
550 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002

A Microcoded Elliptic Curve Processor
Using FPGA Technology

Philip H. W. Leong, Senior Member, IEEE,and Ivan K. H. Leung

Abstract—The implementation of a microcoded elliptic curve
processor using field-programmable gate array technology is
described. This processor implements optimal normal basis field
operations in 2 . The design is synthesized by a parameterized
module generator, which can accommodate arbitrary and also
produce field multipliers with different speed/area tradeoffs.
The control part of the processor is microcoded, enabling curve
operations to be incorporated into the processor and hence
reducing the chip’s I/O requirements. The microcoded approach
also facilitates rapid development and algorithmic optimization:
for example, projective and affine coordinates were supported
using different microcode. The design was successfully tested on
a Xilinx Virtex XCV1000-6 device and could perform an elliptic
curve multiplication over the field 2 using affine and projective
coordinates for = 113 155 and 173.

Index Terms—Arithmetic, cryptography, Galois fields, mi-
croprogramming, public key cryptography, reconfigurable
architectures.

I. INTRODUCTION

E LLIPTIC curve cryptography (ECC) was proposed by
Koblitz [1] and Miller [2] in 1985. Compared with other

commonly used public key cryptosystems such as RSA and
discrete logarithm, ECC has the following benefits that make it
particularly suitable for embedded applications.

1) ECC offers the highest security per bit of any known
public key cryptosystem so a smaller memory can be
used.

2) ECC hardware implementations use fewer transistors. As
an example, a VLSI implementation of a 155-bit ECC
processor has been reported that uses only 11 000 tran-
sistors [3], compared with an equivalent strength 512-bit
RSA processor that used 50 000 transistors [4].

3) ECC is probably more secure than RSA: the largest RSA
and ECC challenges solved are 512-bit and 108-bit, re-
spectively. The solution to the 108-bit ECC challenge
is believed to be the largest effort ever expended in a
public key cryptography challenge. It took four months
and involved approximately 9500 machines. The amount
of work required to solve the problem was about 50 times
that of the 512-bit RSA.

Previous implementations of ECC processors have been
based on VLSI chips that implement a coprocessor for per-
forming the underlying field operations. An optimal normal

Manuscript received March 1, 2001; revised October 20, 2001.
The authors are with the Department of Computer Science and Engineering,

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China (e-mail:
phwl@cse.cuhk.edu.hk; khleung@cse.cuhk.edu.hk).

Digital Object Identifier 10.1109/TVLSI.2002.801608

basis multiplier over was reported in 1988. It was imple-
mented in 2- m CMOS technology, used 90 000 transistors,
and occupied 0.3-in on a side. This chip, together with a
Motorola DSP 56 000, was used to implement a complete
ECC system that could calculate five points a second on a
supersingular curve [3]. In 1993, the same team developed a
processor for operations in the Galois field [3], which
used 11 000 transistors and could operate at 40 MHz. This
implementation was intended to be compact yet secure.

A field-programmable gate array (FPGA)-based processor
for elliptic curve cryptography in a composite Galois field

was developed by Rosner [5]. A compact superserial
multiplier for FPGAs that trades off performance for area was
reported in 1999, and its performance for field (polynomial
basis) and curve multiplications over has also been
presented [6].

Previous implementations based on Galois field processors
have the disadvantage that a high bandwidth interface is re-
quired to supply the coprocessor with its data. Another limi-
tation of previous application-specific integrated circuit (ASIC)
designs is that the field operations are restricted to certain groups
(i.e., the subfield and extension fields of) and these cannot
be changed without fabricating a new chip.

The implementation described in this paper differs from pre-
vious implementations in the following ways.

1) The higher level curve operations as well as the field op-
erations are implemented on the chip. This makes the I/O
bandwidth requirements much lower than for chips that
only implement the field operations.

2) The curve operations are implemented as sequences of
field operations that are programmed in microcode. This
allows algorithmic optimizations to the design to be made
without changing the hardware.

3) The design uses projective coordinates, which offers a
speed advantage over the affine coordinates since fewer
field inversions are required.

4) The entire design is generated by a module generator that
can generate ECC systems of arbitrary key size. Thus,
ECC systems of arbitrary size over an optimal normal
basis can be generated (provided they fit on the FPGA
device).

5) The parallelism of the field multiplier can also be con-
trolled by the module generator, greatly improving per-
formance.

6) The initialization of the inputs of the curve multiplication
to be computed is performed using bitstream reconfigu-
ration, which results in a savings in hardware and could
lead to an improvement in speed.

1063-8210/02$17.00 © 2002 IEEE

LEONG AND LEUNG: MICROCODED ELLIPTIC CURVE PROCESSOR USING FPGA TECHNOLOGY 551

An earlier paper presented a parameterized elliptic curve
processor with some of these features [7]. This paper describes
an improved implementation that uses projective coordinates,
a parallel field multiplier, and bitstream reconfiguration to
achieve significant performance improvements.

The rest of this paper is organized as follows. Section II is
an introduction to some of the mathematical concepts needed
to understand elliptic curve cryptography. The architecture and
implementation details of the elliptic curve processor are pre-
sented in Section III. Results are presented in Section IV and
conclusions drawn in Section V.

II. BACKGROUND MATHEMATICS

In this section, an informal introduction to the abstract algebra
and elliptic curves used in this implementation is presented.
More rigorous treatments can be found in [8]–[11].

A. Groups and Fields

A group consists of a set of numberstogether with
an operation that satisfies the following properties.

1) Associativity: for all .
2) Identity: there is an element such that

for all .
3) Inverse: For every , there exists an element

such that .
The group is said to be abelian (or commutative) if

for all . We will use the notation to denote
the number of elements in a group.

A field is a set of numbers together with two
operations and that satisfies the following properties.

1) is an abelian group with identity 0.
2) is associative.
3) There exists an identity with such that

for all .
4) The operation is distributive over , i.e.,

and
for all .

5) for all .
6) For every there exists an element

such that .

If the field has a finite set of elements, it is called a finite (or
Galois) field. Let be the finite field with elements. Numbers
in the field can be represented by {0, 1}. If , numbers
in can be represented as-bit binary numbers.

B. Operations (Normal Basis)

The field has particular importance in cryptography
since it leads to particularly efficient hardware implementations.
Elements of the field are represented in terms of a basis. Most
implementations either use a polynomial basis or a normal
basis. For the implementation described in this paper, a normal
basis was chosen since it is believed that it leads to a more
efficient hardware implementation.

In a normal basis, an elementcan be uniquely represented
in the form

where and .
1) Addition and Squaring:The addition operation over

is simply a bit-wise exclusiveOR(XOR) operation. Furthermore,
in a normal basis, squaring is simply a rotate left operation.

2) Multiplication: Let

and

then multiplication is defined in terms of a multiplication table

(1)

An optimal normal basis (ONB) [12] is one with the minimum
number of terms in (1), or equivalently, the minimum possible
number of nonzero . This value is 2 1, and since it allows
multiplication with minimum complexity, such a basis would
normally lead to a more efficient hardware implementation.

Derivation of the values in (1) is dependent on. There
exists an optimal normal basis in if:

1) two is a primitive in ;
2) two is a primitive in ;
3) is odd and two generates the quadratic residues in

(where are the integers).

An ONB exists in for 23% of all possible values of
[12]. The design presented in this paper assumes anthat

has an ONB.
The multiplication table is derived differently for the three

different types of ONB described above. As an example, for the
second type of ONB, iff and satisfy one of the four
congruences [12].

3) Inversion: The algorithm used for inversion is derived
from Fermat’s Little Theorem

for all in . The method used was proposed by Itoh
and Tsujii [13], based on the following decomposition, which

552 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002

minimizes the number of multiplications (squarings are much
cheaper in a normal basis):

odd

even.

The field inversion is computed using the following algorithm:

INPUT:
OUTPUT:
1. Set
2. Set
3. For from downto 0

Set shift to right by
bit(s)

Set
Rotate to left by bit(s)
Set multiply by
If last bit of is set then
Rotate to left by 1-bit

multiply by
else

4. Rotate to left by 1-bit
5. Set
6. Return

The total number of multiplies required to perform an
inversion in using the above algorithm is

where is the number of nonzero bits in the binary repre-
sentation of .

C. Elliptic Curves Over

Section II-B described the implementations of operations in
the underlying field . In this section, a group constructed
from points on elliptic curves over is defined and the effi-
cient implementation of operations in this group described.

A nonsupersingular elliptic curve over , is the
set of all solutions to the following equation with coordinates in
the algebraic closure of [8]

(2)

where , , and . Such an elliptic curve is a
finite abelian group [8]. The number of points in this group is
denoted by .

1) Curve Addition: If and are
points on the elliptic curve [i.e., satisfy (2)] and then

can be defined geometrically. In the case
that (i.e., point addition), a line intersecting the curve
at points and must also intersect the curve at a third point

(in this paper, this operation will be referred
to as ESUM). If (point doubling), the tangent line is
used; this will be referred to as EDBL.

For given in affine coordinates, if

If

Therefore, in affine coordinates, both point addition and point
doubling require two multiplications and one field inversion.
Note that field inversion is far more expensive than a field
multiplication.

A nonsupersingular curve can be equivalently
viewed as the set of all points in the projective plane
that satisfy [18]

(3)

Let ,
and . Since , we can use the
addition formula for in affine coordinates to find

. We have

where and . To eliminate
the denominators of the expressions forand , we set

, , and ; therefore

where and .
Similarily, the formulas for are

where and . The result can be con-
verted back to affine coordinates by multiplying each coordinate
by . Therefore, in projective coordinates, we can perform
curve multiplication by using only one inversion after a series
of additions and doublings. The number of field multiplications
and field inversions for curve point addition and doubling are
shown in Table I. As an example, for , a field inversion
takes ten multiplications. Therefore, the total number of multi-
plications for an affine point addition or doubling is

LEONG AND LEUNG: MICROCODED ELLIPTIC CURVE PROCESSOR USING FPGA TECHNOLOGY 553

TABLE I
NUMBER OF FIELD MULTIPLICATIONS AND INVERSIONS FORAFFINE AND

PROJECTIVEPOINT ADDITION AND DOUBLING

multiplications, whereas a projective point addition and dou-
bling takes thirteen and seven multiplications, respectively.

2) Curve Multiplication: Multiplication (referred to in this
paper as EMUL) is defined by repeated addition, i.e.,

(4)

times

(5)

This can be computed using the following “double and add”
algorithm.

For affine coordinates,
INPUT: and
OUTPUT:
1. ,
2.
3. For from downto 0

(Affine EDBL)
If then

(Affine ESUM)
4. Return

This requires point additions, where is the
number of nonzero bits in the binary representation of.

In the case of projective coordinates, the same algorithm can
be used except that the input is first converted to projective
coordinates, the projective formulas for EDBL and ESUM are
used instead of the affine formulas, and the resultis converted
back to an affine representation. Note that there is no inversion
required to perform EDBL and ESUM in projective coordinates;
the only inversion is used in the conversion from projective to
affine coordinates.

D. Discrete Logarithm Problem

Elliptic curve cryptography is based on the discrete logarithm
problem applied to elliptic curves over a finite field. In partic-
ular, for an elliptic curve , it relies on the fact that it is easy to
compute

for and . However, there is
currently no known subexponential time algorithm to compute

given and .
In fact, the discrete logarithm problem can be used to

build cryptosystems with any finite abelian group. Indeed,
multiplicative groups in a finite field were originally proposed.
However, the difficulty of the problem depends on the group,

and at present, the problem in elliptic curve groups is orders
of magnitude harder than the same problem in a multiplicative
group of a finite field. This feature is the main strength of
elliptic curve cryptosystems.

E. Elliptic Curve Cryptography

The discrete logarithm problem can be used as the basis of
various public key cryptographic protocols for key exchange,
encryption, and digital signatures. It is beyond the scope of this
paper to review all of the cryptographic protocols for public key
cryptography, but an example of its use in the Diffie–Hellman
key exchange is given in this section.

Suppose that Alice and Bob wish to agree on a common key
to be used for encryption using a traditional secret key algorithm
such as DES, but need to do so over an insecure channel such as
the Internet. Then the following Diffie–Hellman procedure can
be used with a public elliptic curve and point .

1) Alice generates a secret random integer
and sends the point to Bob.

2) Bob generates a secret random integer
and sends the point to Alice.

3) Alice and Bob can both compute the key
.

An adversary, Carol, eavesdropping on the channel, can only
gain the information , , , and . For Carol
to be able to compute, she must solve the discrete logarithm
problem, and the best known algorithm takes fully exponential
time. Alice and Bob, however, need only compute elliptic curve
multiplications, which are comparatively easy.

III. A N ELLIPTIC CURVE PROCESSOR

A block diagram of the elliptic curve processor is shown in
Fig. 1. The organization is similar to a traditional microcoded
central processing unit (CPU) in that it consists of an arith-
metic logic unit (ALU), register file, microcode sequencer, and
microcode storage. Major differences between this architecture
and a conventional CPU are that the datapath isbits wide and
the ALU performs operations based on arithmetic instead
of integer arithmetic.

A. Arithmetic Logic Unit

The ALU is simpler and faster than an integer ALU since no
carry propagation is required. The addition operation is imple-
mented simply as anXOR function, and the squaring function is
implemented as a rotate left operation. The complexity of the
ALU is determined by the multiplier.

Fig. 2 shows the circuit used for calculatingof (1) [14]. In
each cycle , , the th cell computes

(where all subscripts are reduced modulo).
In each cycle, the , and registers are rotated as

shown in Fig. 3. The result is that aftercycles, the contents
of register are the desired product of the and inputs
[14]. It should be noted that an optimal normal basis reduces

554 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002

Fig. 1. EC processor architecture.

Fig. 2. F multiplier element ofc .

the number of interconnections and fanout of signals in the
multiplier to the minimum possible, resulting in reduced area
and increased speed over a nonoptimal normal basis. In fact,
the maximum fanout for in Fig. 3 is four [14].

The field multiplier can be easily parallelized. To increase the
parallelism by a factor, the multipler logic can be duplicated
times and the number of cycles required for a multiplication is
reduced to . As an example, a parallel version
of Fig. 2 is shown in Fig. 4.

B. Register File

A 16 -bit dual-port synchronous register file is con-
structed from the 16 1-bit distributed RAM feature of the
Xilinx Virtex series logic cell (see Section III-F). This gives an
eightfold reduction in resources over RAMs based on latches.

Fig. 3. F multiplier circuit.

C. Microcode

The ALU plus register file form a processor similar to
previous designs [3]. However, for performing elliptic curve
cryptography, higher level elliptic curve multiplications of Sec-
tion II-C2 are required. This could be implemented as a finite-
state machine (FSM) [5] or in microcode. The implementation

LEONG AND LEUNG: MICROCODED ELLIPTIC CURVE PROCESSOR USING FPGA TECHNOLOGY 555

Fig. 4. Multiplier element of a parallel multiplier(k = 2).

TABLE II
CLOCK CYCLES REQUIRED FOREACH INSTRUCTION USING A k-WAY

PARALLEL ALU

described in this paper opted for a microcoded approach, which
has the following advantages in a FPGA implementation.

1) The microcode is stored in Xilinx Virtex BlockRAMs and
does not use logic resources of the FPGA (as explained in
Section III-F). The microcode sequencer in this design is
very simple and has a small overhead.

2) The microcode can be changed without requiring recom-
pilation of the elliptic curve processor.

3) Algorithmic optimizations to the processor can be per-
formed entirely in microcode.

4) A microcoded description is a higher level abstraction
than a finite-state machine and hence easier to develop
and debug.

The instruction set of the processor is shown in Table II.
Apart from instructions that directly control the ALU, there are
three types of jump instructions: JMP—jump unconditionally,
JKZ—jump if the least significant bit of counter is zero, and
JCZ—jump if the register is zero.

Each instruction is 16 bits in width, and the format of
instructions is shown in Fig. 5. Most instructions accept a
source register and a destination register in and

, respectively. The jump instructions have a 12-bit
jump address.

A two-pass symbolic assembler was developed that takes
symbolic input and produces the binary microcode, which
can be downloaded to the processor’s microcode store. A

microcode simulator was also written to facilitate microcode
development.

D. Parameterized Module Generator

An important feature of the elliptic curve processor (ECP)
is that it is parameterized via a module generation program. In
contrast to previous designs [3], this scheme advantageously
uses the reconfigurable nature of the FPGA, so an elliptic
curve processor for any with an optimal normal basis can
be produced.

The module generator is a program written in the Perl
programming language [15], which takesand (described
in Section III-A) as input parameters and produces the VHDL
code of the ECP as output. Perl is a language that supports
long integer arithmetic, which was helpful in performing the
calculations required to generate the field multiplier. The module
generator first computes the the field multiplication table [i.e.,
the matrix in (1)]. With the information from the matrix
and , the module generator produces a VHDL description of
the circuit shown schematically in Figs. 2 and 3. In actuality,
the only part of the processor that needs to be customized
by the module generator is the field multiplier. Other parts
of the ECP (including the rest of the ALU) are written in
standard VHDL and do not require customization by the module
generator for different or . The same microcode is also
used for different and .

E. Bitstream Reconfiguration

To perform an elliptic curve multiplication, the values of
and in (4) as well as the parameters of the curve must be
downloaded to the processor. This was done using a bitstream
modification technique to modify the contents of ROMs in which
the parameters were stored. The circuit is designed in the normal
fashion and the ROMs can be placed at arbitrary locations. After
synthesis, technology mapping, place, and routing, a circuit
description file (for the Xilinx tools this has an extension .ncd)
is generated. Using tools provided by Xilinx, the contents of
the circuit can be converted into a human readable format,
and information regarding the physical location of the ROMs
can be extracted. A software program was written that takes
as input the bitstream, .ncd file, and initialization parameters,
modifies the ROM values in the bitstream accordingly, and
recomputes the CRC of the bitstream (it would also be possible
to use the Xilinx JBits software developer’s kit to manipulate
the Xilinx Virtex bitstream). The resulting bitstream can be
downloaded to a Virtex FPGA.

The advantage of bitstream reconfiguration is that circuitry to
download the parameters is avoided, hence reducing the overall
area and increasing the speed of the processor. The disadvantage
is that in our current implementation, the entire bitstream must
be downloaded in order to change a few parameters and is hence
inefficient. It should be possible to improve efficiency by using
the partial reconfiguration feature of the Virtex architecture [16]
to modify only a small portion of the chip when parameters are
changed.

Bitstream reconfiguration could be avoided by using a stan-
dard interface where input parameters are downloaded to the
chip via registers. From a practical point of view, this would be

556 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002

Fig. 5. Instruction format.

TABLE III
RESOURCEUTILIZATION AND MAXIMUM CLOCK RATE FOR DIFFERENTn

ON A XILINX XCV1000-6. THE XILINX XCV1000-6 CONTAINS

12 288 SLICES (6144 CLBS)

a better choice since a register-based interface does not require
that the entire bitstream be downloaded every time the input
parameters are changed.

F. Implementation Platform

The ECP was implemented on an Annapolis Micro Systems
Wildstar board [17]. It is a PCI board consisting of three
processing elements (PEs) (Xilinx Virtex XCV1000-6 [18]), of
which only one was used. The XCV1000-6 has 128 Kbits of
dedicated dual-ported synchronous 4096-bit RAM block Selec-
tRAM (arranged as 32 4-Kbit blocks) and 6144 configurable
logic blocks (CLBs), which are arranged as 12 288 slices.

The basic building block of the Virtex FPGA is the logic cell
(LC). An LC includes a four-input function generator, carry
logic, and a storage element. Each Virtex CLB contains four
LCs, organized in two slices. The four-input function generator
are implemented as four-input lookup tables (LUTs). Each
of them can provide the functions of one four-input LUT or
a 16 1-bit synchronous RAM (called “distributed RAM”).
Furthermore, two LUTs in a slice can be combined to create
a 16 2-bit or 32 1-bit synchronous RAM or a 16 1-bit
dual-port synchronous RAM.

Apart from the use of bitstream reconfiguration, the other
parts of the processor specific to the Virtex FPGA architecture
were the use of Block SelectRAM for storage of the microcode

Fig. 6. Number of slices used for differentn.

and for communications between the host and the PE, and the
use of the LUT dual-port synchronous RAM for the ECP’s reg-
isters. Thus the design should be easy to port to other FPGA and
ASIC libraries. Dual-port LUT RAM and dual-port Block Se-
lectRAMs make efficient use of FPGA resources and leads to a
faster and smaller design.

IV. RESULTS

The EC processor was successfully tested on a Wildstar
board (see Section III-F), the microcode being downloaded
to the BlockRAMs by the host PC, and the parameters being
downloaded to ROMs by bitstream reconfiguration.

A. EC Processor With Serial Multiplier

VHDL code for the elliptic curve processor was generated
using the parameterized module generator for different values of

with an optimal normal basis. Synthesis and implementation
were performed using Synopsys FPGA Express 3.4 and Xilinx
Foundation 3.2i, respectively. Table III shows the resource uti-
lization and maximum clock rate reported by the Xilinx tools

LEONG AND LEUNG: MICROCODED ELLIPTIC CURVE PROCESSOR USING FPGA TECHNOLOGY 557

TABLE IV
EXECUTION TIME FOR ELLIPTIC CURVE MULTIPLICATION (PROJECTIVE

COORDINATES) AND COMPARISONWITH A SOFTWARE IMPLEMENTATION

TABLE V
EXECUTION TIME FOR PROJECTIVE AND AFFINE COORDINATE

IMPLEMENTATIONS OFELLIPTIC CURVE MULTIPLICATION

TABLE VI
DYNAMIC INSTRUCTIONCOUNT (DYNAMIC INSTRUCTIONFREQUENCIES IN

PARENTHESES) FOR AN ELLIPTIC CURVE MULTIPLICATION USING DIFFERENT

n. THE “JUMP” ENTRY IS THESUM OF JKZ, JCZ,AND JMP FREQUENCIES

for designs with different . As can be seen in Fig. 6, resource
requirements are linear with. The size of the microcode is less
than 512 16-bit words and does not change for differentor .

The execution time of the processor was compared with that
of an optimized software implementation of an optimal normal
basis elliptic curve package [10] running on a SUN Enterprise
E4500 with UltraSPARC-II 400-MHz processors and 8 GB of
RAM. The results are presented in Table IV. It can be seen that
the raw performance of the elliptic processor is approximately
six to eight times faster than the software implementation. Note
that the hardware times include interfacing overheads but do not
include the time to modify the bitstream (approximately 260 ms)
and download the bitstream (approximately 90 ms) via the PCI

TABLE VII
k-WAY PARALLEL FIELD MULTIPLIER RESOURCEUTILIZATION , NUMBER OF

CYCLES, AND EXECUTION TIME FOR A CURVE MULTIPLICATION USING

PROJECTIVECOORDINATES

bus on the Wildstar. This 350-ms overhead could be reduced to a
negligible value using the techniques discussed in Section III-E,
making the overall speed of the ECP comparable to that of a
typical workstation. However, the ECP is a single-chip imple-
mentation and has advantages in terms of cost, memory, energy,
size weight, and real-time performance.

B. Projective Verses Affine Coordinates

The projective and affine implementations share the same
hardware design with different microcode and hence occupy the
same circuit area. The total number of cycles required for an el-
liptic curve multiplication for various are given in Table V,
where we assume that theof (4) is an -bit binary number
with half the number of bits set. The execution time required
for an elliptic curve multiplication at the maximum frequency
is shown in Table V. These figures were obtained by multi-
plying the number of cycles by the minimum period reported by
the Xilinx implementation tools. They do not include the time
for host processor interfacing nor the time for downloading the
bitstream. The implementation using projective coordinates is
always faster than using affine coordinates.

C. Parallel Multiplier

The dynamic instruction frequencies for a curve multiplica-
tion using different are shown in Table VI. From the table, it
can be clearly seen that the bottleneck is in field multiplication
(MUL), which accounts for approximately 90% of the execu-
tion time.

The resources used and time taken for a curve multiplication
using a parallel multiplier for and are shown in
Table VII. For the case, a fully parallel multiplier could
be used, whereas for , the maximally parallel multiplier
that can fit in an XCV1000E corresponded to .

558 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002

Fig. 7. Normalized execution time for one curve multiplication using ak-way parallel field multiplier.

Fig. 7 is a plot of normalized performance verses the degree of
parallelism . As can be seen from the figure, the execution time
improves as parallelism is increased and tradeoffs between area
and performance can be easily made. Improvement is initially
linear for small , after which degradation occurs mainly be-
cause of increased routing delays. The performance then quickly
saturates. As can be seen from the graph, for smaller, degrada-
tion occurs at a smaller value of. A sensible tradeoff between
performance and area could be achieved by limitingto the
linear region of Fig. 7.

V. CONCLUSION

The feasibility and utility of implementing a microcoded
elliptic curve processor over for arbitrary was demon-
strated. We believe that a microcoded implementation has
a shorter development time and is more flexible than an
FSM-based implementation. Moreover, the processor’s I/O
requirements are simply the inputs and outputs of the elliptic
curve multiplication and are hence much lower than that of a
processor that only implements field operations. Experiments
with the processor showed that projective coordinates are
always faster than affine and that field multiplication accounts
for approximately 90% of the execution time of a curve multi-
plication. By increasing the parallelism of the field multiplier
unit, significant speed improvements can be gained.

REFERENCES

[1] N. Koblitz, “Elliptic curve cryptosystems,”Math. Computat., vol. 48,
pp. 203–209, 1987.

[2] V. S. Miller, “Use of elliptic curves in cryptography,” inCRYPTO ’85,
1986, pp. 417–426.

[3] G. B. Agnew, R. C. Mullin, and S. A. Vanstone, “An implementation
of elliptic curve cryptosystems overF ,” IEEE Trans. Select. Areas
Commun., vol. 11, pp. 804–813, 1993.

[4] J. S. P. Ivey, S. Walker, and S. Davidson, “An ultra-high speed public key
encryption processor,” inProc. IEEE Custom Integrated Circuits Conf.,
1992, pp. 19.6.1–19.6.4.

[5] M. Rosner, “Elliptic curve cryptosystems on reconfigurable hardware,”
master’s thesis, Worcester Polytechnic Inst., Worcester, MA, 1998.

[6] G. Orlando and C. Paar, “A super-serial galois field multiplier for
FPGA’s and its application to public key algorithms,” inProc. IEEE
Symp. Field-Programmable Custom Computing Machines (FCCM’99),
1999, pp. 232–239.

[7] K. H. Leung, K. W. Ma, W. K. Wong, and P. H. W. Leong, “FPGA im-
plementation of a microcoded elliptic curve cryptographic processor,” in
Proc. Field-Programmable Custom Computing Machines (FCCM’00),
2000, pp. 68–76.

[8] A. J. Menezes,Elliptic Curve Public Key Cryptosystems. Norwell,
MA: Kluwer Academic, 1993.

[9] A. J. Menezes, P. van Oorschot, and S. A. Vanstone,Handbook of Ap-
plied Cryptography. Boca Raton, FL: CRC Press, 1999.

[10] M. Rosing, Implementing Elliptic Curve Cryptography. Greenwich,
CT: Manning, 1998.

[11] I. Blake, G. Seroussi, and N. Smart,Elliptic Curves in Cryptog-
raphy. Cambridge, U.K.: Cambridge Univ. Press, 1999.

[12] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson,
“Optimal normal bases inGF (p),” Discrete Appl. Math., vol. 22, pp.
149–161, 1988/1989.

[13] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative
inverses inGF (2) using normal bases,”Info. Comput., vol. 78, no.
3, pp. 171–177, 1988.

LEONG AND LEUNG: MICROCODED ELLIPTIC CURVE PROCESSOR USING FPGA TECHNOLOGY 559

[14] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone, “An
implementation for a fast public-key cryptosystem,”J. Cryptol., vol. 3,
pp. 63–79, 1991.

[15] L. Wall, T. Christianson, and R. L. Schwartz,Programming Perl, 2nd
ed: O’Reilly, 1996.

[16] Xilinx Applications Note XAPP 151: Virtex Configuration Architecture
Advanced User Guide, Xilinx, 2000.

[17] Wildstar Reference Manual Revision 3.3, Annapolis Micro Systems,
Inc, 1999.

[18] Virtex 2.5 V Field Programmable Gate Arrays, Xilinx, 2000.
[19] J. A. Solinas, “An improved algorithm for arithmetic in a family of el-

liptic curves,” inCRYPTO ’97, 1997, pp. 357–371.
[20] R. Schroeppel, H. Orman, S. O’Mally, and O. Spatscheck, “Fast key

exchange with elliptic curve systems,” inCRYPTO ’95, 1995, pp. 43–56.
[21] J. Guajardo and C. Paar, “Efficient algorithms for elliptic curve cryp-

tosystems,” inCRYPTO ’97, 1997, pp. 343–356.
[22] J. Lopez and R. Dahab, “An improvement of the guajardo-paar method

for multiplication on nonsupersingular elliptic curves,” inProc. XVIII
Int. Conf. Chilean Society of Computer Science (SCCC’98), 1998, pp.
91–95.

[23] S. Sutikno and A. Surya, “An architecture ofF multiplier for elliptic
curves cryptosystem,” inProc. IEEE 2000 Int. Symp. Circuits and Sys-
tems, 2000, pp. 279–282.

[24] L. Gao, S. Shrivastava, and G. E. Sobelman, “Elliptic curve scalar multi-
plier design using FPGA’s,” inProc. Cryptographic Hardware and Em-
bedded Systems (CHES’99), 1999, pp. 257–268.

[25] J. López and R. Dahad, “Fast multiplication on elliptic curves over
GF (2) without precompuatation,” inProc. Cryptographic Hardware
and Embedded Systems (CHES’99), 1999, pp. 257–268.

[26] IEEE Standard Specifications for Public-Key Cryptography, IEEE Stan-
dard 1363, 2000.

Philip H. W. Leong (SM’87) received the B.Sc., B.E., and Ph.D. degrees from
the University of Sydney, Australia, in 1986, 1988, and 1993, respectively.

In 1989, he was a Research Engineer at AWA Research Laboratory, Sydney.
From 1990 to 1993, he was a Postgraduate Student and Research Assistant at
the University of Sydney, where he worked on low-power analog VLSI circuits
for arrhythmia classification. In 1993, he was a Consultant to SGS Thomson
Microelectronics in Milan, Italy. He was a Lecturer at the Department of Elec-
trical Engineering, University of Sydney, from 1994 to 1996. He is currently an
Associate Professor in the Department of Computer Science and Engineering,
Chinese University of Hong Kong, and Director of the Custom Computing Lab-
oratory. He is the author of more than 50 technical papers and three patents. His
research interests include reconfigurable computing, digital systems, parallel
computing, cryptography, and signal processing.

Ivan K. H. Leung received the B.Eng. and M.Phil. degrees from the Chinese
University of Hong Kong in 1999 and 2001, respectively, where he is currently
pursuing the Ph.D. degree.

He is with the Center for Large Scale Computation, Chinese University of
Hong Kong. His research interests include reconfigurable computing, cryptog-
raphy, VLSI, and parallel computing.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

