
FIXED-POINT IMPLEMENTATIONS OF SPEECH RECOGNITION SYSTEMS

Yuet-Ming Lam

Dept. of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, NT, Hong Kong
ymlam@cse.cuhk.edu.hk

Man-Wai Mak

Dept. of Electronic and Information Engineering
The Hong Kong Polytechnic University

Hung Hom, Hong Kong
enmwmak@polyu.edu.hk

Philip Heng-Wai Leong

Dept. of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, NT, Hong Kong
phwl@cse.cuhk.edu.hk

ABSTRACT

Fixed-point hardware implementations of signal processing algo-
rithms can often achieve higher performance with lower computa-
tional requirements than a floating-point implementation. How-
ever, the design of such systems is hard due to the difficulty of
addressing the quantization issues. This paper presents an opti-
mization approach to determining the wordlengths of fixed-point
operators in a speech recognition system. This approach enables
users to achieve the same result as in floating-point implementa-
tion with minimum hardware resources, resulting in reduced cost
and perhaps lower power consumption. These techniques lead to
an automated optimization based design methodology for fixed-
point based signal processing systems. An object oriented library,
called Fixed, was developed to simulate fixed-point quantization
effects. Quantization effects during recognition were analyzed,
and appropriate wordlength that can balance hardware cost and
calculation accuracy were determined for the operators.

1. INTRODUCTION

Most previous hardware implementations of speech recognition
systems used fixed-point arithmetic becauseit results in lower hard-
ware requirements. A VLSI chip for isolated speech recognition
system which can recognize 1000 isolated words per second was
introduced in [1]. Some popular DSP chips such as the TMS320
series [2] have been widely used for implementing fixed-point speech
recognition systems, e.g. [3] , [4] and [5].

Previous fixed-point implementations of speech recognition
systems concentrated on optimizing recognition accuracy and real
time performance, and quantization effects in fixed-point arith-
metic were seldom directly addressed. With improvements in speech
models and VLSI technology, speechrecognition accuracy is much
higher than in the past, and designing a speech recognition system
with real time performance is not that difficult. However quanti-
zation issues remain a problem when designing a fixed-point hard-
ware system.

This paper introduces a framework to address the quantization
issues which arise in a fixed-point isolated word recognition sys-
tem. A fixed-point class, called Fixed, was developed to simulate
fixed-point arithmetic, the isolated word recognition system was
described using the fixed-point class. By analyzing the quantiza-
tion effects, optimal wordlengths for operators were found. These
wordlengths are optimal in the sense that they can balance hard-
ware cost and calculation accuracy. Compared with previous im-
plementations, this approach has advantages in design effort and
hardware resource utilization. For example, in [6], in order to
find an optimal allocation of variables’ precision, the authors need
to implement several systems using different numerical formats,

LPC
processor

VQ for word 1

VQ for word 4

VQ for word 3

VQ for word 2

HMM for word 1

HMM for word 4

HMM for word 3

HMM for word 2

Find
Maximum

Score

speech
data

output
word

.

.

.

.

.

.

Figure 1: Isolated word recognition system

such as single fixed-point format, double fixed-point format and
floating-point format. Our proposed approach, however is a simu-
lation based approach and each variable can be of arbitrary preci-
sion. This leads to shorter design time and better resource utiliza-
tion.

The organization of this paper is as follows. In section 2, the
isolated word recognition model used in this paper is introduced.
In section 3, we present the detail implementation of the fixed-
point class. In section 4, we discuss the design methodology. In
section 5, we present the experimental results. Section 6 is the
conclusion.

2. SPEECH MODEL

Figure 1 is the block diagram of the isolated word recognition sys-
tem used in this paper. The system contains three components:
the linear predictive coding (LPC) processor, the vector quantizer
(VQ) and the hidden Markov model (HMM) decoder [7]. In the
system, a common LPC processor was used for all word models,
with each word model having one VQ and one HMM decoder. All
states of the HMM decoder share the same VQ codebook.

The linear predictive cepstral coefficients (LPCCs) [7] were
extracted from the input speech data by an LPC processor. The
LPCCs were passed to a VQ and a sequence that represents the
codebook indexes having minimum distance with the LPCCs is
produced. An HMM decoder was used to calculate the score for
the VQ output sequence, and the word with the maximum score
was chosen as the output word.



2.1. LPC feature analysis

In an LPC model, speech sample s�m� at time m can be approxi-
mated as a linear combination of the previous t speech samples:

s�m� �

tX

n��

ans�m� n� � Gu�m� (1)

whereGu�m� is an excitation term. Transformed into the z-domain,
we obtain the transfer function:
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�
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n�� anz
�n
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As shown in Figure 2, the normalized excitation source u�m�
is scaled by the gain G. In speech recognition, the LPC feature
analysis finds the filter coefficients an that can best model the
speech data, which are used for further processing in the recog-
nition process.

To calculate an , LPC feature analysis involves the following
operations [7] for each speech frame:

1. Preemphasis and Windowing

p�m� � s�m�� �s�m� ���

where � � ����	
 (3)
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where � � m � N � � (4)

2. Autocorrelation Analysis

r�k� �

N���kX

m��

�p�m��p�m� k��

where � � k � t (5)

3. LPC Analysis
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n where � � n � t (11)

4. Conversion to cepstral coefficients
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�
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n
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where � � n � t (12)

The LPC coefficients an were converted to cepstral coeffi-
cients, which are the Fourier transform representation of the log
magnitude spectrum. Using cepstral coefficients as features in
speech recognition have been shown to be more reliable [7].
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Figure 2: LPC model for speech recognition
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Figure 3: Vector quantizer

2.2. Vector Quantization

The VQ codebook is a discrete representation of speech. The VQ
will find a codebook index corresponding to the vector that best
represents a given spectral vector [7]. Figure 3 shows the vec-
tor quantization processing, for an input vector sequenceV fv����
v���� v���� ���� v�N�g, VQ will calculate the vector distance be-
tween each vector in codebook Cfc���� c���� c���� ���� c�P �g and
each input vector v�n�, and the codebook index with minimum
distance will be chosen as output. After VQ, a sequence of code-
book indexes Ifi���� i���� i���� ���� i�N�g will be produced. The
vector distance between an input vector v�n� and each vector in
codebook are calculated as follows:

for p from 1 to codebook size f
distance(p) = 0;
for k from 1 to vector length f
temp = (v(n)(k) - c(p)(k))*(v(n)(k) - c(p)(k));
distance(p) = distance(p) + temp;

g
g
i(n) = arg minp (distance(p));

2.3. HMM decoder

The Viterbi algorithm [7] is used to find the most likely state se-
quence and the likelihood score for a given observation sequence.
Using the Viterbi algorithm, computation is reduced since the main
operations are addition rather than multiplication as in the tradi-
tional HMM decoding algorithm [7]. The score � for the VQ code-
book index sequence is calculated as:

�t�j� � max
��i�M

��t���i� � log�aij�� � log�bj�ot�� (13)

where �t�j� is the maximum score along a single path ending at
time t, aij is the probability of state transaction from i to j and
bj�ot� is the density function of the input symbol ot’s at state j.
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Figure 4: Fixed-point number representation

3. FIXED-POINT CLASS

In order to analyze quantization effects and utilize variable preci-
sion fixed-point arithmetic in the isolated word recognition system,
a fixed-point class, called Fixed, was developed in the C++ lan-
guage. The detailed implementation of the fixed-point class will
be described later. The isolated word recognition system was also
described in the C++ language using this fixed-point class. In this
way, all operators in a floating-point implementation can be rep-
resented by fixed-point objects. A fixed-point object contains the
following attributes:

<integer_size, fraction_size>

By defining different a integer size and fraction size for
each fixed-point operator, all operators can be of arbitrary wordlength.

3.1. Fixed-point representation

Floating-point numbers can be represented in fixed-point format,
and the format used in this work is shown in Figure 4. All fixed-
point numbers are represented in 2’s complement format. The In-
teger Size is the number of bits used to represent the integer part,
and the Fraction Size is the number of bits used to represent the
fraction part.

3.2. Fixed class

C++ was used because it offers faster execution than other object
oriented languages such as Perl or Java. Several operators such as
�, �, � and � are overloaded by the Fixed class.

� +/-: These operators can perform addition/subtraction of
two Fixed objects and the result is also a Fixed object. The
two input Fixed operands can have different integer size
and fraction size, and the addition/subtraction result will
choose the maximum integer and fraction size of the two
input operands. For example, if the integer and fraction
size for the first operand are 4 and 3 respectively and those
for the second operand are 3 and 9, the result has integer
size 4 and fraction size 9. The two operand are aligned, and
addition/subtraction are done in fixed-point.

� *: This operator can perform multiplication of two Fixed
objects. The product’s wordlength will be the summation
of the two input operands’ wordlength minus one.

� / : This operator can perform division of two Fixed objects.
To avoid loss of precision, the result will have the maximum
integer and fraction size of the two input operands.

� =: If the input operand is a floating number, this operator
will convert the floating point number into a fixed-point ob-
ject at a precision specified by the target object. If the input
operand is a fixed-point object, this operator will round it up
to the target object’s precision. Furthermore, the maximum
value involved in the calculation is stored in this object, and

the maximum value will be used to determine the minimum
integer size of this operand.

The following method is provided by Fixed:

� getIWL() : The class can monitor the dynamic range of the
calculation, and record the minimum and maximum values
of each variable. This method will get the minimum inte-
ger size for this variable, the minimum integer size being
calculated from the maximum value.

The fixed-point class also supports arrays, and saves the max-
imum value of the array. When calculating the minimum integer
size, if this object is an array, the size will be calculated using the
maximum value of all elements in the array.

3.3. Operator overloading

Converting a floating-point program into fixed-point implementa-
tion can be done by replacing the variable definition. The rest of
the program is unchanged. For example, the following floating-
point program:

float a;
float b;
float c;

a = 1.23;
b = 4.56;
c = a + b;

can be transformed into the fixed-point implementation:

Fixed a(4, 5);// integer size 4, fraction size 5
Fixed b(5, 6);// integer size 5, fraction size 6
Fixed c(5, 5);// integer size 5, fraction size 5

a = 1.23;
b = 4.56;
c = a + b;

In the above fixed-point program, in statements a � ���� and
b � ��

, since the � � � operator is overloaded, floating-point
values ���� and ��

 will be converted into fixed-point format and
stored in Fixed objects a and b. Statement �a� b� will be handled
by the overloaded operator ��� and the result will be a Fixed ob-
ject. When assigned to c, the sum will be round up to the precision
of c.

4. DESIGN METHODOLOGY

Figure 5 shows the design flow employed in this paper. VQ and
HMM training were done using floating-point arithmetic. The iso-
lated word recognition system was developed in C++ using the
fixed-point class. After the calculation, the minimum integer size
for each operand can be obtained. Minimum circuit area imple-
mentation can be found by further performing fraction size opti-
mization.

4.1. Arithmetic circuit area calculation

Since this paper focuses on analyzing the quantization effects and
finding a minimum wordlength implementation which will result
in minimum circuit area, in the estimation of hardware costs, only
arithmetic components are taken into account . Furthermore, in
the isolated word recognition system, the main operations are ad-
dition, subtraction, multiplication and division, the circuit area cal-
culation will only consider these four operations.



Fixed Class

Isolated word
recognition system

described using
Fixed

Fraction Size
Optimization

Minimum Circuit
Area

Trained models:
VQ codebook

and HMM
parameters

Minimum
Integer Size

Minimum
Fraction Size

Model training
using floating-point

arithmetic

Figure 5: Design flow

a2 a1 a0

b2 b1 b0x

a0xb0a1xb0a2xb0

a0xb1a1xb1a2xb1

a0xb2a1xb2a2xb2

s2 s1 s0s4 s3

4 bit adder

4 bit adder

Require 8 one-bit
full adders

+

Figure 6: Standard multiplication algorithm

The cosine operation in the LPC feature analysis and loga-
rithm operation in the HMM decoding were implemented using
lookup tables. In Equation 4, only N cosine results need to be
calculated, and in Equation 13, the logarithm function is required
only for the calculation of state transaction probability.

When estimating the arithmetic circuit area, since addition,
subtraction, multiplication and division can be implemented using
adders, circuit area is counted as the number of one-bit full adders
used for each arithmetic operation. The following descriptions de-
tail the arithmetic circuit size estimation for each operation.

� addition/subtraction: Since the result chooses the maxi-
mum integer and fraction size of the two input operands,
the number of full adders (i.e. the circuit size) used is:
Max�I�� I�� � Max�F�� F��, where (I� and F�)/(I�
and F�) are the integer size and fraction size for the first/s-
econd operand.

� multiplication: Different implementations of multipliers have
different circuit sizes. In this paper, we used the paral-
lel multiplier shown in Figure 6, In this example, two 4-
bit adders are required and the total number of one-bit full
adders required is 8. The circuit size of an n bit � m bit
multiplier is: n �m� �

� division: A basic division algorithm, restoring-division [8],
was used in this paper. Using this algorithm, only addi-
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tion is used and the circuit size will be: Max�I�� I�� �
Max�F�� F��, where (I� and F�)/(I� andF�) are the in-
teger size and fraction size for the first/second operand.

The total arithmetic circuit size is calculated by summing the
circuit size of all addition, subtraction, multiplication and division
operators for the entire isolated word recognition system.

4.2. Fraction size optimization

After finding the minimum integer size for each operand, the opti-
mization stage will find the minimum fraction size for each operand,
which will result in minimum circuit size while achieving the same
recognition accuracy as that of a floating-point system.

One difficulty in performing wordlength optimization is that
the searching space is very large. For example, in a speech sys-
tem containing 50 variables, and assuming an average wordlength
of 16-bits, the total searching space is �
�� . Consequently, an
alternative approach was used to limit the search space during
wordlength optimization.

The approach taken for fraction size optimization will be in-
troduced below. It is divided into two stages, in the first stage, it
optimizes the fraction size from the entire system’s point of view,
and then in the second stage, it further optimizes the fraction size
of the LPC processor.

4.2.1. System level optimization

In this stage, the isolated word recognition system was divided into
three parts, namely the LPC processor, VQ and HMM decoder, and
the fraction size of each part was minimized independently via a
brute force search. The optimization steps are shown by Figure 7.

1. Optimize whole speech system’s fraction size

2. Optimize LPC processor’s fraction size

3. Optimize VQ’s fraction size

4. Optimize HMM decoder’s fraction size
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4.2.2. LPC processor’s fraction size optimization

Since the LPC processor occupies most of the hardware resources,
the LPC processor was further divided into four parts, namely pre-
emphasis and windowing, autocorrelation analysis, LPC analysis,
and cepstral coefficient conversion. Optimization was done to min-
imize these four fraction sizes as shown in Figure 8. An opti-
mizer using the Nelder-Mead algorithm [9] was used to minimize
the hardware cost of the LPC processor based on a user defined
cost function which takes recognition accuracy and implementa-
tion cost into account, finding an implementation which balances
hardware cost and recognition accuracy. The following cost func-
tion was used:

cost � ��LPC CircuitSize� ��RegAcy (14)

where RegAcy is the recognition accuracy calculated using fixed-
point arithmetic, and � and � are the weights of circuit area and
recognition accuracy respectively. Note that � and � can be ad-
justed for different weightings of circuit area and recognition ac-
curacy. For example, if circuit area is very important, � can be a
large value and � can be small.

In this work, the following condition was added to compute
the cost:

if (RegAcy < expectRegAcy) {
penalty = expectRegAcy - RegAcy;
cost = cost + VeryLargeValue * penalty;

}

where expectRegAcy is a user defined expected recognition
accuracy. In this work, the recognition accuracy of a floating-point
system was used. The optimizer will try different combinations of
fraction size for the four parts in the LPC processor, cost is in-
creased when recognition accuracy is smaller than the user speci-
fied recognition accuracy, and the optimizer will recognize that it
must try other fraction sizes to obtain higher recognition accuracy.

5. RESULTS

The isolated word recognition system uses 12th order LPCCs ,
a codebook with 64 code vectors, and 20 HMMs, each with 12
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states. One set of utterances from the TIMIT TI 46-word database
[10] containing 20 words from 8 males and 8 females were used
for both training and recognition. There were 26 utterances for
each word, 10 were used for training and 16 were used for recog-
nition. The recognition accuracy calculated using floating-point
was ������.

The isolated word recognition system was developed using the
Fixed class. Since fixed-point arithmetic was simulated using ob-
jects, the execution time is much longer than a floating-point im-
plementation using primitive float type. Specifically, 	��
 hours
were required to perform recognition for all words using fixed-
point simulation on an Intel Pentium 4 2.2GHz processor. Parallel
computing was used carry out the simulation such that different
fraction size implementations were executed in parallel using a
Linux cluster with 32 processors.

Figure 9 shows the result obtained after optimization step de-
scribed in Section 4.2.1, which is system level optimization. In
this diagram, the line with marker “�” represents the recognition
accuracy using floating-point arithmetic, and other lines are the
recognition accuracy using fixed-point arithmetic for different op-
timization step.

The line with marker “�” in Figure 9 represents the recogni-
tion accuracy obtained after system level optimization step 1. All
operators in the isolated word recognition system use the same
fraction size in this step. It can be seen that at fraction size ��, the
fixed-point calculation reaches the same recognition accuracy as
floating-point arithmetic.

The line with marker “�” in Figure 9 represents the recogni-
tion accuracy obtained after system level optimization step 2. In
this step, the VQ and HMM decoder have fraction size 24, and the
LPC processor’s fraction size is varied. It can be seen that when
the LPC processor’s use fraction size 24, the fixed-point calcula-
tion can reach floating point calculation’s recognition accuracy.

The line with marker “�” in Figure 9 represents the recogni-
tion accuracy obtained after system level optimization step 3. In
this step, the LPC processor and HMM decoder have a fraction
size of 24, and the VQ fraction size is varied. It shows that, at
a VQ fraction size of 8, the fixed-point calculation has the same
recognition accuracy as floating-point arithmetic.

The line with marker “�” in Figure 9 represents the recogni-



Table 1: System level fraction size optimization

LPC processor VQ HMM decoder Total
fraction size/ fraction size/ fraction size/ Circuit
LPC circuit VQ circuit HMM circuit Size
size size size

Before
optimization 24/9076 24/842 24/195 10100
After
optimization 24/9076 8/186 1/57 9306

Table 2: LPC processor’s fraction size optimization

Before LPC After LPC
optimization optimization

Preemphasis and windowing
fraction size 24 20
Autocorrelation
fraction size 24 31
LPC analysis
fraction size 24 20
Cepstral conversion
fraction size 24 19
LPC processor
circuit size 9076 6857
Total
circuit size 9306 7100

tion accuracy obtained after system level optimization step 4. In
this step, the LPC processor’s fraction size is fixed at 24, VQ frac-
tion size at 8, and the HMM decoder’s fraction size is varied. In
Figure 9, it can be seen that using a fraction size of 1 for the HMM
decoder is sufficient.

Table 1 shows the circuit size before and after system level
fraction size optimization and optimal fraction sizes of 24, 8 and
1 were found for LPC processor, VQ and HMM decoder respec-
tively. Circuit size before optimization was 10100. After optimiza-
tion, it is reduced to 9306, a 7.9% improvement.

Table 2 shows the circuit size before and after the LPC pro-
cessor’s fraction size optimization. After optimization, fraction
sizes of 20, 31, 20 and 19 were found for preemphasis and win-
dowing, autocorrelation analysis, LPC analysis and cepstral coef-
ficient conversion respectively. LPC circuit size after optimization
is 6857, and the total circuit size after optimization is 7100. Com-
pared with the original circuit size of 10100, an improvement of
29.7% was achieved.

Fraction size 1 is sufficient for the HMM decoder. As shown
in Figure 1, in HMM decoding, the scores for all words are sorted
and the word with highest score will be chosen as output. Although
there are some errors for smaller fraction sizes, the correct score
sequence for all words still can be calculated. Furthermore, since
the HMM state transaction probabilities are computed in the log
domain, the integer part is the most important factor that affects
the scores.

6. CONCLUSION

A framework involving a fixed-point library was developed to ad-
dress the quantization issues of fixed-point systems. An object ori-
ented library, called Fixed, was developed to simulate fixed-point
arithmetic such as addition, multiplication and division where each
operator can use wordlength of arbitrary precision.

This framework was applied to an isolated word recognition
system based on a vector quantizer and a hidden Markov model
decoder using LPCCs as features. Utterances from the TI 46-
word TIMIT database were used for both training and recognition.
Training was done in floating-point format to find the VQ code-
book and maximum likelihood estimates of the HMM parameters.

Recognition accuracy are used as optimization constraints, s-
uch that the wordlengths for the LPC processor, VQ and HMM
decoder were found. The optimized wordlengths result in a 29.7%
reduction in circuit area. Such an approach leads to clear advan-
tages both in design effort and hardware resource utilization over
the traditional approaches where the same wordlength is used for
all operators.
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