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Abstract—Time series forecasting is routinely utilized to im-
prove regulation in finite horizon control (FHC) problems by
forecasting the system’s uncontrollable inputs. In this paper, we
propose a novel measure for validating forecasting models for
FHC applications. Specifically, for the case of linear quadratic
time invariant systems, we derive a closed form equation for
the increase in cost due to forecast error, present techniques for
reducing its computational cost, and demonstrate that compared
to conventional error measures, model validation using this
measure can improve the controller’s performance.

Index Terms—Time series forecasting, Model selection, Finite
horizon control, Linear quadratic regulator

I. INTRODUCTION

F INITE horizon control (FHC) is the process of deter-
mining control policies by solving an optimal control

problem over a finite time horizon. The FHC methodology
is well studied [1], [2], especially for linear-quadratic (LQ)
systems where closed form or efficient numerical solutions
exist. FHC regulators, commonly implemented in discrete-
time using digital computers, have been successfully applied
to many applications including electric power systems [3],
inventory management [4] and finance [5].

In FHC, as with other optimal control techniques, a state-
space model is defined to allow predictive modeling of the
system’s future states to any input. Based on this model,
controllable inputs of the system are determined such that the
objective cost function is minimized, and thus the system is
controlled towards the desirable outcome.

Classic FHC formulations model the system’s uncontrol-
lable exogenous inputs analytically as a part of the state-
space equations. This is performed by dividing these inputs
into measurable and non-measurable external disturbances,
and using an analytic model to describe them [2]. However,
due to the complexity of real-world applications, developing
an accurate analytic model for the system’s exogenous inputs
is not always possible.

One relatively recent solution is the use of statistical models
and machine learning (ML) algorithms as a part of the
predictive model, where the time-varying exogenous inputs are
treated as a time series and estimated via a forecasting algo-
rithm [6]–[8]. In time series forecasting, error measures such
as mean square error (MSE) or mean absolute error (MAE)
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are used for model validation, by comparing the effectiveness
of different forecasting techniques and their parameters for a
certain prediction task [9]. However, these assume that the er-
ror of each sample is independent of other time-steps, which is
not generally true. To obtain full accuracy for model selection,
one must consider the control law while validating prediction
models over the control horizon. Alternative techniques exist,
such as including the conditional distribution of the exogenous
input in the dynamic programming problem [10]. Unfortu-
nately, none of these approaches are computationally efficient.

In this paper, we advocate using ∆J , i.e., the increase in
the cost function of an FHC system due to forecast error,
for model validation instead of conventional forecasting error
measures. The contributions are threefold:

1) We derive an exact closed form solution to efficiently
compute ∆J for the case of discrete LQ FHC systems.

2) We apply dimensionality reduction techniques to the
closed form solution, reducing the computational cost
of ∆J with minimal loss of accuracy. This leads to a
significant speed-up in cases where several forecasting
algorithms and parameters need to be tested for fixed
system parameters.

3) We demonstrate via two case studies that by considering
the effects of prediction error on FHC dynamics, using
∆J instead of MSE as a forecasting model selection
criterion can improve the system’s performance.

The rest of this paper is as follows. In Section II, the FHC
notation used in this paper is introduced. Section III discusses
the effect of additive noise in FHC formulation and offers a
closed form solution for quantifying it. Time series prediction
requirements for FHC regulation are analyzed in Section IV,
and a dimensionality reduction technique for reducing cross-
validation computational cost is presented accordingly. In
Section V, two inventory and portfolio management examples
are studied to demonstrate the effectiveness of the proposed
formulation. Finally in Section VI, limitations of this formu-
lation are discussed and possible solutions are reviewed.

II. BACKGROUND

A discrete linear time invariant (LTI) system can be de-
scribed using the following state space model [2]:

x(t+ 1) = Ax(t) + Bu(t) + Cv(t) (1)

Here, x(t) ∈ Rk is the state vector at time t ∈ [0, 1, . . . , n],
u(t) ∈ Rl is the vector of controllable inputs, v(t) ∈ Rm is
the vector of exogenous inputs, and A ∈ Rk×k, B ∈ Rk×l
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and C ∈ Rk×m are the system and input matrices respectively
and are controllable.

The objective is to find controllable inputs, u(t), to mini-
mize a quadratic cost function defined by

J =

n∑
t=1

x(t)TQtx(t) +

n−1∑
t=0

u(t)TPtu(t) (2)

where positive-semidefinite matrix Qt ∈ Rk×k and positive-
definite matrix Pt ∈ Rl×l are stage costs of x(t) and u(t)
respectively.

A. Matrix Form Solution
A common way to find the solution to argmin J is to

explicitly express x(t),∀t > 0 as a function of inputs through
matrix form, and then minimize J to find all u(t) in a batch
approach [2].

In matrix form, the state-space equation (1) and the cost
function (2) are represented by

X =SAx(0) + SBU + SCV ,

J =XTQ̄X +UTP̄U

where
X = [x(1)T x(2)T · · · x(n)T]T,

U = [u(0)T u(1)T · · · u(n− 1)T]T,

V = [v(0)T v(1)T · · · v(n− 1)T]T,

SA = [AT (A2)T · · · (An)T]T,

SB =


B 0 · · · 0

AB B · · · 0
...

...
. . .

...
An−1B An−2B · · · B

 ,

SC =


C 0 · · · 0

AC C · · · 0
...

...
. . .

...
An−1C An−2C · · · C

 ,
Q̄ = blockdiag{Q1,Q2, · · · ,Qn}, and
P̄ = blockdiag{P0,P1, · · · ,Pn−1}.

We define Y as the vector of uncontrollable variables, i.e.,
the accumulated initial state and exogenous inputs, such that
X = SBU + SCY :

Y = S†CSAx(0) + V (3)

Here, † is the Moore–Penrose pseudoinverse operator.
Let

JA = P̄ + ST
BQ̄SB ,

JB = ST
BQ̄SC ,

JC = Y TST
CQ̄SCY , and

H = −J†AJB .

The optimal control input, U∗, is given by

U∗ = HY . (4)

Derivation of this equation is described in Appendix A.
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Fig. 1. Prediction updates in FHC. To differentiate between predictions
performed at different times, the estimation of v(t+h) predicted at time-step
t is denoted with v̂t(t + h).

B. Finite Horizon Control

The goal of an FHC regulator is to dynamically minimize J
over control period t ∈ [0, 1, . . . , N ]. Due to practical consid-
erations, at each time-step, (4) is solved over a finite horizon
of length n < N to obtain the optimum control sequence U ,
and only the first action of this sequence is applied. As time
moves forward, the model is updated based on observations,
and the finite horizon optimization is repeated. This update
allows better control of the system in presence of external
disturbances and model misspecification, at the expense of
computational power required for repeated optimization at
each time-step.

Updating the horizon at the next time-step takes two major
forms in FHC: (1) the horizon is either moved forward,
becoming the receding horizon control (RHC), or (2) the same
termination time is held, resulting in the shrinking horizon
control (SHC). In this paper, both methodologies are studied.

III. CLOSED FORM ANALYSIS OF THE FINAL COST

With the availability of the exogenous inputs V , the optimal
controllable inputs U∗ and consequently the optimal (i.e.,
minimum) cost J∗ = J(U∗) can be obtained from (4). In
real-world applications, the true value of V is not known in
advance, and has to be estimated with analytical or numeric
models. Inaccuracies of these models, which manifest as
prediction error, result in suboptimal control. In this section,
we formulate a closed-form equation to measure this subopti-
mality, in form of deviation of the cost from its optimal, i.e.,

∆J = J(U)− J(U∗).

A. Prediction Error

In a real system, the exogenous inputs v(t) are not observed
before time t and must be substituted by v̂(t) = v(t) + ε(t),
where v̂(t) is their prediction and ε(t) is the additive predic-
tion error.

In a finite horizon approach (either shrinking or receding), at
each time-step t, v̂(t+h) is re-estimated (i.e., predicted again
using the latest available information) for h ∈ [1, 2, · · · , n].
We denote these re-estimations and their prediction error by
v̂t(t+ h) and εt(t+ h) respectively (Fig. 1).

Similarly, we define the matrix form counterpart of εt(t+h)
for the tth horizon as

Et = [εt(t+ 1)T εt(t+ 2)T · · · εt(t+ n)T]T.
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To denote all prediction errors over all control horizons,

E = [ET
0 ET

1 . . . ET
N−1]T

is defined.

B. Optimal Input in Presence of Prediction Error
The applied controllable input U , obtained from the FHC

regulator, is a linear function of the accumulated exogenous
inputs Y and their prediction errors E,

U = ΨY + ΦE (5)

where Φ = [Φ0 Φ1 · · · ΦN−1], Ψ =
∑N−1
i=0 ΦiMY (i) ,

Φi =

N−1∑
j=0

MΦ(j)HjΓ(j, i), (6)

Γ(t, τ) =


t > τ 0knt×knτ
t = τ Iknt×knt
t < τ

∑t−1
i=0 C†At−iBMU (i)HiΓ(i, τ)

,

MΦ(t) = [Ki,j ]N×nt ,

{
i = t+ 1, j = 1 Ki,j = Il×l

else Ki,j = 0l×l
,

MU (t) = [Ki,j ]nt×1,

{
i = j = 1 Ki,j = Il×l

else Ki,j = 0l×l
,

MY (t) = [Ki,j ]nt×N ,


j − i = t Ki,j = Ik×k

i = 1, j ≤ t Ki,j = C†At+1−jC

else Ki,j = 0k×k

,

nt is the length of horizon at time-step t, 0f×g and If×g are
f × g zero and identity matrices respectively, and [Ki,j ]f×g
denotes a block matrix of f×g sub-block matrices. Derivation
of (5) is detailed in Appendix B.

Here, Ht is the matrix used to derive the control law, akin
to H in (4), but considering a time-varying horizon length. For
this, the horizon length has been denoted with nt, in line with
the horizon for H which was denoted with n. This formulation
allows (5) to be used with receding horizon, shrinking horizon,
or hybrid control schemes. For example, for a receding horizon
scheme where the horizon length remains the same, Ht = H,
while for a shrinking horizon scheme, at each step Ht has to
be recomputed by decrementing nt.

Note that Ψ in (5) is an extended form of H in (4). In
Section II, H was designed for a constant horizon length. In
contrast, Ψ incorporates the effects of horizon length variation.
This is because the goal of (5) is not control, but an accurate
estimation of what would have happened if the control was
to be performed using (4) with either a receding or shrinking
horizon. For shrinking only horizons (i.e., nt+1 = nt−1), due
to the principle of optimality, Ψ = H.

C. Effects of Prediction Error on Cost
Let U∗ = ΨY be the optimal input. The increase in cost

from optimal due to prediction error E is given by

∆J = ETΘE +ETΩY (7)

where Θ = ΦTJAΦ and Ω = 2ΦT(JAΨ + JB). Derivation
of (7) is detailed in Appendix C.

IV. TIME SERIES PREDICTION AND FHC
The objective of time series prediction is to find a function

p(·) to estimate the future of time series v(t) over prediction
horizon h ∈ [1, 2, · · · , n] using available data, i.e., v̂t(t+h) =
p(v(t), v(t− 1), v(t− 2), . . .).

Time series prediction techniques are usually carried out in
two phases: (1) a learning phase, where for a chosen model
and its hyperparameters, the training data is fitted to minimize
a p-norm error (i.e., ||v(t)−v̂t(t)||p) [11], [12]; and (2) a cross-
validation phase, where performance of different models and
hyperparameters are compared across a separate set of testing
data [13].

Typically, when applying cross-validation, MSE error (i.e.,
ETE) is used as a measure of comparison. This ignores
possible dependencies between errors and also between the
errors and the inputs. To include this knowledge of the
FHC controller, a step-by-step simulation of FHC has to be
performed: for each discrete time-step, the control law is first
applied based on predictions, and then the system states and
costs are updated according to the actual exogenous inputs.
Equivalently, (7) can be used to evaluate the final cost of
prediction error in a single step.

A. Cost Matrix Dimensionality Reduction
Computing ∆J using (7) is of O(N2) time complexity,

compared to O(N) of using MSE. Consequently, the efficiency
of computing ∆J has to be improved before being used in
data-intensive problems.

In many real-world problems, matrices Θ and Ω prove to be
sparse, or even diagonal. In such cases, numerical techniques
can be used to improve efficiency of computing (7).

In other cases, assuming repeated evaluation on a fixed
system, one can pre-compute Θ and ΩY , and calculate ∆J
efficiently for different values of E, the latter coming from
different prediction models.

With this assumption, matrix decomposition can also be
used to further reduce computation complexity by approxi-
mating matrix Θ ∈ RM×M with a matrix of lower rank [14].
Here, M is the total number of predictions and is obtained
from the sum of horizon lengths and size of the inputs vector,
i.e., M = m

∑
i ni.

Let Θ = V ΣV T, where Σ is the diagonal matrix of
eigenvalues and V is the matrix of eigenvectors of Θ. By
only keeping the 0 < L < M largest eigenvalues of Θ and
their corresponding eigenvectors, Θ can be approximated with
Θ′ = V ′Σ′V ′T, where V ′ ∈ RM×L and Σ′ ∈ RL×L.

Let W = V ′
√

Σ′, where
√

Σ′ is the root square of the
diagonal eigenvalue matrix. An approximation to (7) is

∆J ′ = ETW′W′TE +ETΩY . (8)

Exploiting the symmetric structure of the new cost function
and assuming precomputed W′ and ΩY , evaluating (8) is
reduced to time complexity O(ML).

The choice of L is problem dependent. A general guideline
is to select L such that tr(Σ′) ≥ λtr(Σ), where tr is the trace
operator and 0 ≤ λ ≤ 1 determines how much of the matrix’s
energy is to be conserved. In practice, λ > 0.99 is commonly
used.
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V. NUMERICAL EXAMPLES AND SIMULATION RESULTS

In this section, two finite horizon problems with time series
forecasting are analyzed, and the proposed error measure
∆J is compared with MSE for predictor selection. MSE
was chosen as it offers a quadratic error function, similar to
the controller’s cost function, and is not scaled against the
magnitude of inputs.

For each problem, first the system dynamics are defined
and used to formulate an FHC control problem. The best
predictor models are then selected over a set of training data
using different error measures. Consequently, a simulation is
performed over a separate set of testing data, and performance
results of models selected using ∆J and MSE are compared.

Implementations of these examples, written in the R pro-
gramming language, are available from http://sydney.edu.au/
engineering/electrical/cel/farzad/TCST16.

A. Pre-ordering Problem

Inventory management and supply chain planning tech-
niques play an essential role in managing supply and demand,
and are widely studied and used in practice [15]. Recent
developments in this regard have shown that forward-looking
optimization-based policies, such as using optimal control in
combination with forecasting, significantly outperform other
rule-based decision policies [6], [16].

In this example, we study the problem of meeting a fluctuat-
ing demand for a perishable commodity, similar to the problem
discussed in [17]. In this task, one can either pre-order the
perishable item with different lead times and discounts, or
buy it on the spot market at a higher price. The objective is
to minimize the ordering costs by utilizing prediction.

1) Problem Formulation: We formalize this problem as
follows:

1) The demand is denoted with v(t) ∈ R+, and the spot
price is depicted with p.

2) It is possible to pre-order κ steps ahead, where at each
time-step a discount of d is applied.

3) A pre-order can be adjusted at any time before delivery;
however, an adjustment penalty equal to the discounted
price is applied. Similarly, a penalty is applied for over-
supplied orders (i.e., discarded perishables).

4) Pre-orders are denoted with u(t) =
[ut+1(t) · · · ut+κ−1(t) ut+κ(t)]T, where ut+h(t)
is the order (or adjustment to the order) at time t for
delivery at time t+ h.

5) An order book is maintained, in form of the vector
x(t) = [xt(t) xt+1(t) · · · xt+κ(t)]T, where xt+h(t)
is the total of orders expected at time t to be delivered
at time t+ h.

Notice that u(t) ∈ Rκ, and x(t) ∈ Rκ+1 as it includes a
state for the delivery at time-step t in addition to the future
pre-orders.

The problem can be formulated using the state-space equa-
tion (1), as updating the order book using xt+h(t + 1) =
xt+h(t) + ut+h(t) when pre-ordering (i.e., h > 1), and
xt+1(t+ 1) = xt+1(t)− v(t) during delivery.

Assuming κ = 3, the system dynamics in matrix form are
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Fig. 2. A hybrid receding-shrinking horizon control scheme, with a maximum
horizon length of 3.

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , B =


0 0 0
1 0 0
0 1 0
0 0 1

, and C =


−1
0
0
0

.

Eq. (2) is used as the cost function, with the stage cost
of u(t) (i.e., pre-ordering prices and discounts), and the stage
cost of x(t) (i.e., the penalty for unmet demand), defined as

Pt =

d3p 0 0
0 d2p 0
0 0 dp

 and Qt =


p 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


respectively.

For numeric simulation, the spot price was set to p = 4,
and the discount to d = 0.7.

2) Analysis of the Cost Equation: An analysis of Θ and Ω
from (7) for the current problem reveals the matrix elements
associated with prediction of the current demand, and predic-
tion of steps more than κ step ahead, are zero. The former
is a result of the observed demand (and not the prediction)
being used for spot market ordering. The latter is because
any prediction beyond κ steps is not used for ordering in
the current horizon. Consequently, choosing a horizon length
beyond the number of pre-orders is redundant.

Furthermore, Θ is a diagonal matrix for optimizations
ending with shrinking horizons (e.g., as in Fig. 2). In addi-
tion, the diagonal elements for each set of predictions decay
exponentially. For example, for κ = 3 and a horizon of n = 5,
the diagonal associated with the first block of predictions is
[0 2.98 0.35 0.13 0]. This simplifies ∆J to a weighted MSE.

3) Simulation and Results: The simulation was set up to run
for 10 time-steps, with pre-ordering allowed for three steps
ahead (i.e., N = 10 and κ = 3). Based on the analysis of
Θ for this problem, the control horizon n was limited to the
number of pre-orders κ (i.e., nt ≤ κ = 3,∀t). A finite horizon
controller governs the system, with seven receding windows
of length 3, followed by three shrinking windows (Fig. 2).

The hth step in the future, v(t+h), was predicted using an
AR model,

v̂t(t+ h) =

q∑
i=0

φiv(t− i), (9)
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where q is the model order, and φi are the model parameters.
For each future step in a horizon, a different model was se-
lected and fitted to data using ordinary least squares, resulting
in a total of three models. The range of orders was limited to
q ∈ [1, 2, . . . , 8].

To simulate real-world demand, time series from the M3
competition dataset [18] were used. Only time series longer
than 100 samples were selected for simulation. For each time
series, the first 80 values were assigned to in-sample testing,
with the starting 60 time-steps used for training the predictor,
and the next 20 values for model validation. The last 20 were
used to report out-of-sample prediction errors, as well as the
controller’s cost performance, i.e., the out-of-sample ∆J .

Three different approaches were used for model order
selection through cross-validation:

1) A random search was performed to select the best orders
using in-sample MSE. A subset of the models was sam-
pled from the model space using a uniform distribution,
and the model with the least cross-validation error was
selected.

2) A random search using in-sample ∆J as the selection
criterion was performed.

3) A hybrid search was undertaken. The best model for the
first step (i.e., h = 1) was chosen independently, based
on in-sample MSE through an exhaustive search. The
model orders for h = 2 and h = 3 were selected using
in-sample ∆J through a random search.

The first two methods compare MSE and ∆J model selec-
tion when the computational resources are limited. The design
rationale of the third technique is based on the Θ weights,
where the first step contributes 84% of the total error. Hence,
half of the computational capacity is solely allocated to the
first predictor’s model selection.

Also note that in the hybrid search, the first step was chosen
using MSE. Considering the lack of dependency between the
error at h = 1 and other steps, the ∆J for only h = 1 is
equivalent to a weighted MSE with a constant weight, i.e.,
2.98 according to the analysis of Section V-A2. We simplified
this further by removing the constant, resulting in an ordinary
MSE measure.

For a fair comparison, only 16 model evaluations were
allowed per each approach. For the hybrid approach, this
translated to eight evaluations exhaustively searching for the
best first model order, and eight additional random evaluations
for the second and third model orders.

The test was repeated for each of the 1020 selected time
series. As each time series exhibits different mean-variance
characteristics, the resulting MSE and ∆J are not directly
comparable. Consequently, these errors were normalized to
the MSE and ∆J of a naı̈ve predictor respectively, where the
predictor simply repeats the last observed value, i.e., v̂t(t +
h) = v(t),∀h. The normalized results were then averaged and
reported.

To reduce the computation time of ∆J , considering the
diagonal nature of Θ, (7) was also numerically implemented as
a weighted MSE. TABLE I compares the run-times of different
methods. It is observed that computing ∆J using (7), even in
its full matrix form, offers a significant speed-up compared

TABLE I
RUN-TIME AND SPEED-UP COMPARISON FOR THE PRE-ORDERING

PROBLEM.

Measurement Technique Run-time (s) Speed-up

Step-by-step simulation 2340.7 1
Closed form ∆J using (7) 11.730 199.5
Diagonal ∆J 0.9130 2563.7
MSE 0.8940 2619.0

TABLE II
MEAN NORMALIZED PREDICTION ERROR FOR DIFFERENT MODEL

SELECTION METHODS IN THE PRE-ORDERING PROBLEM.

Selection In-sample In-sample Out-of-sample Cost
Method MSE ∆J MSE Performance

Random Search 0.9078 0.8953 0.9261 0.9208(using MSE)
Random Search 0.937 0.867 0.941 0.9109(using ∆J)
Hybrid Search 0.9081 0.8533 0.9321 0.9072(based on ∆J)

to a step-by-step FHC simulation. Furthermore, the diagonal
only implementation is almost as efficient as an ordinary MSE,
achieving a speed-up of more than 2500×.

In TABLE II, prediction errors for models selected using
MSE and ∆J are summarized. While the models selected
using MSE offered a better in-sample and out-of-sample MSE,
they were outperformed over the cost performance by the
models selected using ∆J . Overall, a cost improvement of
1.5% was obtained simply by prioritizing the first step’s
model selection over other steps. A paired sample t-test of
results rejected the null hypothesis of improvement not being
significant with p-value of 0.0027.

Considering the independence of the three model orders
and their errors, the best global model would have minimized
both the MSE and ∆J . This example demonstrates that when
a global search is not possible (e.g., limited computational
resources), the search can be focused on the most influential
factor, as analyzed by the proposed cost measure, to improve
model selection.

B. Stock Portfolio Management

We extend the previous example to financial markets, where
a dealer keeps a portfolio of stocks to trade on behalf of his or
her clients. The dealer wishes to reduce the costs associated
with (1) the market risk, i.e., the loss of portfolio value due to
market price changes, and (2) trading with other dealers, when
the client’s requests can not be fulfilled using what is available
in the portfolio. The first issue forces the dealer to minimize
the inventory to avoid risk, while the second obligates keeping
all client trades in the portfolio, such that opposing client
trades (i.e., buys and sells) are neutralized without referring
to other dealers.

The problem of finding the optimal portfolio subject to
cost and risk considerations has been extensively researched.
Recent studies of this problem for stock options and FX
market, using FHC but neglecting the effects of time series
prediction error, can be found in [19]–[21].
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1) Problem Formulation: We simplify the problem by
assuming a single-stock inventory with the following rules and
notations:

1) x(t) denotes the dealer’s inventory, inter-dealer trades
are determined using u(t), and the demand is denoted
with v(t).

2) Short-selling is allowed.
3) To consider market impact, the inter-dealer brokering

cost is modeled using a quadratic function of trades,
Ptu

2(t).
4) The risk is modeled using Qtx

2(t), where Qt is the
market volatility, i.e., the variance of the price process
as used in modern portfolio optimization [22].

The dealer’s dynamics can be formulated using the state-
space equation (1), with A = 1, B = 1, and C = 1. The dealer
begins with a zero-balance, i.e., x(0) = 0. To concentrate
on demand prediction, we assume the cost of trading with
inter-dealer brokers and the market volatility are available
and constant in time, Pt = 1 and Qt = 1 respectively. The
objective is to minimize the overall cost, as defined by (2).

2) Simulation and Results: Similar to Section V-A, a re-
ceding/shrinking horizon controller was designed to govern
the system for 10 time-steps. The controller uses five receding
windows of length 5 followed by five windows with shrinking
lengths.

To predict vt, separate linear models described by (9) were
considered for each future time-step in the horizon. The order
of each model was limited to q ∈ [2, 3, . . . , 8].

The clients’ trades were simulated via a 5th order auto-
regressive (AR) model,

vt+1 =2.76vt − 3.13vt−1 + 1.79vt−2 − 0.50vt−3+

0.05vt−4 + εt
(10)

where εt ∼ N(0, 1) is a zero-mean unit-variance Gaussian
noise.

For each test, a time series of length 100 was generated.
The first 80 values were assigned to in-sample testing, with
the starting 60 time-steps used for training the predictor, and
the next 20 values for model validation. The last 20 were
used to report out-of-sample prediction errors, as well as the
controller’s cost performance, i.e, the out-of-sample ∆J . The
test was repeated 10 times.

Our first concern is the dimensionality reduction for Θ ∈
R40×40. Despite its simpler formulation compared to the
problem of Section V-A, Θ is not diagonal, and consequently
the eigenvalue method has to be used. The 10 largest eigen-
values hold more than 99.9% of eigenvalue energy, and thus
a fourfold order reduction is possible using W′ ∈ R40×10.

TABLE III compares the time required for computing each
error measure and aggregated value of errors over all tests. It
is observed the proposed dimensionality reduction technique
results in near 5× speed-up, with less than 0.001% loss of
accuracy. Comparing run-times of TABLE III, an overall 598×
speed-up over a step-by-step FHC simulation is observed.
While MSE is still 2.3× faster, the difference in execution
is 1.6 s, which is negligible compared to the time spent for
training the prediction model.

TABLE III
RUN-TIME AND ACCURACY COMPARISON FOR THE STOCK PORTFOLIO

MANAGEMENT PROBLEM.

Measurement Technique Run-time (s) Speed-up Measured ∆J

Step-by-step simulation 1427.664 1 96.8476
Closed form ∆J using (7) 12.136 117.6 96.8476
Approximated ∆J using (8) 2.826 598.1 96.8476
MSE 1.228 1376.0 N/A
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Fig. 3. MSE versus ∆J for different model orders in the stocks portfolio
problem.

Fig. 3 compares in-sample MSE error against ∆J for
all models. It is evident that these errors are not strongly
correlated. Numerical value of the correlation coefficient for
MSE and ∆J was measured to be 0.423, compared to that
of MSE and MAE being 0.893. As a result, model selection
using MSE does not necessarily improve ∆J .

An exhaustive search was performed to cross-validate dif-
ferent model orders over the in-sample period using MSE and
∆J . For each of these measures, the model with the least in-
sample error was selected, and its performance results for both
the in-sample and out-of-sample periods were summarized
in TABLE IV. It can be seen that using ∆J as a model
selection measure has reduced the controller’s cost compared
to selections using the ordinary MSE measure. While this
reduction is not significant for in-sample ∆J results, the con-
troller’s cost performance improvement, from 98.18 to 94.79,
is considerable. Additionally, a paired sample t-test rejected
the null hypothesis of improvement not being significant with
p = 0.0094.

TABLE IV
MEAN PREDICTION ERROR FOR DIFFERENT MODEL SELECTION

MEASURES IN THE STOCK PORTFOLIO MANAGEMENT PROBLEM.

Measure In-sample In-sample Out-of-sample Cost
for selection MSE ∆J MSE Performance

MSE 32.4888 86.9027 36.3447 98.1846
∆J 32.4892 86.7015 38.0916 94.7870
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VI. A DISCUSSION ON PROBLEMS WITH CONSTRAINTS

The proposed error measure, as formulated in (7), is limited
to LQ systems without constraints. In real-world applications,
however, constraints are prevalent.

The easiest method for extending ∆J to such applications is
relaxing the constraints in J . Nevertheless, this will be at the
cost of reduced accuracy, as the results will no longer match
the original cost function formulation. An alternative approach
is to use multi-parametric programming to obtain an explicit
solution for the FHC cost function with constraints [23]. For
an LTI LQ system, this transforms the quadratic programming
problem to a piece-wise affine solution. Considering the cur-
rent affine form of H and quadratic form of ∆J , one would
expect a piece-wise quadratic form for the constrained ∆J .
While obtaining the solution in this form is computationally
intensive and may require massive memory storage, it will be
more efficient in evaluating several forecasting models’ results
compared to repeated runs of quadratic programming in FHC
simulation.

Implementing and benchmarking this multi-parametric ap-
proach will be subject of a future study.

VII. CONCLUSION

This paper presented several observations regarding time
series prediction used in LQ FHC regulators. Using the
proposed error measure, better model selection results were
obtained, since in contrast to MSE, ∆J accurately describes
the effects of prediction on the objective cost function. In
addition, techniques were presented to reduce computational
costs of this measure, in some cases even comparable to that
of MSE, and thus making ∆J a viable replacement in data
intensive applications.

APPENDIX A
DERIVATION OF OPTIMAL INPUT IN PRESENCE OF ERROR

The system state in the presence of prediction error is
obtained by

X = SAx(0) + SBU + SC(V +E)

= SBU + SCY + SCE.

The cost function can be expanded and rewritten as

J = XTQ̄X +UTP̄U

= (SBU + SCY + SCE)TQ̄(SBU + SCY + SCE)

+UTP̄U

= UTJAU + 2UTJB(Y +E)+(
Y TST

CQ̄SCY + 2ETST
CQ̄SCY +ETST

CQ̄SCE
)
.

Using the optimality condition, namely
dJ

dU
= 0, the

solution to argmin J can be derived:

U = −J†AJB(Y +E) = H(Y +E)

When E = 0, the equation simplifies to U∗ = HY .

APPENDIX B
DERIVATION OF INPUT IN REPEATED APPLICATION OF THE

CONTROL LAW

In finite horizon control, controllable inputs are re-evaluated
at each time-step. For example, at time-step t,

Ut = Ht(Υt +Et) = HtΥ̂t, (11)

where Ut is the controllable input, optimized using informa-
tion available at time t, and Υt ∈ Rntm is constructed by
accumulating previous exogenous inputs (i.e., v(i), i < t) and
the initial state x(0) into the first value of Yt, the tth horizon
window of Y . Yt can be obtained by the affine mapping

Yt = MY (t)Y . (12)

Υ̂t is the estimate (i.e., prediction) of Υt and includes the
prediction error at time t, i.e., Υ̂t = (Υt +Et).

At any time-step, Υt+1 can be computed by accumulating
the applied input controls ui for i < t, in to the Yt+1:

Υ̂t+1 = Yt+1 +Et+1 + C†
t∑
i=0

At+1−iBMU (i)Ui

Here, MU is used to extract ui by separating the first vector
of inputs from Ut; then A(t+1)−iB is used in a recursive
approach (similar to applying SB) to accumulate its effect on
the system’s states. Finally C† is applied, similar to S†C in
Y = S†CSAx(0) +V , to reshape the resulting new states into
the new uncontrollable inputs vector.

The equation above can be rewritten in a recursive form by
replacing Ui with (11),

Υ̂t+1 = Yt+1 +Et+1 +

t∑
i=0

C†At+1−iBMU (i)HiΥ̂i

which can be expanded recursively and then factored to

Υ̂t+1 =

t+1∑
i=0

Γ(t+ 1, i)(Yi +Ei).

The final U is constructed using MΦ(j) which puts the first
inputs of each Uj into the jth position of U :

U =

N−1∑
j=0

MΦ(j)Uj

=

N−1∑
j=0

MΦ(j)Hj

N−1∑
i=0

Γ(j, i)(Yi +Ei)

By letting Φi =
∑N−1
j=0 MΦ(j)HjΓ(j, i), substituting Yi

by (12), and considering that MU is non-zero only for i = j,
this simplifies to

U =

N−1∑
i=0

Φi(MY (i)Y +Ei).

Let Ψ =
∑N−1
i=0 ΦiMY (i) and Φ = [Φ0 Φ1 · · · ΦN−1].

The vector U can be reorganized as

U = ΨY + ΦE. (13)
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APPENDIX C
DERIVATION OF COST DEVIATION

The objective cost of the system as a function of controllable
and exogenous inputs U and Y is realized by

J(U) = UJAU + 2UJBY + JC .

Let Ue = U − U∗ = ΦE be the difference of the
controllable input computed based on predictions, and the op-
timal input (i.e., without prediction error). The cost difference
between minimum cost using U∗ (i.e., J(U∗)) and the cost
with prediction error using U (i.e., J(U)), is given by

∆J = J(U)− J(U∗)

= UTJAU + 2UJBY −U∗TJAU
∗ − 2U∗JBY .

Expanding U = U∗ +Ue results in

∆J = (U∗ +Ue)
TJA(U∗ +Ue)−U∗TJAU

∗

+ 2(U∗ +Ue)
TJBY − 2U∗TJBY

= UT
e JAUe + 2UT

e JAU
∗ + 2UT

e JBY .

By replacing U∗ with its definition from (13), considering
E = 0, we can simplify the above to

∆J = UT
e JAUe + 2UT

e JA(ΨY ) + 2UT
e JBY

= UT
e JAUe + 2UT

e (JAΨ + JB)Y .

Let Θ = ΦTJAΦ and Ω = 2ΦT(JAΨ + JB). Replacing
Ue = ΦE, the above transforms to

∆J = ET(ΦTJAΦ)E + 2ETΦT(JAΨ + JB)Y

= ETΘE +ETΩY .
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