [13]
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and the separability as calculated by Euclidean distances from
an instance to a near-hit and near-miss [14].

Given an exploratory feature pool, by selecting the k highest
ranking candidates (e.g., k = 10 often used in literature of
feature selection), we can construct a more accurate anomaly
detector as non-salient features which cause overfitting are
discarded. Several challenging factors should be noted. One
is the time-dependency of lung function (e.g., lung elasticity
[15]). The others are clinical aspects of FOT; e.g., Rrs and
Xrs are dependent on body size and possibly racial/ethnic
differences [2]. To avoid dependency, feature ranking scores
should be accumulated in a recording-wise scheme. We also
noticed that Rrs within a recording can be non-Gaussian, with
a strong kurtosis. Hence, when applying threshold values, we
do not assume a particular distribution. Instead we use quartile
percentages, called quartile thresholding. In contrast to earlier
works, the deviation threshold is also not assumed, rather it is
determined from the receiver operating characteristic (ROC)
and other performance metrics obtained from training data.

The main contributions of this work are:
• This is the first reported application of supervised ma-

chine learning to respiratory artifact detection in FOT.
• We identify new features that are more relevant and more

discriminative than those previously proposed.
• We propose an anomaly detector which, to the best of

our knowledge, achieves the best reported performance
for FOT data regardless of participants’ age.

II. METHODS

A. Data Collection

Subjects and Protocol: We collated data from two different
age groups (Paediatrics and Adults, Table I). The paediatric
dataset comprised a random sample of 9 subjects (total 69 FOT
runs) for development and 5 subjects (total 31 runs) for out-
of-sample tests. These were taken from a much larger ongoing
epidemiological study, which has been described in detail
elsewhere (Ultrafine Particles from Traffic Emissions and
Children‘s Health, UPTECH) [16][17]. The epidemiological
study collected FOT data, as part of its respiratory function
assessment, in eight- to eleven-year-old children recruited from
25 different public primary schools in Queensland, Australia.
FOT was performed at least 30 minutes after supervised med-
ication administration and with at least 10 minutes rest prior
to recording. Zrs was measured at 6 Hz, using an in-house
built FOT device (transducer Sursense DCAL-4, Honeywell
Sensing & Control; more details as in [18]) and modification
to comply with recent recommendations [19]. Children were
encouraged to breathe in a regular manner, avoid swallowing
and maintain a tight mouthpiece seal. Children had multiple
recordings in a single session as part of the study protocol.

For the adult group, 9 healthy participants and 10 asth-
matic patients were recruited from staff and patients of the
Royal North Shore Hospital, St Leonards, Australia and the
Woolcock Institute of Medical Research volunteer database
(Glebe, Australia) [20]. Healthy participants were non-smokers
with no known respiratory disease. Asthmatic adults had a
physician diagnosis of asthma (clinically stable as defined by

TABLE I
DATA SETS USED IN THIS WORK.

Dataset Subjects Recordings Breaths Description
Ds1 9 69 1110 Development, children
Ds2 9 261 3067 Development, adults
Ds3 5 31 580 Test, children
Ds4 10 285 3947 Test, adults

GINA guidelines [21]) and had no reported diagnoses of any
other cardiac or pulmonary disease. The asthmatic and control
subjects had three recordings over seven days within a 10-day
period at the Respiratory Investigation Unit at Royal North
Shore Hospital [20]. To ensure clinical stability, asthmatic
patients continued to take their usual medications and were
reviewed by a specialist physician at each visit for any changes
in their usual symptoms. All recordings were performed at
the same schedule to avoid any diurnal variation effects. Zrs
was measured at an oscillation frequency of 6 Hz from a
FOT device of similar general design and specifications as the
children dataset [22]. Three separate consecutive recordings
were collected with subjects breathing tidally for 60 second
at each session (day). The participants put their nose clip on
and placed their hands on cheeks to reduce the upper airway
shunt. Recordings were assessed from visual inspection by a
technician if tidal volume and breathing frequency appeared
stable. Artefact labels were made by the operator using rec-
ommendations in [7] (more details in [20]). All subjects gave
written, informed consent and the study was approved by
The Human Research Ethics Committee of Northern Sydney
Central Coast Health (protocol no. 0903-050M). For children,
the study was approved by the Queensland University of
Technology Human Research Ethic Committee.

Data Pre-processing: Flow and pressure signals were dig-
itally sampled at 396 Hz and band-pass filtered with a
bandwidth of ±2 Hz centered around 6 Hz. Rrs and Xrs
were calculated at 0.1s intervals using a standard frequency-
domain method. To ensure a balance between the inspiratory
and expiratory contributions to each breath [7], incomplete
or partial breaths at the beginning/end of the recording were
removed. Since the “not accepted” annotations included non-
eligible physiological breaths which are commonly known
to be rejected by the standard FOT quality guidelines [6],
we discard these artefacts in pre-processing steps and report
separately in later comparisons. First, we remove breaths
that contain negative Rrs which are non-physiological. Then,
we discard breaths that have magnitude-squared coherence
values of pressure and flow less than 0.9 [7]. Unusually high
amplitude observations were successfully caught by the B-3SD
approach in [7] and discarded. Finally, we apply 3IQR (i.e.,
3 IQR away from the median) to Rrs, Xrs, Volume, Pressure,
and Flow.

B. Performance Metrics

Since Rrs is one of the main outcomes of FOT in clinical
and research usage, we consider variability (i.e., the standard
deviation divided by mean) of the average Rrs for each patient
to be critical metric. To quantify this, we aim for an equivalent
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average Rrs, and lower or equal SD compared with the human-
based approach. However, if we only consider variability, we
may not account for the number of valid breaths that remain,
e.g, we may discard most valid breaths together with invalid
ones to achieve low variability. Therefore, when comparing
techniques, we should strive for an equivalent preservation
level and lower variability.

The preservation after removal can be summarised by
standard accuracy metrics (e.g., sensitivity, specificity, and F1-
score [23]) and our new metrics: throughput and approval rate.
In confusion matrices for accuracy calculation, we consider
groundtruth to be the human labels (or “manual”), and posi-
tives to be artefacts.

True Positives (TP) are breaths which were marked as
“artefacts” by both a test algorithm and the annotation. False
Positives (FP) are breaths we labeled as artefacts but did
not agree with the ground truth. Breaths that we failed to
label as artefacts but were annotated as such, are defined as
False Negatives (FN). When the test method and the human
agree a breath was not an artefact, it is counted as a True
Negative (TN). Sensitivity and specificity are TP

TP+FN and
TN

TN+FP , respectively. F1-score, which is the harmonic mean
of precision and sensitivity, has best value at 1 and worst
at 0 [23], is calculated as 2TP

(2TP+FP+FN) . Throughput is the
ratio of breath numbers in the output to input, TN+FN

total input .
Approval rate of the filtered data (i.e., the breaths remaining
after removal) is the ratio of breaths that are “accepted” by
the human to the total output breaths, TN

TN+FN .

C. Feature Selection

We construct a pool of exploratory features. After ranking
candidates, we select the most salient subset of features for
further detection steps. The pool consists of 111 candidates
(Table II), of which 11 have been previously reported. Oth-
ers are our new features: landmark information, resampling
values, and other domains.

1) Feature Extraction: Landmark features are extracted
from landmark points of a breath cycle. Intuitively, we
want to capture the boundary information of normal
cycles to detect anomalies. For example, in Fig. 1.a,
A,B,CL,CR,D,E, F, Z are seven landmark points of which
distances contain information for artefact detection (called 7-
point extraction). Specifically, points B and Z are at the zero
flow value and the higher and lower Rrs values, respectively.
Points A and D are at the maximum and minimum of Flow,
respectively. Points CR, CL and E are at the maximum (right:
positive Flow area and left: negative Flow area) and minimum
of Rrs, respectively.

Resampling features are extracted from one dimensional
input with a fixed number of points for a cycle to alleviate
varied durations of breaths. We noticed that the minimum
length of all breaths in the training data sets is larger than
30 points. For generalization, we consider 20 points per cycle
and assume this is sufficient to describe the fundamental shape
information for a breath curve. Thus, we re-sample Rrs, Flow,
Xrs, Volume at a fixed rate of 20 points/cycle (called 20-point).

Other new candidates in the pool are from different do-
mains. For example, we obtain the changes of polar coor-
dinates over time for each breath (using the mapping from
Cartesian coordinates to their polar ones). We also explore the
wavelet decomposition analysis, DWT, (three level decomposi-
tion) with the Daubechies method [24] of the above 20-point
resampling vectors. For the spectral coherence computation,
we use 0.1667-second windows (as our frequency of interest
is 6Hz) and ensemble-average every three windows with 50%
overlap. This and the impedance are then re-sampled at 10 Hz
to effectively get the same number of coherence points as the
number of impedance values. The existing are minima and
maxima of Rrs, and DWT of pressure (e.g., in [7–11]).

TABLE II
LIST OF FEATURES EXAMINED IN THIS WORK.

Measure-
ment

Domain Function Description New? ID

Pressure Fre-
quency

Maximum value of first
level DWT

No 1

Xrs Time Maximum, minimum,
range

No 2-4

Xrs Time 20-point re-sampled Yes 8-27
Volume Time Maximum, minimum,

range
No 5-7

Volume Time 20-point re-sampled Yes 28-47
Rrs Time Peaks, minimum, Cr,

Cl, E
No 54, 56,

61
Rrs Time 20-point re-sampled Yes 65-84
Flow Time Minimum No 62
Flow Time

2D
Landmark Cr,Cl, E Yes 55, 57,

63-64
Flow Time 20-point re-sampled Yes 85-

104
Rrs, Flow 2D Landmark Z, B, A Yes 48-53
Rrs, Flow 2D Landmark Z and D Yes 58-60
Rrs, Flow 2D Mean and std of polar

coordinators from 20-
point Rrs, Flow

Yes 105-
108

Rrs, Flow 2D Fre-
quency

Maximum of full DWT
from 20-point Rrs, Flow

Yes 109,
110

Rrs, Flow Fre-
quency

Maximum spectral co-
herence Rrs and Flow

Yes 111

Fig. 1. (a): All clinical accepted breaths (Rrs against Flow) of one child
(several recordings) and 7 points proposed to determine boundary landmarks
(dotted) for curves. (b): Example features extracted by landmarks for one
breath from a child (dotted: Euclidean distances between points).

2) Saliency Criteria: We examine the relevance and cluster-
ability of feature candidates using mutual information scores
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Fig. 2. Example of unified 20-point resampling for a breath (Volume, time).

(between a feature candidate and the label) and the inter-class
distances. Specifically, let X be a discrete random variable
with alphabet X and probability mass function p(x) = P{X =
x}, x ∈ X. The entropy Hb(X) of X measures its uncertainty.
Hb(X) is defined by Hb(X)

def
= −

∑
x∈X p(x) logb p(x),

where b is the base of the logarithm. In this work, we take
b = 2, and hence entropy will be measured in bits. Let C be a
target variable (c ∈ C, class label set). The mutual information
between X and C, I(X;C) measures the relevance of X to
C [12].

I(X;C)
def
= H(X)−H(X|C) =

∑
x∈X

∑
c∈C

p(xc) log
p(xc)

p(x)p(c)

(1)
As a measure of redundancy, symmetrical uncertainty be-

tween X and C, SU(X,C) [25], is a weighted average of two
uncertainty coefficients: CXY

def
= I(X;Y )

H(Y ) and CY X
def
= I(X;Y )

H(X) .
SU(X,C) is often referred to correlation. Thus, the relevance
of a feature is computed by SU(X,C) = 2 I(X;C)

H(X)+H(C)
(namely the SU score)

For clusterability, we use the RELIEF algorithm to calculate
Euclidean distances between features and a near-hit or near-
miss instance [14],[26]. The variance ratio of a feature X is the
ratio of the between-cluster variance (BC(X)) to the within-
cluster variance (WC(X)), V (X)

def
= BC(X)

WC(X) . A higher V (X)
implies that it is easier to cluster X [13], therefore the feature
is more desirable.

3) Challenging Factors: Fig. 3 illustrates the time depen-
dence of samples within and between recordings (and between
different age groups). These variations and artefacts are con-
tained partly in the scaling information of the samples. This
may introduce bias into ranking scores of features which are
extracted from amplitude values across recordings. To reduce
the bias, we accumulate scores for each feature candidate in
a recording-wise manner.

4) Other Criteria: Apart from saliency ranking, we select a
relevant and efficient feature set based on performance metrics.
We investigated ROC, F1-score, throughput, and approval
rate. For a clinical interest, we have quantified the reduction
in artefactual activity and selected features by the variability
of the average Rrs.

D. Artefact Detector

In thresholding filters, a breath is marked as an artifact and
discarded if one of its features exceeds a given upper bound

(a) Variability of Rrs in recordings within one child.

(b) Changes across children in one data set.

(c) Changes across adults in one data set.

Fig. 3. Examples of challenges in learning contaminated Rrs (after prepro-
cessing) within a participant (a) and between participants (b), (c).

or is less than a lower one. Since the normality hypothesis of
Rrs in a recording is rejected with a significance level of 0.05
(the p-values were very close to zero; 0 to 1.27× 10−17) by
the Lilliefors test [27] and the KS test [28], we do not assume
a specific data distribution. Instead we use the ROC plots to
determine the threshold parameters. We refer to this detector
as a quartile thresholding filter.

Let Q1, Q3, and IQR denote the 25th, 75th percentiles and
the interquartile range of a variable respectively. Let nIQR be
a number of IQR intervals away from the Q1 and Q3. The
lower bound θL is defined by nIQR interquartile intervals less
than Q1. The upper bound θH is nIQR intervals greater than
Q3, i.e.:

θL = Q1 − nIQR × IQR (2)
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θH = Q3 + nIQR × IQR (3)

To simplify parameter settings, we apply the same nIQR to
all features and categorize subjects into two age groups (i.e.,
Paediatrics and Adults). We split each age group into two data
sets: one for development and the other for test. For example,
the set of (development, test) for children is (Ds1, Ds3) and
for adults is (Ds2, Ds4), details of data sets as in Table I.

We compare our detector with B-3SD [7] and the wavelet in
a complete-breath rejection fashion [10] (namely B-wavelet).
These two methods were recently proposed as the best auto-
mated ones in the literature. Note that, the work in [10] used
a point rejection approach and asked the participant to in-
tentionally introduce artefacts while B-wavelet uses complete-
breath rejection, and was tested with our real-life artefacts. We
performed B-wavelet with three levels of DWT coefficients
(cd1,cd2,cd3) and the db5 method for pressure, and then used
the three recommended thresholds in [10] (i.e., cd12 = 0.004;
cd22 = 0.023; cd32 = 0.07).

III. RESULTS

A. Saliency Ranking

Ranking scores (i.e., RELIEF, SU, and Variance-Ratio)
for each feature candidate are presented in Fig. 4. Features
with circle markers have been currently used in the literature
(Table II) while the others are our new candidates. Group
“I” illustrates results for children while “II” depicts adults.
We sorted scores in the entire pool from high to low by
each saliency criterion. Ranking order for the pool in Fig.
4.a is from 1 to 111 (high to low); the higher saliency score
indicates the higher ranking order. Fig. 4.b shows the first ten
identifications of features (IDs, detailed in Table II) that have
the highest scores.

As can be seen in Fig. 4.a, only three previous features (the
minimum and peaks of Rrs) are in the top ten highest ranking
candidates from the children group. For adult cases, these Rrs
features have moderate variance ratio and very low RELIEF
scores. Our novel landmark features dominate not only in both
children and adult groups but also across all three saliency
criteria. Specifically, in Fig. 4.b, they are landmark features
ID 48, 49, 50, 54 56, 64, description for these features as in
Table II. In next steps, given a detector of interest, we continue
the selection by performance criteria.

B. Detection Performance and Parameter Settings

Using a quartile thresholding detector, against a wide range
of deviation threshold parameters, we compared the ROC, F1-
scores, throughput, and approval rate curves (Fig. 5) and the
variability (Fig. 6) of three selection schemes with the case of
no selection. Apart from examining effects of introducing the
selection schemes, we use the above curves to determine the
optimized nIQR settings.

We explored nIQR in a range 0 → 10 (incremental steps
of 0.25). For nIQR > 4, curves did not vary significantly.
Hence, we depict these curves only for nIQR ≤ 4. Four criteria
(Relief, SU, Variance Ratio or No-sel (i.e., no selection)) are

presented with different markers. Fig. 5(a,e) presents their
F1-scores. ROCs are shown in Fig. 5(b,f) with solid lines
for sensitivity, and dotted for specificity. The throughput and
clinical approval rate of the removal are illustrated in Fig.
5(c,g) and (d,h), respectively. The effects of nIQR and the
feature selection on the variability are demonstrated in Fig. 6.

We observed that characteristic curves were different be-
tween age groups. When no feature selection algorithm is
used, the optimized empirical nIQR is 3 for children and 2
for adults. If a feature selection algorithm is involved, the
optimized empirical nIQR reduced to around 1.5 for children
or 1 for adults. F1-score and throughput are also improved
significantly.

One important parameter setting is nIQR = 1. Across
three feature selection algorithms, this setting can work in
a subject-independent manner with a high sensitivity (around
80%) and specificity (about 70%) regardless of participant age
(i.e., children or adults). Although curves of the three saliency
criteria were quite comparable, in approval rate and variability,
the SU selection is better. Hence, we proposed a final model
for the quartile thresholding detector that uses the SU selection
technique and settings of nIQR = 1, called 1IQR-SU. In the
next section, we do out-of-sample test with this model and
compare with the aforementioned existing artefact removal
methods.

C. Out-of-sample Tests

We used unseen test sets (Ds3 for children and Ds4 for
adults) to validate the proposed detector (1IQR-SU). Table
III compared 1IQR-SU with existing complete-breath based
methods: B-3SD [7] and B-wavelet [10]. Manual is the ref-
erence value calculated from removals by a human expert.
Paired t-tests (two-tailed) for the variability (the test minus
the operator, degrees of freedom of four (Ds3) or nine (Ds4))
are also reported in Table III. In terms of sensitivity, approval
rate by operator (i.e., of the output are breaths “accepted” by
the clinician), and the variability, 1IQR-SU is the best detector.
For example, in adults, although the mean Rrs of the 1IQR-SU
had a comparable average value with the operator, the standard
deviation is lower (only 0.40 while the operator was 0.44 with
p value is 0.06).

Rrs in our study ranged from 1.7 → 8 cmH2OL−1s in
adults (Table III), i.e. a mild to medium range of obstruction.
To investigate the potential influence of obstruction on our
detector, Figure 7a shows one performance metric, i.e. the
approval rate, plotted against the median resistance for each
recording, while Fig. 7b shows the distribution of the approval
rate. It can be seen that while there is a large range, it
remains mostly high regardless of the median Rrs. Similarly in
children, Fig. 7c and 7d show that, with the exception of three
recordings, approval rates remains high regardless of median
Rrs, albeit within a smaller range of resistances. We also
quantified the independence of the approval rate and Rrs using
the distance correlation [29], and obtained 0.12 for adults and
0.27 for children, with complete independence indicated by 0.
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Fig. 4. Ranking scores for the feature pool (a) and the ten highest-score candidates (b). Vertical axes: scores calculated by three saliency criteria. Horizontal
axes in (a): ranking order (highest =1, lowest=111); (b): feature identification (ID) in the pool. Features with circle markers were existing ones in literature.

Fig. 5. Effects of nIQR and feature selection for paediatrics (top) and adult (bottom). Markers are for different feature selection algorithms. (a,e) are for
F1-scores. (b,f) are for ROC curves (Solid lines: sensitivity; the dotted: specificity). (c,g) are for throughput curves. (d,h) are for approval rate.



7

Fig. 6. Effects of nIQR and feature selection on the variability of the
average Rrs (standard deviation over the mean across patients). Markers are
for different selection algorithms. (a) is for children and (b) is for adults.

IV. DISCUSSION

Our experiments were executed on recordings collected
from adults and eight- to eleven-year-old children in Queens-
land and New South Wales, Australia. These recordings will
be made available for public use on the UCI machine learning
repository (http://archive.ics.uci.edu/).

For the feature extraction, we suggest to obtain landmark
features of the two dimensional resistance-against-flow curves.
This feature group is highly ranked by supervised learning
techniques using saliency scores (RELIEF, SU, variance ratio).
The SU score measures the correlation (mutual information)
between one feature candidate of a breath and its label of
abnormality. Meanwhie, RELIEF and variance ratio scores
depict the clusterability of a feature candidate.

Although selecting the ten highest score candidates is
common practice in the literature of feature learning, we
acknowledge that an investigation for the stability of these
feature preferences should be undertaken. Nevertheless, our
results are consistent with more than one well-known feature
selection algorithm with four separate data sets. As can be
seen, scores that come after the top ten were significantly lower
than the highest level. Thus, k = 10 satisfied our requirements.
In practice, one may choose the entire landmark group and the
resulting detector will perform comparably to the approach
of this paper. This is because the majority of the top ten
percentage are actually landmark features and the performance
curves varied negligibly among selection algorithms.

While we demonstrated a reasonable degree of indepen-
dence between the accuracy of our detector and levels of
obstruction, further work is required to determine if the detec-
tor can be applicable to recordings from severely obstructed
patients or those experiencing an exacerbation. Also of note

TABLE III
OUT-OF-SAMPLE TEST PHASE. 1IQR-SUa IS THE PROPOSED. OTHERS ARE

THE EXISTING. P VALUES b ARE FROM PAIRED T-TESTS (TWO-TAILED,
N = 5 (Ds3) OR 10 (Ds4)). POSITIVES ARE ARTEFACTS c

Paediatrics (test Ds3)
B-3SD
[7]

B-wavelet
[10]

1IQR-SUa Manual

F1-scorec [%] 46.8 21.6 41.2 -
Approvalc [%] 95.4 94.8 98.0 -
Throughputc [%] 82.7 30.0 67.1 84.1
Mean(±SD) Rrs
[cmH2OsL−1]

3.72
(±
0.18)

3.74 (±
0.20)

3.70 (±
0.17)

3.75
(±
0.16)

P -valueb Rrs 0.08 0.84 0.03 -
Mean(±SD)
SDRrs
[cmH2OsL−1]

0.29
(±
0.13)

0.38 (±
0.12)

0.32 (±
0.11)

0.32
(±
0.13)

P -valueb SDRrs 0.23 0.25 0.82 -
Adults (test Ds4)

F1-score c [%] 50.6 49.3 54.7 -
Approvalc [%] 77.4 78.1 80.6 -
Throughputc [%] 85.4 55.9 63.4 68
Mean(±SD) Rrs
[cmH2OsL−1]

3.69
(±
0.97)

3.69 (±
0.98)

3.66 (±
0.94)

3.67
(±
0.95)

P -valueb Rrs 0.34 0.58 0.14 -
Mean(±SD)
SDRrs
[cmH2OsL−1]

0.40
(±
0.23)

0.41 (±
0.27)

0.40 (±
0.24)

0.44
(±
0.21)

P -valueb SDRrs 0.05 0.86 0.03 -

a The detector used one interquartile range as a subject-independent
parameter with the top ten salient features selected by the SU technique.

b compared to Manual, significant if P < 0.05.
c Removals by a specialist is considered ground truth. F1-score is the

harmonic mean of precision and sensitivity. Throughput is the ratio of breath
numbers in the output to input. Approval rate of the breaths remained after
removal is the ratio of breaths that are “accepted” by the human to the total
output breaths. Details of equations as in Section II-B.

is that in our datasets of healthy and asthmatic subjects,
Rrs features ranked consistently high, whereas the features
associated with Xrs did not rank highly for inclusion in the
detector. This may be different in other diseases, and remains
to be tested.

Finally, we have limited our analysis to a single frequency
closest to what is commonly reported in the literature (5 Hz).
However, our detector could also be applied to multi-frequency
systems which are commonly used, using a similar set of
features for each component frequency.

V. CONCLUSION

Recordings in lung function tests (FOT data) are naturally
subject to artefacts. In this work, we studied two important
problems related to of artefact removal. One is finding new
features that are more relevant to respiratory artefact character-
istics. The other is searching for an efficient scheme to detect
and remove artefacts. Our proposed method is objective and
has an equivalent reliability to the manual method (the current
gold standard).

Our landmark features were found among the ten percentile
of candidates in both children and adult groups, across the
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Fig. 7. Approval rate plotted against median Rrs and histogram of approval rates for all recordings for the adults (a, b) and children (c, d) testing datasets.

three saliency criteria. To remove artefacts, we implemented
a thresholding detector. The detector operates on complete-
breaths to guarantee a balance between the inspiratory and
the expiratory. We also proposed performance metrics (e.g.,
ROC and the variability) to determine threshold parameters.

During development, the performance curves (i.e., F1-
scores, ROC, and the variability) against the parameter nIQR

showed that the top ten features outperformed the case of no
feature selection. The three saliency scores yield nearly similar
performance curves. The 1IQR-SU configuration was found to
give good results in a subject-independent setting, regardless
of age. In out-of-sample tests, our detector performed similar
to the gold standard, as assessed by through paired t-tests
(two-tailed) for variability.

Our findings are an important first step towards objective
and automated quality control of FOT measurements, as FOT
moves beyond its long-standing role in the respiratory research
realm, becomes more available in commercial systems and
is increasingly adopted in clinical and home telemonitoring
settings.
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