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Kernel Normalised Least Mean Squares with Delayed Model
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NICHOLAS J. FRASER and PHILIP H. W. LEONG, The University of Sydney, Australia

Kernel adaptive filters (KAFs) are non-linear filters which can adapt temporally, and have the additional benefit
of being computationally efficient through use of the “kernel trick”. In a number of real world applications,
such as channel equalisation, the non-linear mapping provides significant improvements over conventional
linear techniques such as the least mean squares (LMS) and recursive least squares (RLS) algorithms. Prior
works have focused mainly on the theory and accuracy of KAFs, with little research on their implementations.
This paper proposes several variants of algorithms based on the kernel normalised least mean squares (KNLMS)
algorithm which utilise a delayed model update to minimise dependencies. Subsequently, this work proposes
corresponding hardware architectures which utilise this delayed model update in order to achieve high sample
rates and low latency, while also providing high modelling accuracy. The resultant delayed KNLMS (DKNLMS)
algorithms can achieve clock rates up to 12× higher than the standard KNLMS algorithm, with minimal impact
on accuracy and stability. A system implementation, achieves 250 GOps/s and a throughput of 187.4 MHz on
an Ultra96 board, 1.8× higher throughput than previous state-of-the-art.
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1 INTRODUCTION
In recent years, several online kernel-based adaptive filters have been proposed to solve non-linear
regression problems. These kernel adaptive filters (KAFs) utilise the Mercer kernel [2] to allow
linear techniques be applied to non-linear feature spaces without directly computing the feature
vectors [9]. Most KAFs are conceptually similar to their linear counterparts, e.g., the least mean
squares (LMS) and recursive least squares (RLS) algorithms, but have been reformulated in the
dual space [24] and utilise Mercer kernels. KAFs form a growing research field related to machine
learning and digital signal processing, particularly in real-time environments. KAFs are popular in
applications that require: non-linear modelling capability; adaptation to changing conditions; and
less computational demand than deep neural networks.
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The potential benefits of KAFs have been demonstrated by several previous works including
applications, such as channel equalisation [35] and time series prediction [30], where high data rates
may be required. However very few works, with the notable exception of Tridgell et al. [32], have
considered whether high throughput implementations are feasible. All KAFs are online algorithms
with recursive expressions in order to update their models based on new examples. These create
dependencies which must be addressed in order for high performance hardware to be created.

This paper addresses this problem by considering the effect of pipelining the kernel normalised
least mean squares (KNLMS) algorithm. We show that by modifying the KNLMS algorithm to have
delayed model adaptation (described in Section 3), high frequency implementations can be realised
using field programmable gate array (FPGA) technology. Specifically, the contributions of this
paper are:

• a technique for modifying KAFs, delayed model adaptation, to allow them to be pipelined;
• an application of delayed model adaptation to the KNLMS algorithm, producing the delayed
KNLMS (DKNLMS) algorithm and further generalisation to multiple delays multi-DKNLMS
(MDKNLMS);
• two further variations of DKNLMS, dictionary guarding DKNLMS with dictionary guarding
(DKNLMS-DG) and correction terms DKNLMS with correction terms (DKNLMS-CT), the
latter of which can achieve higher accuracy while maintaining high performance;
• a description of hardware architectures to implement the KNLMS and DKNLMS algorithms
with comparisons of speed, area and scalability;
• an empirical analysis of the learning accuracy of the DKNLMS algorithm including compar-
isons with LMS, KNLMS and other KAFs;
• an empirical analysis of the effect of using 18-bit fixed point precision and some function
approximation (exponential, division) on the overall accuracy and stability of DKNLMS; and
• all source code used to generate the results in Section 6 has been open sourced1, so that
interested readers may easily reproduce and extend the work.

The delayed model adaptation used in this work, can be considered as an extension to similar work
on pipelining linear adaptive filters. In particular, the work by Long et al. [25], Poltmann [28],
Douglas et al. [13] and Yi et al. [39]. The architecture described in the this work, can be considered
as an extension to the work by Fraser et al. [19] to implement the DKNLMS variants.

The paper is arranged as follows: Section 2 briefly explains kernel methods, the KNLMS algorithm
and previous pipelined adaptive filtering architectures; Section 3 describes the delayed model
adaptation method and the application of it to the KNLMS algorithm; Sections 4 and 5 describes the
proposed architecture and implementation details respectively; Section 6 shows accuracy results of
the algorithm and the performance of the implementation; and finally, conclusions are drawn in
Section 7.

2 BACKGROUND
The KNLMS algorithm is a type of KAF [24], which are variants of adaptive filters [21], such as
LMS and RLS-based algorithms [11, 12, 38], utilising the kernel trick [9]. In this section, the KNLMS
algorithm [30] is described and summarised. Issues associated with hardware implementations
are highlighted including: dictionary growth and data dependencies. Previous implementations of
KAFs and high performance linear adaptive filters are also briefly reviewed.

1https://bitbucket.org/nick_fraser/knlms_core_gen
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2.1 Kernel Adaptive Filtering
KAFs are online algorithms which create non-linear models to fit a set of training examples. The
training examples consist of input/output pairs xn ∈ RM and yn ∈ R, representing the input vector
and desired output value. The kernel adaptive filter model is represented by the following:
• A positive definite kernel function, κ (xi ,xj ), chosen at design time. Examples of kernel
functions are: the Gaussian kernel, κ (xi ,xj ) = e−γ ∥xi−xj ∥

2
2 , where γ is a parameter chosen

at design time; the polynomial kernel, κ (xi ,xj ) =
(
xTi xj + c

)d
, where c and d are chosen at

design time; and the linear kernel, κ (xi ,xj ) = xTi xj .
• A dictionary, given by D, which is a subset of training example inputs.
• A vector of weights, α , where one weight corresponds to a single dictionary entry.

Given a new example, xn , a prediction, ỹn , is calculated as follows:

ỹn =
Ñn−1∑
i=1

αiκ (xn , x̃i ) , (1)

where Ñn−1 is the number of entries in D at time n − 1, henceforth denoted as Dn−1, x̃i is the ith
entry of D, and αi is the ith entry of α . In general, the goal of KAFs is to find α and D which
accurately predicts yn ∀ n.

2.2 Kernel Normalised Least Mean Squares
Given a new example, {xn ,yn }, the goal of training is to update the model, (Dn−1,α̂n−1), from time
n − 1 to time n, where α̂n−1 is the approximation to α at time n − 1.

In order to calculate the prediction of yn and to evaluate the coherence criterion [30] (which
decides whether to add xn to the dictionary), a kernel evaluation must be made between xn and all
entries in the dictionary. We first define kn−1 (·) ∈ RM → RÑn−1 as a function which, when applied
to a new input, xn is given by:

kn−1 (xn ) = [κ (xn , x̃1), . . . ,κ (xn , x̃Ñn−1
)]T , (2)

Conceptually, this kernel vector can be thought of as a vector of kernel evaluations between input
xn and each entry of Dn−1. The coherence between xn and Dn−1 is given by:

µ = max
i

|κ (xn , x̃i ) |√
κ (xn ,xn )κ (x̃i , x̃i )

s.t. i ∈
{
1, · · · , Ñn−1

}
. (3)

The example, xn is added to the dictionary if µ < µ0, where µ0 is a parameter specified at design
time to control the size and coherence of the dictionary. The idea of the coherence criterion is to
prevent redundant training examples from being added to the dictionary, i.e., if Dn−1 contains
an entry very similar to xn , then there would be limited benefit to adding xn to Dn−1. However,
adding xn would cost us more in memory and computational requirements of KNLMS at time n, so
if µ ≥ µ0, then we prefer not to add xn to the dictionary. Note that if κ (·, ·) is a unit norm kernel,
Eq. (3) can be simplified to:

µ = max
i
|κ (xn , x̃i ) | s.t. i ∈

{
1, · · · , Ñn−1

}
. (4)

The Gaussian kernel used in this work is a unit norm kernel, so we use Eq. (4), rather than Eq. (3).
The kernel vector is then updated, creating kn (xn ) = [kn−1 (xn )T ,κ (xn ,xn )]T if xn is added,

or else simply kn (xn ) = kn−1 (xn ). Similarly, α̂n−1 is appended with a zero, if xn is added to the
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dictionary. The KNLMS update step is derived by solving the following optimization problem:

α̂n = argmin
α

α − α̂n−12 s.t. yn = kn (xn )Tα . (5)

The solution to which can be found by minimising the Lagrangian function:

J (α ,λ) = α − α̂n2 + λ(yn − kn (xn )Tα ) . (6)

where λ is a Lagrangian multiplier. Differentiating Eq. (6) with respect to α and λ and solving for
zero, results in the following expressions for α̂n :

2(α̂n − α̂n−1) = λkn (xn ) (7)

kn (xn )T α̂n = yn . (8)

Solving these equations for α̂n leads to following update equation:

α̂n = α̂n−1 + η
yn − kn (xn )T α̂n−1

ϵ + ∥kn (xn )∥22
kn (xn ) , (9)

where η is a step size parameter and ϵ is a regularisation parameter, both of which are chosen at
design time.

The KNLMS algorithm can be described using the psuedocode given is Algorithm 1.

ALGORITHM 1: KNLMS algorithm with coherence criterion and a unit norm kernel function.

Choose values for the step-size, η, and the regularization factor, ϵ .
Initialise D = {x̃1}, α 1 = [ η

1+ϵy1]
while n > 1 do
Get {xn ,yn }.
Calculate kn−1 (xn ) = [κ (xn , x̃1), · · · ,κ (xn , x̃Ñ )]

T .
µ = max ( |kn−1 (xn ) |).
if µ < µ0 then

Ñ = Ñ + 1.
Append xn to D.
Append 0 to α̂n−1.
kn (xn ) = [kn−1 (xn )T ,κ (xn ,xn )]T .

else
kn (xn ) = kn−1 (xn ).

end if
Calculate α̂n using Eq. (9).

end while

2.3 KNLMS In Hardware
In order to make the KNLMS algorithm more amenable to high-performance hardware implemen-
tations, the following modifications are made:
• a maximum dictionary size is chosen, Ñ ;
• the kernel vector is the same length, Ñ , at each iteration - if the dictionary is not full, the
unused entries are padded with zeros; and
• similarly, the weights remain the same length, Ñ , at each iteration - since the kernel vector
is padded with zeros, unused weights will remain zero.
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z−1

KNLMS
{Dt ,α t }

xt
yt

ỹt

Fig. 1. An illustration of the bottleneck in KAFs.

If Ñ is larger than the number of entries that would be allowed into the dictionary due to the coher-
ence criterion, then KNLMS will perform exactly the same with or without the above modifications.
The restriction on the maximum dictionary size means we can ensure that D and α can always
fit in on-chip memory, avoiding potential bottlenecks reading and writing to off-chip memory.
Furthermore, this places a restriction on the maximum number of operations that are required per
training example, which allows us to design hardware to meet minimum throughput requirements
of a given target application. The padding of the kernel and weight vectors to be of size Ñ mean
that all vector sizes in every iteration are the same, regardless of the number of entries in D. This
allows us to simplify our datapath design for fixed vector sizes and reduce control logic overhead.

2.4 Pipelined Adaptive Filters
The recursive nature of adaptive filters means that they suffer from a computational bottleneck, as
illustrated in Figure 1 for KNLMS. In order to start calculating the model at time n, we must know
the model at time n − 1. Typically, this means that our data rate is limited by the latency of the
critical path of the architecture for a single update step.
For linear adaptive filters, such as LMS, this problem has been considered in great detail. Long

et al. [25] introduced the first analysis of the LMS algorithm with delayed coefficient adaptation,
i.e., the delayed least mean squares (DLMS) algorithm. Yi et al. [39] proposed variants of the DLMS
algorithm together with implementation architectures. In particular, their transpose-form delayed
least mean squares (TF-DLMS) implementation utilises a pipeline with different delay factors
depending on the spatial location of filter weights. The architectures proposed by Yi et al. [39]
implement delayed LMS, transpose-form LMS and some combinations in-between along with
analysis of operation counts and expected propagation delay. Furthermore, Yi et al. [39] then
systematically compares these algorithms and architectures and is able to achieve data rates up to
182 MS/s on a Virtex-II FPGA for a variant they propose called transpose-form retimed delayed
least mean squares (TF-RDLMS). Douglas et al. [13] describe an architecture which utilises error
correction terms, proposed by Poltmann [28], to create a pipelined LMS architecture which has the
same behaviour as the standard LMS algorithm. The error correction terms allow the weights to be
updated after some latency without diverging from the original algorithm.
To our knowledge, no prior work has studied the effects of model adaptation delay on KAFs.

However, there are several works which propose architectures for executing various types of KAFs.
Ren et al. [29] propose an architecture for the kernel LMS (KLMS) algorithm which is designed
to consume a small amount of resources while using floating point arithmetic. A high degree of
parallelism is achieved by replicating the design across an FPGA device. The design also utilised a
very efficient kernel, the survival kernel [8], which can achieve high accuracy but is not as common
as the Gaussian kernel used in this work.
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Fraser et al. [18] describe a deeply pipelined processor generator which can produce dataflow
implementations of the KNLMS algorithm. Architecturally, it is similar to this work. The authors
provide resource and performance results for the architecture using both floating point and fixed
point arithmetic. However, the architecture and implementation described by Fraser et al. [18]
requires deep pipelines which would result in very high delay factors, if the hardware were
repurposed for implementing one of the DKNLMS-based algorithms described in this work. Despite
having vastly different architectures, the designs of both Ren et al. [29] and Fraser et al. [18] achieve
parallelism across hyperparameter search and/or multi-channel systems but are not optimized for
the single-channel, high-throughput case. The present work directly addresses this problem.
Pang et al. [27] describe a pipelined, microcoded vector processor. The processor is compact,

power efficient and capable of achieving high performance on sliding window kernel RLS (SW-
KRLS) [35], fixed budget kernel RLS (FB-KRLS) [34] and KNLMS [30]. The processor used floating
point arithmetic, and is one of the few KAFs architectures capable handling multiple algorithm
types.
Fox et al. [16] describe an architecture which implements the Fastfood algorithm [23] which

approximates kn−1 (xn ) using random projections. The matricies used to compute kn−1 (xn ) can
be defined in a way which constrains them to be Hadamard matricies, allowing the most com-
putationally expensive part of the update step to be computed using the fast Walsh-Hadamard
transform (FWHT). This reduces the computational complexity from O (ÑM ) → O (Ñ log2M ). A
systolic structure of Hadamard blocks, with an internal butterfly structure to efficiently implement
the FWHT was utilised for its implementation. The work targeted larger scale problems, which
means they can achieve high processing element (PE) efficiency, but lower sample rates, compared
to this work.

Tridgell et al. [32] describe the braiding technique to handle dependencies in high performance
KAFs. To minimise latency, braiding calculates both branches of a conditional in parallel, and
inserts the result of the appropriate branch into a reduction tree once the condition is known.
The authors demonstrate the technique with a high throughput implementation of naive online
regularised risk minimization algorithm (NORMA) [22], utilising fixed point arithmetic. Their
provided post-place-and-route results demonstrate cores capable of achieving a throughput of 138
MS/s. The design suffers from only being able to work on sliding window algorithms. In contrast,
this work can be applied to arbitrary dictionary storage schemes.

3 KERNEL NORMALISED LEAST MEAN SQUARES WITH DELAYED MODEL
ADAPTATION

In this section, we provide a mathematical description of the DKNLMS algorithm. This has KNLMS-
like behaviour, with dependencies shifted temporally into the future to facilitate pipelining. Moti-
vations behind these choices are further elaborated upon in the Architecture section (Section 4).

The DKNLMS algorithm is conceptually similar to the delayed LMS algorithm [25]. The key idea
is to introduce a delay factor, d ∈ N+, which removes most of the dependencies between iterations
up to time d . At time n, given a new training pair, {xn ,yn }, and a delayed version of the model,
given by Dn−d and α̃n−d , we wish to calculate Dn and α̃n . This is achieved by first, conceptually
breaking the KNLMS algorithm up into two components:
(1) the gradient calculation; and
(2) the model adaptation.

The gradient calculation is the most computational intensive part of the KNLMS algorithm, whereas
the model adaptation does not necessarily have long critical paths. Specifically, we consider the
gradient calculation to involve: the calculation of k, the coherence criterion, the a-priori prediction
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z−1

Gradient
Update

Model
Adaptation modelt−d+1

modelt−d

examplet

Can be pipelined,
but will increase d

Cannot be
pipelined

Fig. 2. Pipelining the gradient calculation increases d , but will increase the sample rate. Pipelining the model
adaptation will increase the number of channels while decreasing the sample rate.

and the change in weights. The model adaptation is the storing of xn intoDn−d (if required) and the
accumulation of weights. If we design our dataflow so that that the algorithmic loop is contained to
the model adaptation, then we can pipeline the gradient calculation arbitrarily, with each pipeline
stage increasing d by 1. Figure 2, illustrates this mapping of the dataflow. Note that the recursive
loop is coupled to the model adaptation, allowing the gradient calculation to be pipelined.
The kernel vector, kn−d (xn ), is calculated for the new input example. Similarly, the coherence

between Dn−d and xn is used to decide whether or not to add xn to Dn−1.
In order to update the weights, we need a prediction of yn using the model at time n − d . This

can be expressed as:
ŷn = kn−d (xn )T α̂n−d . (10)

A partially updated kernel vector, k̃n (xn ), if xn is added to dictionary is given by:

k̃n (xn ) =
[
kn−d (xn )T ,0T ,κ (xn ,xn )

]T
, (11)

where 0 is an (Ñn−1−Ñn−d ) vector of zeros to align the latest dictionary entrywith the corresponding
entry in α̃n . Alternatively, if xn is not added then k̃n (xn ) =

[
kn−d (xn )T ,0T

]T
. Finally, α̃n is

calculated as follows:
α̃n = α̃n−1 + η

yn − ŷn

ϵ + k̃n (xn )

2

2

k̃n (xn ) , (12)

Note that if d = 1, then Eq. (10), (11) and (12) are equivalent to KNLMS, i.e., Eqs. (1), (2) and (9). As
such, DKNLMS can be considered as a generalisation to KNLMS to support d > 1.
The DKNLMS algorithm is described as psuedocode in Algorithm 2. Note that Di = [ ], and

α̃ i = [ ] if i ∈ Z− and a unit norm kernel is assumed for the coherence calculation.

3.1 Multiple Delays
When studying the dataflow in Algorithm 2 it is clear that the values for the dictionary delay,
dD ∈ N

+, and the weight delay,dα ∈ N+, need not be the same. A version of DKNLMSwith multiple
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ALGORITHM 2: DKNLMS algorithm with coherence criterion.

Initialise the step-size, η, and the regularization factor, ϵ , and delay factor, d .
Define a kernel function, κ (·, ·).
Initialise D0 = [ ], α̃ 0 = [ ], and Ñ0 = 0.
while n > 0 do
Get {xn ,yn }.
if Ñn−d == 0 then
kn−d (xn ) = [ ].
µ = 0.

else
Calculate kn−d (xn ) = [κ (xn , x̃1), · · · ,κ (xn , x̃Ñn−d

)]T .
µ = max ( |kn−d (xn ) |).

end if
if µ < µ0 then

Ñ = Ñ + 1.
Append xn to Dn−1.
Append 0 to α̃n−1.
k̃n (xn ) = [kn−d (xn )T ,0T ,κ (xn ,xn )]T .

else
k̃n (xn ) = kn−d (xn ).

end if
Calculate α̃n using Eq. (12).

end while

Dictionary
Update

Weights
Update

{xn ,yn } ỹn

z−1 z−1

kn

Dn αn

Fig. 3. A high level diagram of MDKNLMS.

delays, which is henceforth referred to as the MDKNLMS algorithm, can easily be implemented in
hardware by splitting the DKNLMS into the two parts shown in Figure 3. This modification incurs
no further computation cost, and actually reduces the number of registers required within the
design, which may reduce the resource usage of the design. However, it is unclear as to whether
this will have a positive or negative affect on the maximum clock frequency of an implementation,
we discuss this further in Section 6. Comparing the DKNLMS and MDKNLMS algorithms, for the
same number of pipeline stages, Np = d , MDKNLMS will reduce the effective delay of either dD ,
dα , or both. That is, for DKNLMS the delay factors are given by Np = d = dD = dα , while for
MDKNLMS are Np = d = dD + dα . Furthermore, if a higher model adaptation delay introduces
an instability in the algorithm, as can occur for delayed LMS [25], then MDKNLMS will be more
stable than the equivalent DKNLMS with an equivalent delay.
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3.2 Dictionary Guarding
An issue with applying delayed model adaptation to KNLMS is that the choice of whether or not to
add an example to Dn−1 is based on an outdated dictionary, Dn−dD . This can result in a dictionary
which contains redundant entries. For example, imagine that two consecutive examples are equal,
i.e., xn = xn+1 (the outputs yn , yn+1 can be ignored for now), and the coherence between xn and all
earlier examples are less than µ0. Clearly, when training occurs on xn , the coherence between it
and Dn−dD will be less than µ0, and it will be added to the dictionary, Dn−1, to create Dn . When
training occurs on xn+1, the coherence between xn+1 and Dn−dD+1 will also be less than µ0. As
such, xn+1 is also added to the dictionary, creatingDn+1. Given that the prediction function, Eq. (1),
is based the weighted sum of kernel evaluations between the dictionary entries and the latest input,
we can see thatDn+1 provides no improved predictive power overDn , i.e., a prediction made using
Dn+1 could be rewritten as:

Ñn+1∑
i=1

αiκ (xj , x̃i ) =
Ñ∑
i=1

αiκ (xj , x̃i ) + (αÑn
+ αÑn+1

)κ (xj , x̃Ñn
) . (13)

This means that Dn+1 uses more memory and has a higher computational cost, for no improved
modelling accuracy over Dn .
To address this effect, we propose a method to prevent redundant entries from being added to

the dictionary, which we call dictionary guarding. If xn is added, based on the dictionary at time
n − dD , it is not used to assist in making a decision of whether or not a new example should be
added until xn+dD arrives, i.e., we suggest, that the examples {xn+1, · · · ,xn+dD−1} are prevented
from being added to the dictionary.
Dictionary guarding prevents the dictionary from containing redundant entries and it can be

implemented easily in hardware, using a simple counter, as described in Section 4. The possible
downsides are:
• A decrease in modelling accuracy;
• An increase in convergence time; and
• A reduction in coherence between the dictionary and previously seen input examples, i.e.,
the coherence between D and all inputs is no longer guaranteed to be greater than µ0.

How these issues relate to the resultant DKNLMS-DG algorithm are examined empirically in
Section 6.

3.3 Correction Terms
If the accuracy of MDKNLMS is not satisfactory, we can modify it to exhibit equivalent learning
behaviour to the original KNLMS algorithm. These modifications come at the cost of extra hardware,
and potentially, a decrease in clock frequency. This section describes this modified version of
MDKNLMS, DKNLMS-CT. These correction terms can be considered as extension to the work by
Poltmann [28] to KAFs, a significant difference being that for KAFs the contents of the dictionary
also need to be considered. These correction terms also share similarity to braiding [32], the
difference being the correction terms described in this work can work for non-sliding window
based KAFs.

Firstly, let us consider the dictionary update step. In KNLMS, the current example, xn , is added
to the dictionary if µ < µ0, where µ is calculated using Eq. (4). The same applies to MDKNLMS,
however, the calculation of µ is now based on an older version of the dictionary,Dn−dD , rather than
Dn−1. At each time step, either the current input vector is added to the dictionary, or it remains
unchanged. Therefore, Dn−dD is a subset of Dn−1. Dn−1 can also potentially contain any of the
vectors from xn−dD+1 → xn−1. Given this, an expression for the decision value, ζn , the decision
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whether or not to add xn to the dictionary, can be written as:

ζn = !
[
(κ (xn , x̃1) < µ0) & · · · & (κ (xn , x̃Ñn−1

) < µ0)
]

, (14)

where ‘&’, ‘!’ are the Boolean functions ‘AND’ and ‘NOT’ respectively. If ζn is true, then xn is added
to the dictionary. Note that unit norm kernel functions are assumed in Eq. (14). If only Dn−dD is
available, Eq. (14) can be rewritten as:

ζn =![(κ (xn , x̃1) < µ0) & · · · & (κ (xn , x̃Ñn−dD
) < µ0)

& (κ (xn ,xn−dD+1) < µ0+!ζn−dD+1) & · · · & (κ (xn ,xn−1) < µ0+!ζn−1)] . (15)

Note that in this equation, ‘+’ denotes the ‘OR’ function. While these expressions are equivalent,
Eq. (15) can be implemented easily using pipelined hardware and therefore allows tradeoffs between
area usage and throughput to be made. Conceptually, Eq. (15) can be though of as checking the
coherence between xn , all dictionary entries and all training examples which are in the pipeline
ahead of the current entry. The final decision is then corrected if any proceeding training examples
are added to the dictionary. This correction only takes place if the proceeding entry is also coherent
with the current training example, xn .

Now that the dictionary, Dn , and kernel vector, kn (xn ), found by DKNLMS-CT are equivalent to
KNLMS, we need to apply correction terms so that the weights, α̂ , are the same as those found by
KNLMS. Let us consider Eqs. (9) and (12). Since the kernel vectors have been corrected, the only
differences between these equations are the a-priori predictions. Defining the weight update step,
δn , for KNLMS to be:

δn =
η
(
yn − kn (xn )Tαn

)
ϵ + ∥kn (xn )∥22

, (16)

and similarly, δ̃n to be:

δ̃n =
η
(
yn − kn (xn )Tαn−dα

)
ϵ + ∥kn (xn )∥22

, (17)

for MDKNLMS with a corrected kernel vector. To create the DKNLMS-CT algorithm, we must
find a way to modify Eq. (17) to become Eq. (16). In order to realise a benefit from pipelining,
these modifications to Eq. (17) should only depend on data available at sample n − dα . Given this
requirement, an expression for δn can be formed using Eqs. (9), (16) and (17):

δn =
η

ϵ + ∥kn (xn )∥22

*.
,
yn − kn (xn )T [αn−dα +

dα −1∑
i=1

δn−ikn−i (xn−i )]+/
-

δn =
η

ϵ + ∥kn (xn )∥22

*.
,
yn − kn (xn )Tαn−dα −

dα −1∑
i=1

δn−ikn (xn )T kn−i (xn−i )
+/
-

. (18)

Using this expression for δn , we can rewrite Eq. (9) as:

α̂n = α̂n−1 + δnkn (xn ) . (19)

Clearly, if α̂n is updated using Eq. (18) rather than Eq. (9), then more operations are required.
However, as we will see in Section 6, this way of computing the weights is preferable since we can
still receive the benefits of pipelining the architecture. This is due to the fact that: (1) the vectors,{
kn−1 (xn−1), · · · ,kn−dα +1 (xn−dα +1)

}
, are available at time n; and (2) the only dependencies within

the pipeline are scalar values,
{
δn−1, · · · ,δn−dα +1

}
, which can be easily fed back where appropriate

with only a small overhead.
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Fig. 4. High level view of the proposed architecture.

The correction terms also do not need to be added completely, a subset of the correction terms
in Eq. (18) may be used instead. This can allow for further trade-offs to be made between area,
accuracy and throughput.

Note that due to space restrictions, we only analyse the theoretical costs and benefits of DKNLMS-
CT in the subsequent sections. As we will see in Section 6, the other DKNLMS variants achieve
high accuracy and throughput and as such, empirically we deem that the addition of correction
terms is not a requirement. However, this may change for future KAFs algorithms and datasets, so
this theoretical analysis could be useful for future works.

4 ARCHITECTURE
In this section, the architecture of the DKNLMS algorithm is described in detail. The variants
MDKNLMS and DKNLMS-DG are simple extensions to DKNLMS, as such, we described the modifi-
cations where they should occur. The architecture for DKNLMS-CT is not described, rather we
theoretically analyse the cost of implementing it. Finally, in this section we omit the subscripts
denoting time to reduce the notation complexity.

4.1 High Level View
In order to understand the architecture at a high level, firstly consider the forward path of the
KNLMS algorithm. The forward path consists of the operations required for the KNLMS algorithm
to update its model (i.e., the contents of the while loop in Algorithm 1), given a new training example,
{xn ,yn }. Since the forward path contains no loops, it can be implemented using combinatorial logic,
which is later converted to implement DKNLMS. The design method can be summarised as follows:

(1) begin with a combinatorial KNLMS design, created from a dataflow graph of the KNLMS
forward path with a maximum dictionary size of Ñ ;

(2) add registers (or memories) to store the dictionary and weights internally to the design (i.e.,
add the loops with the smallest possible critical path to Eq. (12) and to the dictionary update
step); and

(3) excluding the loops described in (2), pipeline the rest of the dataflow graph until a desired d
value (or clock frequency) is achieved.

A block diagram of the basic DKNLMS implementation is shown in Figure 4. The design can
be thought of as the combination of four different submodules: kernel modules, the coherence
criterion module, dot product modules and the α -update module. Note that the coherence criterion
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Fig. 5. Exponential kernel evaluation module.

module and the α update module contain loops and registers (or memories) to store and update
the dictionary (D) and weights (α ) respectively. Throughout the design, ‘optional’ registers are
placed between each arithmetic operation. Moreover, all arithmetic operations can also be pipelined
while only affecting the delay parameters of the DKNLMS variants, with the exclusion of the
accumulation on α .

4.2 The Submodules
In this subsection, the submodules of the design (as shown in Figure 4) are explained in detail. The
kernel modules form the largest portion of the architecture and are designed to calculate the kernel
vector, k, given in Eq. (2). The ith element of the kernel vector is evaluated using the Gaussian
kernel, given by: κ (xn , x̃i ) = exp(∥xn − x̃i ∥22). Although there are several useful kernel functions
described in the literature, including several which are hardware friendly (notably the Laplacian
kernel, used by Anguita et al. [1]), we chose to use the Gaussian kernel because: (1) it’s a unit norm
kernel; (2) it’s a universal approximator [20]; and (3) it’s a very popular kernel function, known
to many familiar with kernel methods. In order to calculate k, Ñ kernel modules are used, and
Figure 5 illustrates the data path of a kernel module. Each kernel module takes the current input
sample and an element of the dictionary as inputs, and produces the Gaussian kernel evaluation as
an output. An adder tree is used to reduce latency. Note that we use z−1 with a broken line border
to denote the optional registers. In order to use another unit norm kernel function, this module
can simply be replaced with a module implementing your kernel function of choice. If a non-unit
norm kernel is desired, the coherence module would also need to be modified to implement the
coherence criterion described by Richard et al. [30].
The dot product module is given in Figure 6. It features elementwise multiplication followed

by an adder tree. The dot product modules are used to calculate the a-priori prediction and ∥k∥22,
which is used the find the normalisation factor. For both the kernel and dot-product modules, an
adder tree was preferred to perform accumulation, as we wish to minimise the overall latency.
The coherence criterion module calculates the coherence between the current input and the

dictionary. The coherence (given in Eq. (4)) is then used to determine whether or not to add
the current input to the dictionary. Figure 7 shows the architecture of the coherence criterion
module. It features comparison modules, connected to a binary ‘OR’ tree, which produces the
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‘AddToDict’ signal. This signal feeds a multiplexer which determine whether or not the current
example gets added to the dictionary, and subsequently, whether or not the counter is incremented.
The dictionary can be stored in registers or memories, but the current design requires that all
dictionary entries must be read every cycle. This module also pads the kernel vector, k, with zero
entries for unused dictionary entries, and appends ‘1’ to k if the current input is added. In order to
realise DKNLMS-DG, an extra counter must be included which entry corresponds to the number
of elements seen since the last entry was added to the dictionary. If this value is below dD , then
‘AddToDict’ is set to false.

Figure 8 shows theα update module. This module takes the prediction error, en , the normalisation
factor, ∥k∥22, and the kernel vector, k, as inputs. The output is the updated weights, which are also
stored internally in registers. The α update module calculates the weight update using Eq. (9).
Both the coherence and α modules feature valid and reset signals. The valid signal prevents

unwanted entries from being added to the dictionary and from modifying the weights. The reset
signal restores the counter, dictionary and weights to zero values.

4.3 Resource Usage and Latency
In this subsection, the resource usage and propagation delay of the proposed architecture are given
as a function of: (1) the maximum dictionary size, Ñ ; (2) the feature length,M ; and (3) the operators,
exp, ×, +, / and <. Since the design is fully pipelined, modules do not share resources. Also, as
shown in Figure 4, the four difference modules are connected in series. Therefore, the total latency
of the design will be the sum of the latency of each of the four modules described above, plus a
subtraction. The total resource usage of the design will be sum of all resources of all modules used
within the architecture, plus a subtraction.

By careful inspection of Figures 4, 5, 6, 7 and 8 the total resource usage can be calculated,
remembering that Ñ kernel modules, two dot product modules, one coherence module and one
α update module are used. Table 1 shows the resource usage for each module and the total for
the whole design. Since Ñ kernel modules are required, the kernel modules will dominate for
large values of Ñ andM . The worst case scalability of the resource usage of the complete design
is O (ÑM ). The extra operations required to implement DKNLMS-CT are also shown in Table 1.
Note that the number of correction terms are proportional to the delay factors, dD − 1 and dα − 1
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Table 1. Resource usage of each module and the complete design

Module Num. of Modules exp × + ÷ <

Kernel Ñ 1 M + 1 2M − 1 0 0
Dot Product 2 0 Ñ Ñ − 1 0 0
Coherence Criterion 1 0 0 0 0 Ñ

α Update 1 0 Ñ + 1 Ñ + 1 1 0

Design Total - Ñ (M + 4)Ñ + 1 2(M + 1)Ñ 1 Ñ

Correction Terms (dD ) dD − 1 1 M + 1 2M − 1 0 1
Correction Terms (dα ) dα − 1 0 Ñ + 1 Ñ 0 0

Table 2. Expected propagation delay of each module and the complete design

Module exp × + ÷ <

Kernel 1 2 ⌈log2 (M )⌉ + 1 0 0
Dot Product 0 1 ⌈log2 (Ñ )⌉ 0 0
Coherence Criterion 0 0 0 0 1
α Update 0 2 2 1 0

Design Total 1 5 ⌈log2 (Ñ )⌉ + ⌈log2 (M )⌉ + 4 1 1

Correction Terms (dD ) 1 2 ⌈log2 (M )⌉ + 1 0 1
Correction Terms (dα ) 0 2 ⌈log2 (Ñ )⌉ + ⌈log2 (dα )⌉ 0 0

respectively. The kernel vector evaluation scales the worst,O (ÑM ), while the number of correction
terms will also incur significant overhead if dD − 1 and dα − 1 are large.
The expected propagation delay of each module and the whole design are given in Table 2.

The propagation delay is expressed as a sum of arithmetic operations along the critical path. The
overall expected propagation delay is the sum of the expected propagation delay of each arithmetic
operation which lie on this critical path. Using this basic approximation of propagation delay,
we can decide which optional registers to enable in the design, shown in Figures 4, 5, 6, 7 and
8, or in the arithmetic operations themselves. Furthermore, α update and coherence criterion
modules appear to have constant latency, while the kernel and dot product modules scale as
log2 (M ) and log2 (Ñ ) respectively. As such, the worse case scalability of the expected propagation
delay is O (log2 (M ) + log2 (Ñ )). In practice, larger designs will also likely suffer from placement and
routing issues which will also affect the propagation delay. The expected propagation delay of the
correction terms are also shown in Table 2. For the most part, the correction terms are computed in
parallel with other modules, so the overall propagation delay does not change with the inclusion
of correction terms. The exclusion for this, is the ⌈log2 (dα )⌉ which increases the overall expected
propagation delay.

5 IMPLEMENTATION
In this section, several details / methods related to the implementation of the different DKNLMS
configurations are specified. Chisel v2.2.27 [3] was used to create a core generator capable of
generating all the architectures described in Section 4. Chisel is a hardware construction language

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:16 Nicholas J. Fraser and Philip H. W. Leong

embedded in Scala which generated Verilog. It’s a low abstraction domain specific language (DSL)
which benefits from meta-programming in Scala to allow core generators to be made easily. Being
a low abstraction DSL, Chisel allows complete control over the datapath while allowing the design
to be scalable. As such, a design made in Chisel is comparable with an RTL design, but with
increased productivity. All bitstreams and implementations in this work were generated using
Vivado 2017.4 with aggressive optimizations enabled. Fixed point arithmetic was used throughout
the design, unless specified otherwise, a wordlength of 18bits was used, although the design is
parameterised for any fixed point format. The integer length was chosen to avoid overflows on the
training dataset and the specific algorithm hyperparameters. In order to minimise the overhead of
arithmetic operations, all fixed point arithmetic was implemented with a custom fixed point library
in which the input and output every arithmetic operation was the same fixed point format. When
necessary, conversion from higher precision to lower precision formats, e.g., after a multiplication,
was achieved using simple truncation. Furthermore, no saturation logic was implemented to avoid
overflows. 18bit wordlengths were chosen as they map well to DSP blocks within FPGAs, while
providing little degradation in the accuracy of the algorithm, this is explored further in Section 6. A
further reduction in bitwidth may be achieved with a finer grained approach to bitwidth and integer
length selection, but this is not explored in this work. The exponential evaluation and division
operations can consume a significant amount of hardware, and cause a significant increase in the
overall expected propagation delay. As such, signification attention was paid to the implementation
of these operations.

5.1 Exponential and Division Approximation
The exponential and division operators represent areas where significant performance improve-
ments can be made to the DKNLMS designs. Some specific improvements made to this design were
based on the following observations:
• the range of the inputs is significantly less than the range of the fixed point datatype;
• both functions are differentiable;
• division can be implemented as an inversion and a multiplication; and
• the accuracy of DKNLMS is not very sensitive to approximations in both functions.

Given the above, several different implementations were considered, including:
(1) a simple lookup table;
(2) a lookup table with linear interpolation; and
(3) the Remez algorithm [31] implemented using Estrin’s polynomial evaluation method [15].

The exponential function was implemented as a simple single input function approximation, while
division was implemented a reciprocal function, followed by a multiplication. Although Remez and
linear interpolation provide many benefits, the rest of the design already used a significant amount
of DSP resources and as such, a simple lookup table was used for both reciprocal and exponential
functions with 1024 elements, we found this sufficient to provide good accuracy. We further discuss
the implications on accuracy in Section 6.1.3.

5.2 Register Parameterisation
As the number of pipeline stages directly affects d , the more pipeline stages are added the more a
DKNLMS variant will behave differently to KNLMS. As such, for small values of d the placement of
the registers becomes vitally important. As stated in Section 4, the design was created with optional
registers placed between each operation. When a particular core is generated, an array of Boolean
values control whether or not a particular set of registers (i.e., a pipeline stage) is actually used in
the design. This directly controls the delay parameters of DKNLMS and the variants, i.e., d , dD and
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dα . Also, when operations themselves are pipelined, shift registers are created to ensure that other
signals (e.g., the valid signal) arrive at subsequent locations at the correct times.

In order to generate the array of Boolean values, we break the design up into approximate unit
delays. Let us denote a unit delay with τ . For the given 18bit fixed point implementation, the
estimated propagation delay of several operations is as follows:

• Multiply - τ ;
• Addition/Subtraction - τ ;
• Exponentiation - 3τ ; and
• Division - 4τ .

The above delay values were approximated by synthesising and place & routing the individual
arithmetic operators on the target FPGA device. The pipeline stages are then placed so they have
approximately equal delay values separating them. For example, using Table 2, one can determine
the expected propagation delay of each submodule. This estimate can then be used to decide which
pipeline stage to enable to best improve the performance of the design. This is done by enabling
the pipeline register which produces paths with the smallest possible estimated propagation delay.

6 RESULTS
In this section, we compare the accuracy and performance of all the KNLMS-like algorithms
discussed within: KNLMS, DKNLMS, MDKNLMS, DKNLMS-DG and DKNLMS-CT. For accuracy,
we study the effect of delayed model adaptation on the modelling capability of the KNLMS. Issues
with convergence, stability and model size when delayed model adaptation is introduced are also
explored. In terms of performance, the throughput of the architectures described in Section 4 are
provided for varying dictionary size (Ñ ), feature length (M) and latency (d). These performance
figures are compared to a C implementation of KNLMS running on a PC.

6.1 Accuracy
In this subsection, the accuracy the DKNLMS algorithms are analysed empirically. In the first part
of this section, we study the accuracy, convergence and stability of all DKNLMS variants. Firstly,
we consider the DKNLMS variants using floating point arithmetic and without any of the function
approximations described in Section 5. The extra effect of using fixed point arithmetic and function
approximations is then considered in Section 6.1.3. For the accuracy experiments in this paper,
the chaotic Mackey-Glass [26] time series was used. The Mackey-Glass time series benchmark is
generated using the following differential equation: dx (t )/dt = −ax (t ) + bx (t − τ )/(1 + x (t − τ )10)
with (a = 0.1,b = 0.2,τ = 30), this configuration is identical to the benchmark used by Engel
et al. [14]. Our implementation was based off the KAF toolbox (KAFBOX) [33].

6.1.1 Hyperparameter Optimisation. In practice, we suggest optimising the parameters for the
DKNLMS variants independently of each other, allowing tradeoffs for convergence time and stability
to be captured within the cross validation process. In order to adequately compare the different
algorithms, hyperparameter optimisation must be performed for each algorithm. Otherwise, we
may accidentally compare one algorithm at optimal settings to another at sub-optimal settings.
The problem of hyperparameter optimisation is non-convex and therefore, we cannot be certain of
achieving optimal settings, but a simple random search [6] will help us avoid extremely sub-optimal
settings. We can also quantify our effort in finding good hyperparameters in terms of the number
of samples required to achieve good accuracy. In this work, we use the following hyperparameter
optimization procedure:
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Table 3. Cross-validation accuracy and hyperparameters for each DKNLMS variant

Optimised Baseline
Algorithm d γ η ϵ µ0 Average Average Average Average

Ñ MSE (×10−2) Ñ MSE (×10−2)

KNLMS - 1.48 0.15 0.050 0.69 19.9 1.37 87.3 1.49

DKNLMS

4 1.48 0.15 0.050 0.69 25.7 1.35 88.2 1.44
8 1.48 0.15 0.050 0.69 26.1 1.31 88.7 1.37
16 0.88 0.068 0.090 0.75 23.6 1.58 88.3 1.61
32 2.14 0.036 0.061 0.77 66.9 1.60 103.4 3.16×105

MDKNLMS

4 1.23 0.13 0.063 0.87 54.1 1.53 88.2 1.54
8 1.48 0.15 0.050 0.69 25.7 1.41 88.2 1.44
16 1.48 0.15 0.050 0.69 26.1 1.32 88.7 1.39
32 0.89 0.063 0.089 0.85 32.9 1.63 88.3 1.70

DKNLMS-DG

4 1.36 0.27 2.55 0.94 128 1.28 90.5 2.07
8 2.21 0.38 3.06 0.70 36.7 1.21 80.3 4.23
16 1.92 0.49 3.72 0.42 9.1 1.49 66.7 6.96
32 3.24 0.72 3.89 0.28 10 2.28 48.3 4.60

DKNLMS-CT

4 1.48 0.15 0.05 0.69 19.9 1.37 87.3 1.49
8 1.48 0.15 0.05 0.69 19.9 1.37 87.3 1.49
16 1.48 0.15 0.05 0.69 19.9 1.38 87.3 1.50
32 1.48 0.15 0.05 0.69 19.9 1.40 86.9 1.53

(1) 10-fold cross validation was used, separating the training set into ten different training and
validation sets;

(2) for each training example, the resultant model was tested, using mean squared error (MSE),
on the entire validation set to produce a model convergence series;

(3) after removing an initial number of examples during the convergence period, the remaining
entries in the model convergence series are averaged; and

(4) the model with the lowest average MSE in the convergence period, was assumed the be the
best hyperparameters.

For the examples in Section 6.1.2 the training set size was 1000 and the convergence period was 500
samples. When there was negligible accuracy difference, sometimes the 2nd best hyperparameters
where used if they provided: 1) a more compact model; or 2) a more stable convergence series.
Table 3, shows the optimized hyperparameters for each DKNLMS configuration, along with average
model size, Ñ , and average MSE over the cross validation procedure. The baseline average MSE in
the final columns, which uses some common values for each of the hyperparameters of KNLMS
without specific optimization for each algorithm. Specifically, the values of the hyperparameters
for the baseline were as follows: γ = 1.39, η = 0.1, ϵ = 10−4 and µ0 = 0.9. Interestingly, when the
baseline results are compared, we get very similar performance between KNLMS, DKNLMS (d ≤ 8)
and MDKNLMS (d ≤ 16), while DKNLMS-DG suffers significant accuracy degradation for all values
of d . As expected, all algorithms for all values of d perform better when their hyperparameters are
optimised specifically for them. By comparing the baseline and optimised results for DKNLMS-
DG it is clear this algorithm behaves very different to the original KNLMS algorithm. Through
hyperparameter optimisation, the accuracy of the DKNLMS-DG variants are significantly improved
to the point where it appears to perform better than the other variants for d = 4 and d = 8.
However, it should be noted that since the behaviour of DKNLMS-DG was significantly different
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Fig. 9. Comparison of prediction performance between DKNLMS (d = 8) and other adaptive filtering
algorithms.

to the others, more time was spent optimising the hyperparameters in order to find acceptable
values. The search space was broader and roughly 20× points were sampled, compared to the other
configurations. If the other algorithms were allowed a larger search space, this difference may be
less pronounced. Lastly, the baseline DKNLMS (d = 32) appears to have unstable behaviour, but,
after hyperparameter optimisation it appears to have achieved stability with a some degradation in
accuracy compared KNLMS. As expected, DKNLMS-CT performed almost identically to KNLMS.

6.1.2 Accuracy Comparison. The cross validation accuracy is useful for hyperparameter optimi-
sation, but the real test is the accuracy on the test set. Furthermore, when dealing with time series
data, it may be necessary to plot the convergence of a learning algorithm to better understand its
behaviour. In this subsection, we plot the convergence of each algorithm, firstly with the baseline
hyperparameters, secondly, with optimised hyperparameters and compare the differences.

However, before we look closely at the proposed algorithms, let us first put some of the results in
context. Figure 9 shows the accuracy of DKNLMS (d = 8) versus KNLMS and some other common
adaptive filtering algorithms in the literature. Firstly, we can see that approximate linear dependency
kernel RLS (ALD-KRLS) [14] outperforms KNLMS by almost two orders of magnitude. However,
the increased complexity of the dependencies of ALD-KRLS mean that it’s not the subject of our
study for now. The purpose of the figure is to provide context around different types of adaptive
filters and their costs and benefits. ALD-KRLS scales with O (Ñ 2 + ÑM ) in operations and memory,
as such it would be a much more difficult task to implement at sample rates in the order of 100s
of MHz as we do in this work. Secondly, we see that KNLMS outperforms LMS [38] by almost an
order of magnitude. Currently, if high frequency (in the order of 100s of MHz) adaptive filtering is
required, variants of LMS are one of the few available options.

Figures 10 & 11 show the convergence pattern of DKNLMS while varying the delay parameters.
Figure 10 uses the baseline hyperparameters, while 11 uses the optimised hyperparameters for
each configuration. Figure 10 shows that for DKNLMS (d ≤ 8), the accuracy and convergence are
very similar to KNLMS. For d = 16, some instability begins to show, while for d = 32 DKNLMS
becomes completely unstable. In Figure 11 we see the stability for d = 32 significantly improve,
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Fig. 10. KNLMS vs DKNLMS using the same pa-
rameters for each configuration.
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Fig. 11. KNLMS vs DKNLMS with parameters
adjusted for each configuration.
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Fig. 12. KNLMS vs MDKNLMS using the same
parameters for each configuration.
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Fig. 13. KNLMS vs MDKNLMS with parameters
adjusted for each configuration.

at the cost of convergence speed. For d = 16 with optimised hyperparameters, d = 16 seems to
perform effectively as good as KNLMS for this benchmark.

Moving on to the second variant, MDKNLMS, Figures 12 & 13 show the convergence pattern of
MDKNLMSwhile varying the delay parameters. Again, Figure 12 uses the baseline hyperparameters,
while 13 uses the optimised hyperparameters for each configuration. Figure 12 shows similar
convergence for all configurations of MDKNLMS (d ≤ 16), while some instability begins to show
when d = 32. After hyperparameter optimisation, all configurations of MDKNLMS perform well,
with d = 32 only show a slight deterioration of convergence speed.

Now for DKNLMS-DG, Figures 14 & 15 show the convergence pattern of DKNLMS-DG while
varying the delay parameters. Similar to the previous examples, Figure 14 uses the baseline hyperpa-
rameters, while Figure 15 uses the optimised hyperparameters for each configuration. In Figure 14,
we see a significant difference between the accuracy of KNLMS and DKNLMS-DG for all factors of
d . In terms of accuracy, all configurations are visibly less accurate and have slower convergence
than KNLMS. For d ≥ 16, the DKNLMS-DG also show visible instability in the convergence region,
without exhibiting the extremely unstable behaviour of DKNLMS (d = 32). After hyperparameter
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Fig. 14. KNLMS vs DKNLMS-DG using the same
parameters for each configuration.
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Fig. 15. KNLMS vs DKNLMS-DG with parame-
ters adjusted for each configuration.
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Fig. 16. KNLMS vs DKNLMS-CT using the same
parameters for each configuration.
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Fig. 17. KNLMS vs DKNLMS-CTwith parameters
adjusted for each configuration.

optimisation, shown in Figure 15, all configurations of DKNLMS-DG show significantly better
accuracy, at the expense of significantly worse convergence speeds. Furthermore, even after hyper-
parameter optimisation, instability can be seen when d ≥ 16. We suspect this instability may be
caused by the fractional part of Eq. (9) tending towards zero, which can occur for DKNLMS-DG
configurations. We also note that the ϵ value that was found for DKNLMS-DG configurations
was significantly higher than the other DKNLMS variants, which may be to counteract this effect.
Overall, the accuracy results of the DKNLMS-DG configurations were underwhelming, and as such
will often not be used for comparisons in the subsequent sections.

Finally, Figures 16 & 17 show the convergence pattern of DKNLMS-CT while varying the delay
parameters. Again, similar to previous examples, Figure 16 uses the baseline hyperparameters, while
Figure 17 uses the optimised hyperparameters for each configuration. As expected, DKNLMS-CT
shows the exact same convergence pattern as KNLMS itself, just shifted by the delay amount d .
While from an accuracy point of view, DKNLMS-CT is promising, one must remember that this
comes at the cost of increased hardware resources and increased critical path delay. In practical
terms, this means reduced dictionary size and higher latency. Consider the results shown in Table 3
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Fig. 18. DKNLMS and MDKNLMS when d = 16.
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Fig. 19. DKNLMS and MDKNLMS when d = 32.

for MDKNLMS and DKNLMS-CT when d = 16. Rounding the values, MDKNLMS / DKNLMS-CT
would require dictionary sizes of 20 / 26 respectively. Using the feature length of Mackey-Glass of
M = 7, and the arithmetic counts in Table 1, the number of operations per update can be calculated
for MDKNLMS / DKNLMS-CT as 756 / 1023 respectively, assuming dD = dα = 8. In all, that would
mean that for this example DKNLMS-CT would require a 35% increase in Ops for no accuracy
benefit over MDKNLMS. Although this may be useful in some circumstances, in this benchmark
we do not see a significant advantage in using DKNLMS-CT over DKNLMS or MDKNLMS.

Now that each DKNLMS variant has compared against KNLMS, let us now compare these variants
against each other. Figures 18 & 19 shows DKNLMS and MDKNLMS convergence patterns plotted
directly against each other using high values of d . Specifically, Figure 18 uses d = 16while Figure 19
uses d = 32. In Figure 18 we see both algorithms working quite well at d = 16, with MDKNLMS
perhaps showing a small amount of instability. In Figure 19 we see a larger difference between
each configuration, both DKNLMS variants exhibiting slower convergence speeds than KNLMS,
DKNLMS being much slower than MDKNLMS. More importantly, DKNLMS clearly shows some
accuracy degradation when d = 32, while MDKNLMS behaves very similar to DKNLMS. Given this,
we consider MDKNLMS to be the most promising DKNLMS variant when it comes to achieving
high throughput learning models. In the subsequent sections, in order to save space we’ll mostly
provide results for MDKNLMS.

6.1.3 Finite Precision and Function Approximation. In this section, we test accuracy with a full
architecture simulation, as such finite precision effects and function approximation is taken into
account. For the Mackey-Glass time series and the hyperparameters described in Section 6.1.1 a
wordlength of 18bits with a 5bit integer length was used. Figure 20 shows the modelling accuracy
of the floating point vs several different fixed point versions with function approximations. Note, all
fixed point formats use 5bits for the integer length which avoids overflow and Mackey-Glass time
series using MDKNLMS (d = 16). Figure 21 shows the difference in accuracy between the floating
point and fixed point versions. Note, floating point refers to double precision, i.e., 64bit float. In
Figure 20 we can see that using 14bit fixed point arithmetic causes some accuracy issues, affecting
the stability of MDKNLMS. Meanwhile, 18bit and 22bit does not significantly affect the accuracy of
MDKNLMS (d = 16). In terms of the quantifying the change in modelling error, Figure 21 shows
the accuracy difference between fixed point and floating point formats. In particular, with reference
to both Figures 20 & 21, we can see that the difference in modelling accuracy is approximately an
order of magnitude lower than the modelling error incurred by the algorithm itself, for both 18bit
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Fig. 20. Comparison between single precision
floating point and 18-bit fixed point MDKNLMS
when d = 16.
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Fig. 21. Accuracy difference between single pre-
cision floating point and 18-bit fixed point MD-
KNLMS when d = 16.

and 22bit fixed point formats. The 14bit format introduces some error which would noticeably affect
the overall accuracy of MDKNLMS. Interestingly, in many parts of the convergence curve, the 18bit
and 22bit fixed point model actually outperforms the floating point model, in terms of accuracy.
This could be due to the rounding error perhaps behaving as a regulariser in this model, by injecting
noise in the form of quantisation error. This injected quantisation could actually behave like l2
regularisation and help the algorithm avoid overfitting [7]. Similar effects have been observed
by prior works, relating quantisation error to noise injection [4, 5] and relating quantisation to
regularisation [10]. Further study of this effect is future work.

6.2 Performance
In this section, we look at the potential performance and scalability of the DKNLMS architectures
described Section 4. This section contains post-place-and-route results on a Xilinx VU9P FPGA.
Full system implementations are found in Section 6.4.

Figure 22 shows how the throughput of DKNLMS, MDKNLMS and DKNLMS-DG varies with the
latency (clock cycles) of the design. For Ñ = 64 and M = 8, d = 4 pipeline stages are required to
achieve a throughput of 100 MHz and a throughput of 280 MHz can be achieved if all of the optional
registers described in Section 4 are enabled, i.e., d = 31. These represent speedups of 4.4×/12.0×
over a combinatorial KNLMS design (i.e. d = 1), respectively. We do see a slight difference in
maximum clock frequency between the different DKNLMS variants, but this appears to be some
noise from the place-and-route tool, rather than any particular trend. Furthermore, Figure 23
provides insights into the space of frequencies which can be achieved for different values of Ñ
and d . Overall, frequencies up to 420 MHz can be achieved for high latencies (d ≥ 26) and low
dictionary sizes (Ñ ≤ 4). However, with reference to Section 6.1, for more practical values of Ñ
(32 ≤ Ñ ≤ 64), and d (16 ≤ d ≤ 32), frequencies of between 214 MHz to 296 MHz can be achieved.

6.3 Area Usage
Figure 24 shows DSP usage as a function ofM and Ñ . All of the DKNLMS variants have the same
DSP usage so this chart representative of the entire design space described in Section 4. Figure 24
shows that the DSP usage is entirely predictable across the different DKNLMS variants. The DSP
usage corresponds exactly to the amount of multiplies specified in Table 1 until the number of
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DSPs increases beyond what is available in the target device, in which case the extra multipliers
are implemented in LUTs.
Figure 26 shows LUT usage as a function of M and Ñ . Note that in this figure the resource of

DKNLMS with all optional registers enabled is shown. The other designs very closely match the
resource usage shown in this figure, within 20%. Interestingly, the resource usage is higher when
d = 4 than when d = 8 we suspect this is due to the routing tool replicating parts of the design
to try to shorten the critical path. Clearly, the LUT usage is significantly less than the DSP usage
(when one considers the availability of such resources on an FPGA device), meaning that we’ll be
DSP bound as we scale.

6.4 Implementation and System Performance
In this section, we consider post-synthesis results along with system level performance, latency
and performance measurements. For comparison, we use two CPU-based platforms: (1) a laptop
PC running Ubuntu Linux 14.04 with an Intel Core i7-4500 CPU running at 1.8GHz and GCC 4.8;
and (2) an Ultra96 board from Agilent, which features an ARM Cortex-A53 CPU running at 1.2GHz
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and GCC 6.2. For the CPU implementations, a C library was created to implement KNLMS. During
testing, ATLAS [37], OpenBLAS [36] (both with and without multi-threading) and a single-threaded
hand-coded library were used to provide the linear algebra routines. For each test, the fastest
implementation is reported, which was always the hand-coded library. Although the hand-coded
library was written in pure C, care was taken to ensure that GCC’s auto-vectorisation capabilities
could effectively optimise the code. This includes implementing loops with compile-time static loop
bounds on many loops and avoid irregular memory access patterns. We examined the assembly
code of several routines (including the dot product) an ensured they were significantly unrolled
and made use of the processor’s SIMD instructions. Our C implementation was compiled using -O3,
-ffast-math and several other optimisation flags to improve performance. Surprisingly, using highly
tuned linear algebra libraries and multi-threading did not provide any performance benefit, we
suspect the small vector sizes used throughout meant the overheads of multi-threading outweighed
the benefits. Furthermore, the fine grained parallelism available in the KNLMS algorithm make it
difficult to parallelise on CPUs, for a single model. Although we were unable to extract any extra
performance by going to multiple cores/threads, there is still a theoretical benefit, as such all CPU
results in this section could possibly be improved by a factor c , the number of cores available in the
CPU, particularly if training of multiple parallel models is required. Also, CPU implementations
of DKNLMS (and the other variants) in C did not produce higher performance, therefore we only
provide the performance results of KNLMS when running on the CPU. In terms of fabrication
process, the i7-4500 CPU is 22nm, while the FPGA devices, an XC7Z020 and an XCZU3EG, are
28nm and 16nm respectively.
The FPGA implementations in this section fall into two categories:
(1) post-synthesis estimates
(2) system implementations

The post synthesis estimates are post-place-and-route results of the MDKNLMS cores only. The
system implementations utilise AXI master to stream, AXI stream to master and generated drivers
from fpga-tidbits2 to move data between the DDRmemory of the ARM host and the accelerator core
and to manage the core. The system implementation also contains an extra FIFO of length d to allow
2https://github.com/maltanar/fpga-tidbits
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Table 4. Comparison Between Different System Implementations of Various Kernel Adaptive Filters

Reference Algorithm Device Dictionary Feature Datatype Ops / Latency Throughput Board Power Performance Energy
Size Length Update (µs) (MHz) (W) (GOps/s) (µJ/Update)

Post-synthesis Estimates

Tridgell et al. [32] NORMA XC7VX485T 32 8 Fixed18 - 0.080 137.8 - - -
Tridgell et al. [32] NORMA XC7VX485T 64 8 Fixed18 - 0.087 137.4 - - -
Fox et al. [16] Fastfood XCKU035 16,384 1,024 Fixed18 - 4.4 0.42 - - -
Ours MDKNLMS(d = 16) XC7Z020 30 7 Fixed18 872 0.26 66.7 - 58.16 -
Ours MDKNLMS(d = 16) XCZU3EG 46 7 Fixed18 1336 0.10 187.5 - 250.5 -

System Implementations

- KNLMS ARM Cortex-A53 30 7 Float32 872 10.5 0.095 4.1 0.083 43.16
- KNLMS ARM Cortex-A53 46 7 Float32 1336 15.8 0.063 4.1 0.084 65.08
- KNLMS Intel i7-4500U 30 7 Float32 872 1.3 0.80 21.1 0.694 26.38
- KNLMS Intel i7-4500U 46 7 Float32 1336 2.0 0.52 21.1 0.700 40.58

Ren et al. [29] KLMS XC7V2000T 53† 1 Float32 - - 2.4 - -
Pang et al. [27] KNLMS DE5 32 7 Float32 930 2.6 0.38 - 0.353
Pang et al. [27] KNLMS DE5 64 7 Float32 1858 3.6 0.28 22.32‡ 0.520 79.71
Fox et al. [17] NORMA ExaNIC X4 14 8 Fixed24 - - 104.2 - -
Fraser et al. [18] KNLMS VC707 16 8 Float32 514 - 0.98 - 0.504
Ours MDKNLMS(d = 16) Pynq-Z1 30 7 Fixed18 872 3.4 66.7 3.22 58.16 0.048
Ours MDKNLMS(d = 16) Ultra96 46 7 Fixed18 1336 1.5 187.4 8.38 250.4 0.045

† the dictionary size is estimated by reimplementing the work
‡ power measurement taken for the SW-KRLS algorithm

the stream to AXI controller to apply backpressure to the core. For the system implementation,
the time series data starts and finishes on the host and this transfer time is included in the timing
measurements for system performance. Table 4 shows our results for MDKNLMS (d = 16), along
with key results of several previous works. In particular, note that throughput refers the sample
rate for a single model for which the implementation is able to operate at. For our designs, this
sample rate also corresponds to the clock rate of the FPGA design. As with many machine learning
algorithm families, KAFs come in various different forms and target different application domains.
As such, readers should be wary when directly comparing results as the specific targets of each
work may not be reflected in Table 4. Given this, where possible the results from previous works
are shown which closely match the algorithm and parameters used in this work. The throughput /
latency numbers for the post-synthesis results refer to the sample rate and pipeline depth of the core.
For the system implementations, the throughput / latency numbers refers to measured numbers
from the host code (C++ code running on the ARM core). Finally, the performance (GOps/s) is
calculated is the number of Ops / Update for each new sample of the adaptive filter, multiplied by
the number of samples per second that can be processed by the hardware, i.e., the throughput.

For power measurements, for the Ultra96 platform board power is measured using device reported
board power measurements3. KNLMS and MDKNLMS were run in a loop for approximately 10
minutes, with power measured every 10 seconds. The reported power is the average of the power
measurements over this period. For the Pynq-Z1 platform, board power is measured using a inline
USB power meter. Again, average power reported over a 10 minute test. For the PC platform, energy
dissipation was measured using OS reported battery charge over a 10 minute test with the display
switched off and the CPU governor set to “performance”, to prevent throttling of the CPU clock.
Looking at the system implementations in Table 4, The CPU implementations achieve 0.66

/ 0.084 GOps/s for the Intel i7 / ARM Cortex-A53 respectively. The architectures proposed by
Ren et al. [29] and Fraser et al. [18] were designed for multi-channel systems, or hyperparameter
optimization, and therefore perform poorly when constrained to accelerating a single channel.
For Fraser et al. [18], this translates into 0.50 GOps/s of floating-point performance. Although
the hardware by Pang et al. [27] is designed accelerate single-channel models, the authors target
flexibility over performance. This means that the most comparable design (Ñ = 64,M = 7) achieves

3Board power measured in uW by polling /sys/class/hwmon/hwmon0/power1_inputcat
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Table 5. Resource Usage of System Implementations

Algorithm Device Dictionary Feature Datatype DSPs LUTs BRAM (18k) Fmax
Size Length (%) (%) (%) (MHz)

MDKNLMS(d = 16) Pynq-Z1 30 7 Fixed18 220 (100%) 42473 (79.84%) 16 (5.71%) 66.7
Device Total - XC7Z020 - - Fixed18 220 53200 280 -

MDKNLMS(d = 16) Ultra96 46 7 Fixed18 360 (100%) 54437 (77.15%) 37 (8.56%) 187.5
Device Total - XCZU3EG - - Fixed18 360 70560 432 -

relatively low utilisation: a floating-point performance of 0.52 GOps/s. It should be noted, that the
design proposed by Pang et al. [27] can be scaled to larger problems than this work. Furthermore,
the design achieves better performance for RLS-style kernel methods, such as FB-KRLS [34] and
SW-KRLS [35].
When comparing similar sized problem sizes, starting with Ñ = 30 and M = 7, the Pynq-

Z1 implementation achieves throughput 702 / 83× higher than the ARM / i7 implementations
respectively. Similarly, it outperforms the implementation by Pang et al. [27], achieving 165×
higher peak performance in GOps/s. When power is taken into consideration, the Pynq-Z1 design
consumes the least board power of all designs 1.27 / 6.55× less than the ARM / i7 implementations
respectively. Finally, the energy consumed per update for the Pynq-Z1 design is 899 / 550× less
than the ARM / i7 implementations respectively.
Moving on to the larger problem size, Ñ = 46 andM = 7, the Ultra96 implementation achieves

throughput 2975 / 360× higher the equivalent ARM / i7 implementations respectively. For power,
the ARM achieves 2.04× lower power consumption than the Ultra96 platform. Conversely, the
i7 consumes 2.52× more power. In terms of energy, the Ultra96 is the most efficient design of all,
achieving 1446 / 902× better efficient than the equivalent ARM / i7 implementations.
For architectures which are more similar, the design proposed in Fox et al. [17] achieves very

high throughput, 104.2 MHz. In comparison, our Ultra96 implementation achieves 187.4 MHz for a
larger model, at 250 GOps/s at a slightly lower precision, Fixed24→ Fixed18. This corresponds to
an increased data rate of 1.80×. The Pynq-Z1 also achieves respectable performance at 58 GOps/s.
Note, we consider all operations in Table 1, so exponential and division counts as a single operation,
even though they are lightweight table lookups in practice. Finally, the measured latency of our
designs are significantly higher than the theoretical latency of the cores themselves. This is due to
a combination of DRAM latency and batching that occurs in our system implementation, These
overheads would not occur in implementations which are directly coupled to sensors.

6.4.1 Resource Usage. The resource usage of our system implementations is given in Table 5.
These numbers reflect the system designs reported in Table 4. Our designs utilise all of the available
DSPs on each device, afterwhich multipliers are mapped to LUTs and quickly fill the available LUT
resources. For both designs, we scale the core to fill almost all of the available device resources.
Since the design is latency (specifically, clock cycle latency) sensitive, the overall Fmax is not
affected too much by scaling the design. While the performance numbers are respectable for both
the Pynq-Z1 and Ultra96 boards, the Fmax for all designs is quite low. Even HLS-based designs
can usually achieve 100 / 300 MHz on the XC7Z020 / XCZU3EG respectively. This again, is due to
the sensitivity of the design to latency. Each design is a core containing 16 pipeline stages, which
utilises over 75% of the available LUTs on each device. For comparison, Table 5 also contains the
total resources available on each device for the Pynq-Z1, Ultra96 platforms respectively.
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7 CONCLUSION
In conclusion, in this work a new technique (delayed model adaptation) has been proposed for
modifying KAFs. The technique significantly reduces the dependency problem of KAFs (due to their
recursive nature) allowing for high throughput hardware implementations. The delayed model
adaptation technique is demonstrated by modifying the KNLMS algorithm. In doing so, several
new variants of KNLMS are proposed which do not suffer from the same dependency problem. A
core generator is described which is able to generate all variants of KNLMS. For similarly sized
problems, the DKNLMS algorithms are able to achieve speedups of 360× over a CPU and peak
performance 165× higher than a previous FPGA implementation. Our most performance design can
operate at data rates of 187.4 MHz and achieves a peak performance of 250 GOps/s. Furthermore,
the design also achieves a 1.80× speedup over a prior FPGA implementation of NORMA. This
work demonstrates that high throughput implementations of KAFs are achievable on current FPGA
hardware, and hope this enables the use of KAFs in many more applications, with tight throughput
requirements.

Finally, in comparison with other FPGA-based KAF designs, this work shows that one-size-fits-all
solutions might not be an effective way of addressing the computational demands of machine
learning algorithms. This is because machine learning algorithms are used in a vast number of
application domains, with widely varying problem sizes and constraints. In particular, we show
how very few prior works have addressed the high performant, single-channel online models as
would be required for certain applications, such as channel equalisation. Furthermore, if those
requirements are addressed specifically, and algorithmic modifications are made, significant gains
can be attained.
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