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A Microcoded Elliptic Curve Processor
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Abstract—The implementation of a microcoded elliptic curve basis multiplier ove,s0: was reported in 1988. It was imple-
processor using field-programmable gate array technology is mented in 2sm CMOS technology, used 90000 transistors,
described. This processor implements optimal normal basis field and occupied 0.3-in on a side. This chip, together with a
operations in Fy~. The design is synthesized by a parameterized Motorola DSP 56000 was used to im Ie’ment a complete
module generator, which can accommodate arbitraryn and also ! y p. p
produce field multipliers with different speed/area tradeoffs. ECC system that could calculate five points a second on a
The control part of the processor is microcoded, enabling curve supersingular curve [3]. In 1993, the same team developed a
operations to be incorporated into the processor and hence processor for operations in the Galois fiehtiss [3], which
reducing the chip’s I/O requirements. The microcoded approach used 11000 transistors and could operate at 40 MHz. This

also facilitates rapid development and algorithmic optimization: . | tati intended to b t vet
for example, projective and affine coordinates were supported Impiementation was intended to be compact yet secure.

using different microcode. The design was successfully tested on A field-programmable gate array (FPGA)-based processor
a Xilinx Virtex XCV1000-6 device and could perform an elliptic  for elliptic curve cryptography in a composite Galois field
curve multiplication over the field F»~ using affine and projective F(yny» was developed by Rosner [5]. A compact superserial
coordinates forn = 113,155, and 173. multiplier for FPGAs that trades off performance for area was
Index Terms—Arithmetic, cryptography, Galois fields, mi- reported in 1999, and its performance for field (polynomial
croprogramming, public key cryptography, reconfigurable pasis) and curve multiplications ovdr,:s- has also been
architectures. presented [6].
Previous implementations based on Galois field processors
l. INTRODUCTION have the disadvantage that a high bandwidth interface is re-
quired to supply the coprocessor with its data. Another limi-
Yation of previous application-specific integrated circuit (ASIC)
designsisthat the field operations are restricted to certain groups
ge., the subfield and extension fieldsiofiss ) and these cannot

LLIPTIC curve cryptography (ECC) was proposed b
Koblitz [1] and Miller [2] in 1985. Compared with other
commonly used public key cryptosystems such as RSA a
discrete logarithm, ECC has the following benefits that make% changed without fabricating a new chip.

particularly suitable for gmbedded application.s. The implementation described in this paper differs from pre-
1) ECC offers the highest security per bit of any knowgig,s implementations in the following ways.

public key cryptosystem so a smaller memory can be 1) The higher level curve operations as well as the field op-

5 lésgg'h q imol tati ¢ ¢ ist A erations are implemented on the chip. This makes the 1/0
) araware implementations use fewertransistors. AS - 3 qyigth requirements much lower than for chips that

an example, a VLSI implementation of a 155-bit ECC only implement the field operations
processor has been reported tha_t uses only 11000 tra_ln—) The curve operations are implemented as sequences of
sistors [3], compared with an equivalent strength 512-bit field operations that are programmed in microcode. This

RSA processor that used 50 000 transistors [4]. . o .
' allows algorithmic optimizations to the design to be made
3) ECC is probably more secure than RSA: the largest RSA without c%anging thg hardware 9
and I,[ECCI: cf_ll_:;lllleng?st.sol\;edﬂ?rel%?t-gtsgg 1?]8'”b't’ re- 3) The design uses projective coordinates, which offers a
spectively. [1he solution fo the ol challenge speed advantage over the affine coordinates since fewer
is believed to be the largest effort ever expended in a field inversions are required

publ@c key cryptogra_phy challenge. It t(_)ok four months 4) The entire design is generated by a module generator that
and involved approximately 9500 machines. The amount can generate ECC systems of arbitrary key size. Thus,

of work required to solve the problem was about 50 times ECC systems of arbitrary size over an optimal normal

that Of.the 512-bit RSA' basis can be generated (provided they fit on the FPGA
Previous implementations of ECC processors have been device)

base_d on VLS chips th?t impleme_nt a coprocessor for per- 5) The parallelism of the field multiplier can also be con-
forming the underlying field operations. An optimal normal trolled by the module generator, greatly improving per-

formance.
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An earlier paper presented a parameterized elliptic curveln a normal basis, an elementcan be uniquely represented
processor with some of these features [7]. This paper descrileghe form
an improved implementation that uses projective coordinates,
a parallel field multiplier, and bitstream reconfiguration to s ;

. L . A= Z ai3?
achieve significant performance improvements. - v

The rest of this paper is organized as follows. Section Il is =0

an introduction to some of the mathematical concepts needgflereq; ¢ £, andg € Fin.

to understand elliptic curve cryptography. The architecture andyy addition and Squaring:The addition operation ovef,.

implementation details of the elliptic curve processor are PrRsimply a bit-wise exclusiver (XOR) operation. Furthermore,

sented in Section Ill. Results are presented in Section IV apfa normal basis, squaring is simply a rotate left operation.
conclusions drawn in Section V. 2) Multiplication: Let

Il. BACKGROUND MATHEMATICS 2
. 27
A= E a;3

1=0

Inthis section, an informal introduction to the abstract algebra .
and elliptic curves used in this implementation is presented. B _Zbﬂzi
More rigorous treatments can be found in [8]-[11]. o — ¢

A. Groups and Fields and
A group (G, +) consists of a set of numbe@stogether with n-l ”
an operationt that satisfies the following properties. C=AxB=) cf

1) Associativity:(a+b)+c = a+(b+c)foralla,b,c € G. i=0

2) ldentity: there is an elemefite G suchthat+0 = 0+a  then multiplication is defined in terms of a multiplication table

foralla € G. Aij € {0,1}
3) Inverse: Forevery € G, there exists an element € G
suchthat-a + a = a + —a = 0. n—1n—1
The groupG is said to be abelian (or commutative)if-b = k=33 Nijaisrbjtx. 1)
b+ a forall a,b € G. We will use the notatiogtG to denote i=0 j=0

the number of elements in a group. . . . . -
A field (F,+, x) is a set of number# together with two An optimal normal basis (ONB) [12] is one with the minimum

operations+ and x that satisfies the following properties. ~ number of terms in (1), or equivalently, the minimum possible
number of nonzera,;;. This value is 2—1, and since it allows

multiplication with minimum complexity, such a basis would
normally lead to a more efficient hardware implementation.

Derivation of the);; values in (1) is dependent an There
exists an optimal normal basis - if:

1) (F,+) is an abelian group with identity 0.

2) x is associative.

3) There exists an identity € F with 1 # 0 such that
l1xa=ax1=aforalaeckF.

4) The operatiorx is distributive overt, i.e.,a x (b+¢) = ] o
(axb)+(axc)yand(b+c)xa=(bxa)+ (cXa) 1) two is a primitive inf, 41;

foralla.b.c € F. 2) two is a primitive infy, 4 1;
5) axb :/b7>< aforalla.b e F. 3) n is odd and two generates the quadratic residues in
6) For everya # 0,a € F there exists an elemeat! € F Zam+1 (whereZ are the integers).
suchthatt ! xa =axa ' =1. An ONB exists inFy»- for 23% of all possible values of <
If the field has a finite set of elements, it is called a finite (of °00 [12]- The design presented in this paper assumesthat

has an ONB.

The multiplication table is derived differently for the three
different types of ONB described above. As an example, for the
second type of ONB);; = 1 iff < andyj satisfy one of the four
_ _ congruenceg’ 4+ 279 = +1 [12].

B. Fy» Operations (Normal Basis) 3) Inversion: The algorithm used for inversion is derived

The field F,. has particular importance in cryptography’©m Fermat's Little Theorem
since it leads to particularly efficient hardware implementations.

Elements of the field are represented in terms of a basis. Most . o
implementations either use a polynomial basis or a normal a”l=a* %= (a2 _1)
basis. For the implementation described in this paper, a normal

basis was chosen since it is believed that it leads to a mdoe all « # 0 in F».. The method used was proposed by Itoh
efficient hardware implementation. and Tsujii [13], based on the following decomposition, which

Galois) field. LetF), be the finite field withp elements. Numbers
in the field > can be represented by {0, 1}.j4f= 2", numbers
in Fy. can be represented ashit binary numbers.

2
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minimizes the number of multiplications (squarings are much For E given in affine coordinates, iP # Q
cheaper in a normal basis):

P! + Y2
-2\ 2T e STt @
o (a2 _1) a? —1 nodd 3
a2l = 5 ’ T3 =A"+ A+ 1z + 22+ a2
a (a2((”_1)/2)_1> ) n even. ys =(z1 +23)A + 23 + 1.
The field inversion is computed using the following algorithm: If P = @
Y1
INPUT: k& € Fon /\:x—1+x1

OUTPUT: [ = k!
1. Set s« logg(n—1)—1
2.Set p—k y3 =(x1 4+ z3) A + 3 + 1.
3. For ¢ from s downto O
Set r«shift (n—1) to right by
s bit(s)
Set g« p
Rotate ¢ to left by r bit(s)
Set t «— multiply p by ¢
If last bit of r is set then
Rotate ¢ to left by 1-bit

T3 :)\2+)\—|—a2

Therefore, in affine coordinates, both point addition and point
doubling require two multiplications and one field inversion.
Note that field inversion is far more expensive than a field
multiplication.

A nonsupersingular curvel(Fy.) can be equivalently
viewed as the set of all points in the projective pldre F..)
that satisfy [18]

p < multiply t by k v2o + ayz = 2% + a0 2? + ag2®. ©)
else
p—1 LetP = (z1 :y1 : 21) € E,Q = (22 : y2 : 1) € E
5 s5—1 _ andP # —Q. SinceP = (x1/z : y1/21 : 1), we can use the
4. Rotate  p to left by 1-bit addition formula forE in affine coordinates to find> + Q =
5. Set [« p (zf - y4 : 1). We have
6. Return [
., B2 B
Lo i Ty = 2+_+_+a2
The total number of multiplies\/ required to perform an A Az
inversion inF»» using the above algorithm is Y. _B <ﬂ n $/> Tl 2
3 = 3 3
A z1 Z1

M(n) =loge(n—1)+v(n—1) -1
. o _ whereA = (z221 + x1) andB = (y221 + y1). To eliminate

sentation ofz. A321, w3 = xh23, andys = y4z3; thereforeP + Q = (73 : y3 :
C. Elliptic Curves OverFy %)

Section II-B described the implementations of operations in r3 =AD
the underlying fieldF,-. In this section, a group constructed ys =CD + A%(Bx1 + Ay;)

from points on elliptic curves ovels- is defined and the effi-
cient implementation of operations in this group described.

A nonsupersingular elliptic curve over Fy., E(Fyn) isthe \whereC' = A + B andD = A2(A+ asz1) + 21 BC.
set of all solutions to the following equation with coordinates in similarily, the formulas foRP = (z3 : 3 : 23) are
the algebraic closure df [8]

z3 ZA321

y: + zy = 2% + axa® + ag (2) @3 =AD
' ’ ys =z1A + B (27 + 121 + A)
whereas, ag € Fa», andag # 0. Such an elliptic curve is a 23 =A3
finite abelian group [8]. The number of points in this group is
denoted by# E(Fyn). whereA = z12; andB = agz; + x7. The result can be con-

1) Curve Addition: If P = (z1,y1) andQ = (z2,y2) are verted back to affine coordinates by multiplying each coordinate
points on the elliptic curve [i.e., satisfy (2)] adti# —Q then by z;'. Therefore, in projective coordinates, we can perform
(z3,y3) = R = P+ @ can be defined geometrically. In the caseurve multiplication by using only one inversion after a series
that P # Q (i.e., point addition), a line intersecting the curvesf additions and doublings. The number of field multiplications
at pointsP and@ must also intersect the curve at a third poinand field inversions for curve point addition and doubling are
—R = (z3,—ys) (in this paper, this operation will be referredshown in Table I. As an example, far= 155, a field inversion
to as ESUM). IfP = @ (point doubling), the tangent line istakes ten multiplications. Therefore, the total number of multi-
used; this will be referred to as EDBL. plications for an affine point addition or doublings-10 = 12
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TABLE | and at present, the problem in elliptic curve groups is orders
NUMBER OF FIELD MULTIPLICATIONS AND INVERSIONS FORAFFINE AND of magnitude harder than the same problem ina multiplicative
PROJECTIVEPOINT ADDITION AND DOUBLING .. . . . .
group of a finite field. This feature is the main strength of
Affine Projective elliptic curve cryptosystems.

Operation ESUM | EDBL | ESUM | EDBL E. ElllptIC Curve Cryptography

The discrete logarithm problem can be used as the basis of
Field Inversion ! ! 0 0 various public key cryptographic protocols for key exchange,
encryption, and digital signatures. It is beyond the scope of this
multiplications, whereas a projective point addition and dol@Per to review all of the cryptographic protocols for public key
bling takes thirteen and seven multiplications, respectively. CryPtography, but an example of its use in the Diffie-Hellman
2) Curve Multiplication: Multiplication (referred to in this K€Y €xchange is given in this section.

Field Multiplication 2 2 13 7

paper as EMUL) is defined by repeated addition, i.e., Suppose that Alice and Bob wish to agree on a common key
to be used for encryption using a traditional secret key algorithm
Q =cP (4) suchasDES, but need to do so over an insecure channel such as
—P+P+-.-4P. (5) the Interne_t. Then the fo_lloyving Diﬁie—HeIIman procedure can
—_— be used with a public elliptic curvE and pointP € E.
c times . .
1) Alice generates a secret random integer €
This can be computed using the following “double and add” 1,...#G — 1 and sends the point, x P to Bob.
algorithm. 2) Bob generates a secret random integgy €
1,...#G — 1 and sends the poirz x P to Alice.
For affine coordinates, 3) Alice and Bob can both compute the key: k4 x (¢ X
INPUT: P € E(Fy.) and ¢ € Fyn P) = ¢ x (cq X P).
OUTPUT: @ = cP An adversary, Carol, eavesdropping on the channel, can only
1 oc=3X"002, b; €0,1,b,, =1 gain the informationE, P, c4 x P, andcg x P. For Carol
2. Q=7r to be able to compute, she must solve the discrete logarithm
3. For 4 from m —1 downto O problem, and the best known algorithm takes fully exponential
Q@ = Q+ Q (Affine EDBL) time. Alice and Bob, however, need only compute elliptic curve
If b =1 then multiplications, which are comparatively easy.
Q = Q + P (Affine ESUM)
4. Return @ ll. AN ELLIPTIC CURVE PROCESSOR

. . , » ) A block diagram of the elliptic curve processor is shown in
This requires: + v(c) — 2 point additions, where(c) isthe gy 1 The organization is similar to a traditional microcoded
number of nonzero _b|ts_|n the bmary representation. of ) central processing unit (CPU) in that it consists of an arith-
In the case of projective coordinates, the same algorithm Cidtic logic unit (ALU), register file, microcode sequencer, and

be used except that the inpiitis first converted to projective yiqcqde storage. Major differences between this architecture

coordinates, the projective formulas for EDBL and ESUM arg d a conventional CPU are that the datapathbits wide and
used instead of the affine formulas, and the re@u# converted

. ) , : the ALU performs operations based éh- arithmetic instead
back to an affine representation. Note that there is no 'nvers'&ninteger arithmetic

required to perform EDBL and ESUM in projective coordinates;
the only inversion is used in the conversion from projective 18 - Arithmetic Logic Unit

affine coordinates. L . .
The ALU is simpler and faster than an integer ALU since no

D. Discrete Logarithm Problem carry propagation is required. The addition operation is imple-

Ellitic curve crvotoaranhy is based on the discrete lo ar'thrrrqenmd simply as axoRr function, and the squaring function is
Iptic curve cryptograpny | ne dist gart implemented as a rotate left operation. The complexity of the
problem applied to elliptic curves over a finite field. In partic-

L . o ALU is determined by the,~ multiplier.
ular, for an elliptic curvel, it relies on the fact that it is easy to Fig. 2 shows the circuit used for calculatingof (1) [14]. In

compute each cycle, (0 < ¢t < n), thecth cell computes
Q =cP et

forc € {1,...,#G — 1} andP,Q € E. However, there is Fi(t) = borrr 2_: ik ittt

currently no known subexponential time algorithm to compute =0

¢ given P andQ. (where all subscripts are reduced modu)o

In fact, the discrete logarithm problem can be used toln each cycle, thed, B and C registers are rotated as
build cryptosystems with any finite abelian group. Indeeghown in Fig. 3. The result is that aftercycles, the contents
multiplicative groups in a finite field were originally proposedof registerC' are the desired product of thé and B inputs
However, the difficulty of the problem depends on the groupl4]. It should be noted that an optimal normal basis reduces
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m microcode

operandl
operand2

| address )
[ instruction

control opcode ALU

Data
Registers

address ‘:>

Fig. 1. EC processor architecture.

a inputs determined by A i L J
v a0 ay ar as eee a

y y A 4 A 4

wiring

From cell D_ DFF To cell
C /. C

k-1 k+1

Co €1 €2 C3 oee Cn-1
. . K K K X X
b inputs determined by 7“ij

Fig. 2. F,» multiplier element ot .

wiring

the number of interconnections and fanout of signals in the :

multiplier to the minimum possible, resulting in reduced area

and increased speed over a nonoptimal normal basis. In fact

the ma_ximum f_an_out fom; in F_ig. 3is fqur [14]._ bo b, b, by -
The field multiplier can be easily parallelized. To increase the .

parallelism by a factok, the multipler logic can be duplicatéd _‘

times and the number of cycles required for a multiplication is

reduced tdn/k| +2. As an example, a parallel versioh = 2)  Fig- 3. F2» multiplier circuit.

of Fig. 2 is shown in Fig. 4.

C. Microcode

B. Register File The ALU plus register file form &% processor similar to

A 16 x n-bit dual-port synchronous register file is conprevious designs [3]. However, for performing elliptic curve
structed from the 1& 1-bit distributed RAM feature of the cryptography, higher level elliptic curve multiplications of Sec-
Xilinx Virtex series logic cell (see Section llI-F). This gives artion 11-C2 are required. This could be implemented as a finite-
eightfold reduction in resources over RAMs based on latchestate machine (FSM) [5] or in microcode. The implementation
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ainputs determined by A ; microcode simulator was also written to facilitate microcode

development.
v V D. Parameterized Module Generator

An important feature of the elliptic curve processor (ECP)
is that it is parameterized via a module generation program. In
contrast to previous designs [3], this scheme advantageously
From cell D_ Tocell uses the reconfigurable nature of the FPGA, so an elliptic

/.

DFF
€ ke ¢k1  curve processor for any with an optimal normal basis can

be produced.
The module generator is a program written in the Perl
programming language [15], which takesand k£ (described
b inputs determined by A ;; in Section 1ll-A) as input parameters and produces the VHDL
code of the ECP as output. Perl is a language that supports
long integer arithmetic, which was helpful in performing the
calculations required to generate the field multiplier. The module
TABLE I generator first computes the the field multiplication table [i.e.,
CLock CycCLEs REQU'REDPigiLLE’*EiHAE‘STRUCT'ON USING A k-WAY the A matrix in (1)]. With the information from the. matrix
andk, the module generator produces a VHDL description of
the circuit shown schematically in Figs. 2 and 3. In actuality,
the only part of the processor that needs to be customized
! by the module generator is the field multiplier. Other parts
XOR 1 of the ECP (including the rest of the ALU) are written in
Rotate left, ROTL 1 standard VHDL and do not require customization by the module
Shift right, SHFR, 1 generator for different: or k. The same microcode is also
J
1
1

Fig. 4. Multiplier element of a parallel multipli€ic = 2).

Operation Clock Cycles

NOP

Field Multiplication, MUL [2]+2 used for differentn and k.

Transfer register value, TFR, E. Bitstream Reconfiguration

Jump Instructions To perform an elliptic curve multiplication, the values of

JKZ, JCZ, JMP and P in (4) as well as the parameters of the curve must be
downloaded to the processor. This was done using a bitstream
modification technique to modify the contents of ROMs inwhich

described in this paper opted for a microcoded approach, whigfe parameters were stored. The circuitis designed in the normal
has the following advantages in a FPGA implementation.  fashion and the ROMs can be placed at arbitrary locations. After
1) The microcode is stored in Xilinx Virtex BlockRAMs andsynthesis, technology mapping, place, and routing, a circuit
does not use logic resources of the FPGA (as explaineddascription file (for the Xilinx tools this has an extension .ncd)
Section IlI-F). The microcode sequencer in this design is generated. Using tools provided by Xilinx, the contents of
very simple and has a small overhead. the circuit can be converted into a human readable format,
2) The microcode can be changed without requiring recorand information regarding the physical location of the ROMs
pilation of the elliptic curve processor. can be extracted. A software program was written that takes
3) Algorithmic optimizations to the processor can be peas input the bitstream, .ncd file, and initialization parameters,
formed entirely in microcode. modifies the ROM values in the bitstream accordingly, and
4) A microcoded description is a higher level abstractiorecomputes the CRC of the bitstream (it would also be possible
than a finite-state machine and hence easier to developuse the Xilinx JBits software developer’s kit to manipulate
and debug. the Xilinx Virtex bitstream). The resulting bitstream can be
The instruction set of the processor is shown in Table ldlownloaded to a Virtex FPGA.
Apart from instructions that directly control the ALU, there are The advantage of bitstream reconfiguration is that circuitry to
three types of jump instructions: JMP—jump unconditionallownload the parameters is avoided, hence reducing the overall
JKZ—jump if the least significant bit ok counter is zero, and area and increasing the speed of the processor. The disadvantage
JCZ—jump if theC register is zero. is that in our current implementation, the entire bitstream must
Each instruction is 16 bits in width, and the format obe downloaded in order to change a few parameters and is hence
instructions is shown in Fig. 5. Most instructions accept iaefficient. It should be possible to improve efficiency by using
source register and a destination registeroperand1 and the partial reconfiguration feature of the Virtex architecture [16]
operand?2, respectively. The jump instructions have a 12-bib modify only a small portion of the chip when parameters are
jump address. changed.
A two-pass symbolic assembler was developed that takeBitstream reconfiguration could be avoided by using a stan-
symbolic input and produces the binary microcode, whidfard interface where input parameters are downloaded to the
can be downloaded to the processor's microcode store.chip via registers. From a practical point of view, this would be
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Instruction
(XOR,ROTL,SHFR,MUL,TFR)

opcode operand1 operand2
15 11 5 0
Instruction
(JKZ,JCZJIMP)
opcode address
15 11 0
Fig. 5. Instruction format.
TABLE Il °0097

RESOURCEUTILIZATION AND MAXIMUM CLOCK RATE FOR DIFFERENT 1z
ON A XILINX XCV1000-6. THE XILINX XCV1000-6 GONTAINS

12288 SICES (6144 CLB) 5000+

n | # of slices | Reported freq (MHz) § 40001

113 | 1410 31 a

155 1868 30 “f 30007

173 | 2148 28 §

281 | 3315 26 " 20009

371 | 4247 22

473 | 5264 18 00T
a better choice since a register-based interface does not require 0 100 200 300 400 500
that the entire bitstream be downloaded every time the input "
parameters are changed. Fig. 6. Number of slices used for different

F. Implementation Platform L
P and for communications between the host and the PE, and the

The ECP was implemented on an Annapolis Micro Systemge of the LUT dual-port synchronous RAM for the ECP’s reg-
Wildstar board [17]. It is @ PCI board consisting of thrégsters. Thus the design should be easy to port to other FPGA and
processing elements (PEs) (Xilinx Virtex XCV1000-6 [18]), 0fAs|C libraries. Dual-port LUT RAM and dual-port Block Se-

which only one was used. The XCV1000-6 has 128 Kbits @{ctRAMs make efficient use of FPGA resources and leads to a
dedicated dual-ported synchronous 4096-bit RAM block Selegster and smaller design.

tRAM (arranged as 32 4-Kbit blocks) and 6144 configurable
logic block_s (CFB.S), which are arrgnged as 12_288 slice_s. IV. RESULTS
The basic building block of the Virtex FPGA is the logic cell ]
(LC). An LC includes a four-input function generator, carry 1he EC processor was successfully tested on a Wildstar
logic, and a storage element. Each Virtex CLB contains fo@Pard (see Section III-F), the microcode being downloaded
LCs, organized in two slices. The four-input function generatéf the BlockRAMSs by the host PC, and the parameters being
are implemented as four-input lookup tables (LUTs). Ea@pPwnloaded to ROMs by bitstream reconfiguration.
of them can provide the functions of one four-input LUT or ) ) o
a 16x 1-bit synchronous RAM (called “distributed RAM"). A- EC Processor With Serial Multipligi = 1)
Furthermore, two LUTs in a slice can be combined to createVHDL code for the elliptic curve processor was generated
a 16x 2-bit or 32x 1-bit synchronous RAM or a 1% 1-bit usingthe parameterized module generator for different values of
dual-port synchronous RAM. n with an optimal normal basis. Synthesis and implementation
Apart from the use of bitstream reconfiguration, the othavere performed using Synopsys FPGA Express 3.4 and Xilinx
parts of the processor specific to the Virtex FPGA architectur®undation 3.2i, respectively. Table Ill shows the resource uti-
were the use of Block SelectRAM for storage of the microcodization and maximum clock rate reported by the Xilinx tools
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TABLE IV TABLE VII
EXECUTION TIME FOR ELLIPTIC CURVE MULTIPLICATION (PROJECTIVE k-WAY PARALLEL FIELD MULTIPLIER RESOURCEUTILIZATION , NUMBER OF
COORDINATES) AND COMPARISONWITH A SOFTWARE IMPLEMENTATION CYCLES, AND EXECUTION TIME FOR A CURVE MULTIPLICATION USING
PROJECTIVE COORDINATES
n | SW time (ms) | HW time (ms) I Speed-up
k | Slices ] Cycles I Time (ms) | Slices l Cycles l Time (ms)
113 27.6 4.3 6
n=113 n=473
155 63.2 8.3 8
173 86.6 111 8 1 1410 | 134484 4.3 5264 | 2267501 126.2
2 1860 71204 2.6 6928 | 1150278 69.2
TABLE V 4 1970 | 39564 1.7 7396 591666 35.7
EXECUTION TIME FOR PROJECTIVE AND AFFINE COORDINATE 6 2076 | 28264 1.2 7872 | 402306 924.5
IMPLEMENTATIONS OF ELLIPTIC CURVE MULTIPLICATION
8 2182 | 23744 1.06 8340 312360 19.1
HW time | HW time 10 2300 20354 0.93 8799 253246 15.7
n | Cycles (affine) | Cycles (proj.) | affine (ms) | proj.(ms) | P: A - 12 | 2434 | 18094 0.89 0288 | 217680 13.8
113 148581 134484 4.8 4.3 0.9 14 | 2515 | 16964 0.84 9752 | 192602 13.5
185 | 324717 249879 10.8 8.3 0.77 16 | 2614 | 15833 0.81 10229 | 170340 12.7
173 402926 310043 144 11.1 0.77 929 _ _ _ 12160 | 147354 12.3
32 3524 12188 0.79 - - -
TABLE VI
DYNAMIC INSTRUCTION COUNT (DYNAMIC INSTRUCTION FREQUENCIES IN 64 5572 10375 0.77 - - -
PARENTHESES FOR AN ELLIPTIC CURVE MULTIPLICATION USING DIFFERENT 113 | 8753 9187 0.75 _ _ _

7. THE “JUMP” ENTRY IS THE SuM OF JKZ, JCZ,AND JMP FREQUENCIES

Projective Affine ) .
bus on the Wildstar. This 350-ms overhead could be reducedto a
n 113 155 173 113 155 173 - ) ) ) . .
negligible value using the techniques discussed in Section IlI-E,
NOP 291 391 444 291 391 444

making the overall speed of the ECP comparable to that of a
(0.22%) | (0.16%) | (0.14%) | (0.2%) | (0.12%) | (0.11%) typical workstation. However, the ECP is a single-chip imple-
XOR 616 847 946 784 1078 1204 mentation and has advantages in terms of cost, memory, energy,
(0.46%) | (0.34%) | (0.31%) | (0.53%) | (0.33%) | (0.3%) size weight, and real-time performance.

MUL | 128820 | 242112 | 301368 | 127680 | 288288 | 359136

(95.79%) | (96.89%) | (97.2%) | (85.93%) | (88.78%) | (89.13%)  B. Projective Verses Affine Coordinates

ROTL | 673 925 1033 12825 24102 30015 The projective and affine implementations share the same
(0.5%) | (0.37%) | (0.33%) | (8.63%) | (7.42%) | (7.45%) hardware design with different microcode and hence occupy the

TFR | 3625 4972 5548 5432 7931 8858 same circuit area. The total number of cycles required for an el-
27%) | (1.99%) | (1.79%) | (3.66%) | (2.44%) | (2:2%) liptic curve multiplication for various: are given in Table V,

SHFR | 123 170 188 1233 2465 2753 where we assume that theof (4) is ann-bit binary number
(0.09%) | (0.07%) | 0.06%) | (0.83%) | (0.76%) | (0.68%) with half the number of bits set. The execution time required

for an elliptic curve multiplication at the maximum frequency
is shown in Table V. These figures were obtained by multi-
plying the number of cycles by the minimum period reported by
Total | 134484 | 249879 | 310043 | 148581 | 324717 | 402926 the Xijlinx implementation tools. They do not include the time
(100%) | (100%) | (100%) | (100%) | (100%) | (100%) for host processor interfacing nor the time for downloading the
bitstream. The implementation using projective coordinates is

for designs with different.. As can be seen in Fig. 6, resourcéﬂlways faster than using affine coordinates.
requirements are linear with The size of the microcode is less o
than 512 16-bit words and does not change for differeat ;. C- Parallel Multiplier (£ > 1)

The execution time of the processor was compared with thafThe dynamic instruction frequencies for a curve multiplica-
of an optimized software implementation of an optimal nhormailon using different, are shown in Table VI. From the table, it
basis elliptic curve package [10] running on a SUN Enterprigan be clearly seen that the bottleneck is in field multiplication
E4500 with UltraSPARC-II 400-MHz processors and 8 GB ofMUL), which accounts for approximately 90% of the execu-
RAM. The results are presented in Table IV. It can be seen thin time.
the raw performance of the elliptic processor is approximately The resources used and time taken for a curve multiplication
six to eight times faster than the software implementation. Natsing a parallel multiplier for, = 113 and473 are shown in
that the hardware times include interfacing overheads but do flable VII. For then = 113 case, a fully parallel multiplier could
include the time to modify the bitstream (approximately 260 m&ge used, whereas far= 473, the maximally parallel multiplier
and download the bitstream (approximately 90 ms) via the Ptat can fit in an XCV1000E correspondeditc= 24.

Jump | 335 461 515 335 461 515
(0.24%) | (0.18%) | (0.18%) | (0.24%) | (0.15%) | (0.12%)
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Fig. 7. Normalized execution time for one curve multiplication usirigway parallel field multiplier.
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