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A module generator which can produce an FPGA-based implementation of an electronic cochlea filter with arbitrary precision is
presented. Although hardware implementations of electronic cochlea models have traditionally used analog VLSI as the imple-
mentation medium due to their small area, high speed, and low power consumption, FPGA-based implementations offer shorter
design times, improved dynamic range, higher accuracy, and a simpler computer interface. The tool presented takes filter coeffi-
cients as input and produces a synthesizable VHDL description of an application-optimized design as output. Furthermore, the
tool can use simulation test vectors in order to determine the appropriate scaling of the fixed-point precision parameters for each
filter. The resulting model can be used as an accelerator for research in audition or as the front-end for embedded auditory signal
processing systems. The application of this module generator to a real-time cochleagram display is also presented.
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1. INTRODUCTION

The field of neuromorphic engineering has the long-term
objective of taking architectures from our understanding of
biological systems to develop novel signal processing systems.
This field of research, pioneered by Mead [1], has concen-
trated on using analog VLSI to model biological systems. Re-
search in this field has led to many biologically inspired signal
processing systems which have improved performance com-
pared to traditional systems.

The human cochlea is a transducer which converts me-
chanical vibrations from the middle ear into neural electri-
cal discharges, and additionally provides spatial separation of
frequency information in a manner similar to that of a spec-
trum analyzer [2]. It serves as the front-end signal processing
for all functions of the auditory nervous system such as au-
ditory localization, pitch detection, and speech recognition.

Although it is possible to simulate cochlea models in soft-
ware, hardware implementations may have orders of magni-
tude of improvement in performance. Hardware implemen-
tations are also attractive when the target applications are
on embedded devices in which power efficiency and small-
footprint are design considerations.
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Figure 1: Cascaded IIR biquadratic section used in the Lyon and
Mead cochlea model.

The electronic cochlea, first proposed by Lyon and Mead
[2], is a cascade of biquadratic filter sections (as shown in
Figure 1) which mimics the qualitative behavior of the hu-
man cochlea. Electronic cochlea have been successfully used
in auditory signal processing systems such as spatial localiza-
tion [3], pitch detection [4], a computer peripheral [5], am-
plitude modulation detection [6], correlation [7], and speech
recognition [8].

There have been several previous implementations of
electronic cochlea in analog VLSI technology. The original
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implementation by Lyon and Mead was published in 1988
and used continuous time subthreshold transconductance
circuits to implement a cascade of 480 stages [2, 9]. In
1992, Watts et al. reported a 50-stage version with improved
dynamic range, stability, matching, and compactness [10].
A problem with analog implementations is that transistor
matching issues affect the stability, accuracy, and size of
the filters. This issue was addressed by van Schaik et al. in
1997 using compatible lateral bipolar transistors instead of
MOSFETs in parts of the circuit [11]. Their 104-stage test
chip showed greatly improved characteristics. In addition, a
switched capacitor cochlea filter was proposed by Bor et al.
in 1996 [12].

There have also been several previously reported dig-
ital VLSI cochlea implementations. In 1992, Summerfield
and Lyon reported an application-specific integrated circuit
(ASIC) implementation which employed bit-serial second-
order filters [13]. In 1997, Lim et al. reported a VHDL-
based pitch detection system which used first-order But-
terworth band pass filters for cochlea filtering [14]. Later
in 1998, Brucke et al. designed a VLSI implementation of
a speech preprocessor which used gammatone filter banks
to mimic the cochlea [15]. The implementation by Brucke
et al. used fixed-point arithmetic and they also explored
trade-offs between wordlength and precision. In 2000, Watts
built a 240-tap high-resolution implementation of a cochlea
model using FPGA technology (http://www.lloydwatts.com/
neuroscience.shtml) and in 2002 a tenth-order recursive
cochlea filter was implemented using FPGA technology [16].

A field programmable gate array (FPGA) is an array of
logic gates in which the connections can be configured by
downloading a bitstream into its memory. Traditional ASIC
design requires weeks or months for the fabrication process,
whereas an FPGA can be configured in milliseconds. An ad-
ditional advantage of FPGA technology is that the same de-
vices can be reconfigured to perform different functions. At
the time of writing this paper in 2002, FPGAs had equivalent
densities of ten million system gates.

Since most systems which employ an electronic cochlea
are experimental in nature, the long design and fabrication
times associated with both analog and digital VLSI technol-
ogy are a major shortcoming. Recently, FPGA technology has
improved in density to the point where it is possible to de-
velop large scale neuromorphic systems on a single FPGA.
Although these are admittedly larger in area, have higher
power consumption, and may have lower throughput than
the more customized analog VLSI implementations, many
interesting neuromorphic signal processing systems can be
implemented using FPGA technology, enjoying the follow-
ing advantages over analog and digital VLSI:

(i) shorter design and fabrication time;
(ii) more robust to power supply, temperature, and tran-

sistor mismatch variations than analog systems;
(iii) arbitrarily high dynamic range and signal-to-noise ra-

tios can be achieved over analog systems;
(iv) whereas a VLSI design is usually tailored for a single

application, the reconfigurability and reuseability of an

FPGA enables the same system to be used for many
applications;

(v) designs can be optimized for each specific instance of a
problem whereas ASICs need to be more general pur-
pose;

(vi) they can be interfaced more easily with a host com-
puter.

The main difficulty that one faces in implementing an
electronic cochlea on an FPGA is the choice of arithmetic
system to be used in the imple mentation of the underlying
filters. In the module generator which will be presented, a
fixed-point implementation strategy was chosen over float-
ing point since we believed it would result in an imple-
mentation with smaller area. Distributed arithmetic (DA)
was used to implement the multipliers associated with the
filters in an efficient manner. Finally, a module generator
which can generate synthesizable VHDL descriptions of ar-
bitrary wordlength fixed-point cochlea filters was developed.
The module generator can also be used, together with our
fp simulation tool [17, 18], to determine the minimum and
maximum ranges of all variables. This range information is
then used to determine the maximal number of fractional
bits which can be used in the variable’s two’s complement
fraction representation, hence minimizing quantization
error.

The FPGA implementation of the electronic cochlea de-
scribed here can serve as a computational accelerator in its
own right, or be used as a front-end preprocessing stage for
embedded auditory applications. As a sample application, a
real-time cochleagram display is presented.

The rest of the paper is organized as follows. In Section 2,
Lyon and Mead’s cochlea model is described. Section 3 de-
scribes the implementation of the filter stages using DA. Our
design methodology is presented in Section 4, followed by
results in Section 5. Conclusions are drawn in Section 6.

2. LYON AND MEAD’S COCHLEA MODEL

Lyon and Mead proposed the first electronic cochlea in 1988
[2, 19]. This model captured the qualitative behavior of the
human cochlea using a simple cascade of second order fil-
ter stages which they implemented in analog VLSI. In this
section, a very superficial summary of the Lyon and Mead
cochlea model is given. More detailed descriptions of the
cochlea can be found in [2, 20].

The human cochlea, or inner ear, is a three-dimensional
fluid dynamic system which converts mechanical vibrations
from the middle ear into neural electrical discharges [2]. It
is composed of the basilar membrane, inner hair cells, and
outer hair cells. The cochlea connects to higher levels in the
auditory pathway for further processing.

The basilar membrane is a longitudinal membrane with-
in the cochlea. The oval window provides the input to the
cochlea. Vibrations of the eardrum are coupled via bones in
the middle ear to the oval window causing a traveling wave
from base to apex along the basilar membrane. The basilar
membrane has a filtering action and can be thought of as
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Figure 2: Illustration of a sine wave travelling through a simplified
box model of an uncoiled cochlea (adapted from [2]).
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Figure 3: The architecture of an IIR biquadratic section.

a cascade of lowpass filters with exponentially decreasing cut-
off frequency from base to apex.

The result of the filtering of the basilar membrane at
any point along its length is a bandpass filtered version of
the input signal, with center frequency decreasing along its
length. Different distances along the basilar membrane are
tuned to specific frequencies in a manner similar to that of a
spectrum analyzer. A simplified box model showing a sinu-
soidal wave traveling along an uncoiled cochlea is shown in
Figure 2.

Several thousand inner hair cells are distributed along the
basilar membrane and convert the displacement of the basi-
lar membrane to a neural signal. The hair cells also perform a
half-wave rectifying function since only displacements in one
direction will cause neurons to fire.

The outer hair cells perform automatic gain control by
changing the damping of the basilar membrane. It is inter-
esting to note that there are approximately three times more
outer hair cells than inner hair cells.

In order to simulate the properties of the basilar mem-
brane, Lyon and Mead’s cochlea model used a cascade of
scaled second-order lowpass filters with the transfer function

H(s) = 1
τ2s2 + (1/Q)τs + 1

, (1)

where Q represents the damping characteristic (or quality) of
the filter and τ the time constant. In the cochlea filter, the τ of
each filter is varied exponentially along the cascade, causing

filters to have exponentially decreasing cutoff frequencies.
The Q of all the filters is held constant. The output of each
filter corresponds to the displacement at different positions
along the basilar membrane.

3. IIR FILTERS USING DA

3.1. Distributed arithmetic

DA offers an efficient method to implement a sum of prod-
ucts (SOP) provided that one of the variables does not
change during execution. Instead of requiring a multiplier,
DA utilizes a precomputed lookup table [21, 22].

Consider the SOP, S of N terms

S =
N−1∑

i=0

kixi , (2)

where ki is the (fixed) weighting factor and xi is the input.
For two’s complement fractions, the numerical value of xi =
{xi0xi1 · · · xi(n−1)} is

xi = −xi0 +
n−1∑

b=1

xib × 2−b. (3)

Substituting (3) into (2) yields

S = −(x00 × k0 + x10 × k1 + · · · + x(N−1)0 × kN−1
)× 20

+
(
x01 × k0 + x11 × k1 + · · · + x(N−1)1 × kN−1

)× 2−1

+
(
x02 × k0 + x12 × k1 + · · · + x(N−1)2 × kN−1

)× 2−2

...

+
(
x0(n−1) × k0 + x1(n−1) × k1 + · · · + x(N−1)(n−1)×kN−1

)

× 2−(n−1).
(4)

The organization of the input variables is in a bit-serial
least significant bit (LSB) first format. Since xi j ∈ {0, 1} (i =
0, 1, . . . , N−1, j = 0, 1, . . . , n−1), each term within the brack-
ets of (4) is the sum of weighting factors k0, k1, . . . , kN−1. On
every clock cycle, one of the bracketed terms of S can thus be
computed by applying x0, x1, . . . , xN−1 as the address inputs
of a 2(N−1) entry read-only memory (ROM). The contents
of the ROM are precomputed from the constant ki’s and are
shown in Table 1. The output of the ROM is multiplied by a
power of two (a shift operation) and then accumulated. After
n cycles, the accumulator contains the value of S.

3.2. Digital IIR filters

A general IIR second-order filter has a transfer function of
the form

H(z) = b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2
. (5)



632 EURASIP Journal on Applied Signal Processing

Serial input

SRL16E

SRL16E

SRL16E

DA LUT
ROM32X1

Scaling
accumulator

Parallel-to-
serial

converter

Serial output

Figure 4: Implementation of an IIR biquadratic section on an Xilinx Virtex FPGA.

Table 1: Contents of a DA ROM. For each address, the terms ki for
which bi = 1 are summed.

bN−1 · · · b2b1b0 Address Contents

0 · · · 000 0 0

0 · · · 001 1 k0

0 · · · 010 2 k1

0 · · · 011 3 k0 + k1

0 · · · 100 4 k2

0 · · · 101 5 k0 + k2

0 · · · 110 6 k2 + k1

0 · · · 111 7 k0 + k1 + k2

...
...

...

1 · · · 111 2N−1 k0 + k1 + · · · + kN−1

The corresponding time domain IIR filter can be imple-
mented by the function

y(n) = b0x(n) + b1x(n− 1) + b2x(n− 2)

+ a0y(n− 1) + a1y(n− 2),
(6)

where x(n− k) is the kth previous input, y(n− k) is the kth
previous output, and y(n) is the output. The operation is es-
sentially the SOP of five terms, and can be directly mapped
to a biquadratic section as shown in Figure 3.

Figure 4 illustrates our actual implementation using DA
(described in Section 3.1) on an Xilinx Virtex FPGA. The
previous values x(n − 1), x(n − 2), and y(n − 2) are im-
plemented using shift registers with the number of stages
equal to the wordlength of the variables used. The shift reg-
isters are implemented by cascades of Virtex SRL16E prim-
itives for minimum area. The DA ROM takes x(n), x(n −
1), x(n − 2), y(n − 1), and y(n − 2) as inputs to gen-
erate partial sums (bracketed terms in (4)). As there are
5 inputs, the required number of entries in the ROM is
25 = 32, leading to an efficient implementation using Xil-
inx ROM32X1 primitives. The scaling accumulator shifts and
adds the output from the ROM (unscaled partial sum in bit-
parallel organization) at every cycle to produce y(n). In the
last cycle of scaling and accumulation, the parallel-to-serial

converter latches the value at the scaling accumulator. Since
the scaling accumulator has a latency equal to the wordlength
of the variables, the value latched by the converter is
y(n− 1).

4. DESIGN METHODOLOGY

Given the filter coefficients, the designer selects appropriate
values of filter wordlength and the number of bits (width)
of the DA ROM’s output. Note that all filter sections have
the same wordlength although the allocation of integer and
fractional parts used within each filter section can vary.

The cochlea filter model is written in a subset of C which
supports only expressions and assignments [17, 18]. A com-
piler uses standard parsing techniques to translate expres-
sions into directed acyclic graphs (DAG). Each operator is
mapped to a module which is a software object consisting of
a set of parameters, a simulator, and a component generator.
The simulator can perform the operation at a requested pre-
cision to determine range information. It can also compare
fixed-point output with a floating-point computation to de-
rive error statistics.

As an input, the fp cochlea generator takes the coeffi-
cients obtained from an auditory toolbox, the wordlength of
variables, and the width of the DA ROM. Although inputs
and outputs of all filter sections are of the same wordlength,
their fractional wordlength can be different (two’s comple-
ment fractions are used). The dynamic ranges of inputs and
outputs are determined by fp through simulation of a set of
user-supplied test vectors. The generator performs simula-
tion using the test vectors as inputs and the range of each
variable can be determined. From this information, the min-
imum number of bits needed for the integer part of each vari-
able is known and, since the wordlength is fixed, the maxi-
mum number of bits can be assigned to the fractional part of
the variable.

After deducing the best representation for each vari-
able, the generator outputs a synthesizable VHDL code that
describes an implementation of the corresponding cochlea
model. The fractional wordlengths of the scaling accumula-
tor and the output variable can be different, so the operator
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Figure 5: Frequency responses of cochlea implementations with different wordlength and width of ROMs (wordlength, ROM width).

must also include a mechanism to convert the former to the
latter. Since the output of the scaling accumulator is bit-
parallel while the output variable is bit-serial, the parallel-to-
serial converter can perform format scaling by selecting the
appropriate bits to serialize. The resulting VHDL description

can then be used as a core in other designs.
The high level cochlea model description is approxi-

mately 60 lines of C code. From that, it generates approxi-
mately 50000 lines of VHDL code for the case of a cochlea
filter with 88 biquadratic sections.
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Figure 6: Impulse response of (a) the software floating-point implementation and (b) hardware 16-bit wordlength, 16-bit ROM width
implementation. Frequency response of (c) the software floating-point implementation and (d) hardware 16-bit wordlength, 16-bit ROM
width implementation.
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Figure 7: Mesh plot showing the quantization errors of implemen-
tations with varying wordlengths and DA ROM widths.

5. RESULTS

The cochlea implementation was tested on an Annapolis
“Wildstar” Reconfigurable Computing Engine [23] which
is a PCI-based reconfigurable computing platform con-
taining three Xilinx Virtex XCV1000-BG560-6 FPGAs. The
cochlea implementations were verified by comparing Synop-
sys VHDL Simulator simulations with the results produced
by a floating-point software model. Synthesis and implemen-

tation were performed using Synopsys FPGA Express 3.4 and
Xilinx Foundation 3.2i, respectively.

5.1. Trade-offs among wordlength, width of DA ROM,
and precision

The coefficients for the biquadratic filters in our implemen-
tation of Lyon and Mead’s cochlea model were obtained us-
ing Slaney’s Auditory Toolbox [24]. This Matlab toolbox has
several different cochlea models, test inputs, and visualiza-
tion tools. The same toolbox was used to verify our designs
and produce cochleagram plots.

The coefficients of these implementations were obtained
from the Auditory Toolbox using the Matlab command
DesignLyonFilters(16000, 8, 0.25), which specifies
a 16 kHz sampling rate, Q = 8, and a spacing which gives 88
biquadratic filters. A series of cochlea implementations, with
wordlengths from 10 to 32 bits and DA ROM width from 10
to 24 bits, was generated in order to present the trade-offs
among wordlengths, widths of DA ROMs, and precisions.

In order to present the improvement in precision with
increasing wordlengths and ROM width, the frequency re-
sponses of several different fixed-point implementations are
plotted in Figure 5. Figure 6 shows impulse and frequency re-
sponses obtained from a software floating-point implemen-
tation, a hardware 16-bit wordlength, and 16-bit ROM width
implementation.

It can be observed that the filter accuracy gradually im-
proves with increasing wordlength or ROM width. When
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Table 2: Area requirements of an 88-section cochlea implementa-
tion of different wordlengths and ROM width (number of slices).

Wordlength
ROM Width

12-bit 16-bit 20-bit 24-bit

12-bit 5770 6582 7440 8340

16-bit 6160 6800 7589 8515

20-bit 6914 7343 7874 8602

24-bit 7620 8048 8578 9106

28-bit 8288 8748 9278 9805

32-bit 9297 9716 10245 10771

Table 3: Maximum clock rates and corresponding sampling rates
of 88-section cochlea implementations of different wordlengths and
ROM width (maximum clock rate (MHz) and maximum sampling
rate (MHz)).

Wordlength
ROM Width

12-bit 16-bit 20-bit 24-bit

12-bit 56.42, 4.70 62.79, 5.23 69.49, 5.79 67.24, 5.60

16-bit 67.48, 4.22 67.54, 4.22 65.16, 4.07 65.02, 4.06

20-bit 64.48, 3.22 63.58, 3.18 61.86, 3.09 61.79, 3.09

24-bit 64.24, 2.68 60.98, 2.54 57.94, 2.41 59.47, 2.48

28-bit 60.22, 2.15 57.93, 2.07 54.00, 1.93 49.09, 1.75

32-bit 62.68, 1.96 63.11, 1.97 65.23, 2.04 63.09, 1.97

wordlengths or ROM widths are too small, there are signif-
icant quantization effects that may result in oscillation (as
in the 12-bit wordlength implementations) or improper fre-
quency responses at certain frequency intervals (as in the
12-bit DA ROM implementations). With 24-bit wordlength
and 16-bit ROMs, for example, the total quantization er-
ror is −39.46 dB, which is sufficient for most speech appli-

cations. Figure 7 shows the trend of improved quantization
error with increasing wordlength and ROM width.

Area requirements, maximum clock rates, and maxi-
mum sampling rates of these implementations on a Xil-
inx Virtex XCV1000-6 FPGA, as reported by the Xilinx im-
plementation tools, are shown in Tables 2 and 3. A Xilinx
XCV1000 has 12288 slices and the largest currently available
parts, XCV3200, have 32448 slices. As a bit-serial architec-
ture was employed, the effective sampling rates of the imple-
mentations are their maximum clock rates divided by their
wordlengths.

5.2. Application to a cochleagram display

A 24-bit wordlength, 16-bit DA ROM implementation was
used to construct a cochleagram display application. Due to
limited hardware resources on a Xilinx XCV1000-6 FPGA,
only the first 60 out of the 88 cochlea sections were used.
These cochlea sections correspond to a frequency range of
1006 to 7630 Hz.

The design of the cochleagram display is shown in
Figure 8. The host PC writes input data into a dual-port
block RAM (256 × 32-bit synchronous RAM) which passes
through a parallel-to-serial converter and enters the cochlea
core. Each of the outputs of the cochlea core undergoes
serial-to-parallel conversion followed by half-wave rectifica-
tion (to model the functionality of the inner hair cells). The
outputs were integrated over 256 samples and sent to the PC
for display.

The cochleagram display was tested with several differ-
ent inputs. Figure 9 shows the cochleagrams produced from
swept-sine wave and the auditory toolbox’s “tapestry” inputs;
the former is a 25-second linear chirp and the latter is the
speech file of a woman saying “a huge tapestry hung in her
hallway.”
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Figure 9: Cochleagrams of (a) swept-sine wave and (b) “tapestry”
inputs. The former has 400000 samples while the latter has 50380
samples. Only the first 60 out of the 88 cochlea sections were
used because of limited hardware resources on a Xilinx XCV1000-6
FPGA. These cochlea sections correspond to a frequency range of
1006–7630 Hz.

The cochleagram display requires 10344 slices and can be
clocked at 44.15 MHz, yielding a sampling rate of 1.84 MHz
(or 115 times faster than real-time performance). Including
software and interfacing overheads, the measured through-
put on the “Wildstar” platform was 238 kHz. As a compari-
son, the auditory toolbox achieves a 64 kHz throughput on a
Sun Ultra-5 360 MHz machine. The performance could be
further improved by using large and/or faster speed grade
FPGAs, or via improved floorplanning of the design which
would allow a higher clock frequency.

It is interesting to compare the FPGA-based cochleagram
system with a similar system developed in analog VLSI by
Lazzaro et al. in 1994 [5]. Using a 2 µm CMOS process,

they integrated a 119 stage silicon cochlea (with a slightly
more sophisticated hair cell model), nonvolatile analog stor-
age, and a sophisticated event-based communications pro-
tocol on a single 3.6× 6.8 mm2 chip with a power consump-
tion of 5 mW. The analog VLSI version has improved density
and power consumption compared with the FPGA approach.
However, the FPGA version is vastly simpler, easier to mod-
ify, has a shorter design time, and is much more tolerant of
supply voltage, temperature, and transistor matching varia-
tions. Although qualitative results are not available, it is ex-
pected that the FPGA version also has better filter accuracy,
has a wider dynamic range and can operate at higher Q with-
out instability.

We believe that there are many applications of the FPGA
cochlea including the development of more refined cochlea
or cochlea-like models. An FPGA cochlea is particularly
suited as a testbed for algorithms that involve concurrent
processing across cochlea channels such as (i) more realis-
tic hair cell models, (ii) auditory streaming and the separa-
tion of foreground stimuli from background noise, (iii) au-
ditory processing in reverberant environments, (iv) human
sound localization, and (v) bat echolocation. In addition,
the FPGA platform provides an avenue for developing, sim-
ulating, and studying auditory processing in more compli-
cated, but realistic acoustic environments, that involve mul-
tiple sound sources, multiple reflection paths, and external
ear acoustic filtering that varies with sound direction. The
signal processing required to simulate such realistic environ-
ments is computationally intensive and some of this pre-
processing can be incorporated into the FPGA platform en-
abling real-time studies of auditory processing under realistic
acoustic conditions. We are also interested in finding ways in
which FPGA cochlea models can assist in adapting or trans-
lating cochlea processing principles into engineering imple-
mentations. Future projects include using the FPGA cochlea
in comparisons of a cochlea model with an analysis-synthesis
filter bank as used in perceptual audio coding, audio visual-
ization displays, and a neuromorphic isolated word spotting
system with cochlea preprocessing. Although modern digi-
tal signal processors (DSP) are capable of achieving similar
or even higher performance, the FPGA may have advantages
in terms of power consumption and smaller footprint. The
availability of more than 100 dedicated high-speed multipli-
ers in newer Virtex II [25] devices would enable implementa-
tions with much higher throughput than the implementation
presented in this paper and would also free up more FPGA
logic resources for implementing hair cell and higher-level
processing models.

6. CONCLUSION

A parameterized FPGA implementation of an electronic
cochlea that can be used as a building block for many systems
which model the human auditory pathway was developed.
This electronic cochlea demonstrates the feasibility of incor-
porating large neuromorphic systems on FPGA devices. Neu-
romorphic systems employ parallel distributed processing
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which is well suited to FPGA implementation, and may of-
fer significant advantages over conventional architectures.

FPGAs provide a very flexible platform for the develop-
ment of experimental neuromorphic circuits and offer ad-
vantages in terms of faster design time, faster fabrication
time, wider dynamic range, better stability, and simpler com-
puter interface over analog VLSI implementations.
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