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A Variable-Radix Digit-Serial Design Methodology
and its Application to the Discrete Cosine Transform

M. P. Leong and Philip H. W. Leong

Abstract—A variable-radix digit-serial design methodology and
its application to the implementation of a systolic structure for
computing the discrete cosine transform is presented. Based on the
parameters supplied by a user, different fixed-point designs can
be derived from a single floating-point description where trade-
offs among quantization effects, throughput, latency, and area can
be addressed. The resulting hardware implementations have vari-
ables of different wordlengths and operators of different radices.
This design methodology enables efficient exploration of a complex
design space to determine the most suitable implementation for a
particular application.

Index Terms—Design automation, design methodology, discrete
cosine transforms, field-programmable gate arrays (FPGAs),
fixed-point arithmetic.

I. INTRODUCTION

T HE discrete cosine transform (DCT), proposed by Ahmed
et al. in 1974 [1], has become an increasingly important

tool for image and video signal processing applications due to
its utility and its adoption in standards such as Joint Photo-
graphic Experts Group (JPEG), Moving Picture Experts Group
(MPEG), and CCITT H.261 [2]–[4]. Compared with other or-
thogonal transforms, the performance of the DCT is very sim-
ilar to the optimal Karhunen–Loeve transform (KLT) for highly
correlated data [5], [6]. Its prominence makes hardware im-
plementations important, particularly in high performance and
low-power applications.

In this paper, we propose a variable-radix digit-serial design
methodology and its application to the implementation of the
DCT. This methodology allows many different designs to be de-
rived from a single algorithmic description. In particular, trade-
offs among quantization effects, throughput, latency, and area
can be addressed and a large and complex design space can be
explored to determine the most suitable implementation for a
particular application. The resulting hardware implementation
is quite different from those produced by human designers since
each variable may have a different wordlength and each operator
may have a different radix, a task which would be too tedious
for most designers. Such a design process poses two main chal-
lenges: appropriate wordlengths must be determined for each
variable used in the DCT and the radix must be selected for each
of the operators subject to user’s requirements for throughput,
latency, and area [7]. To address the former problem, an opti-
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mization based method for deriving a fixed point implemen-
tation via simulation was used [8]–[10]. The latter issue was
addressed by using an automatic synthesis approach. The en-
tire design process is automated via a high-level compilation
tool called fp. This tool translates a fp algorithmic description
of the DCT (based on an algorithm by Liuet al. [11]) into
a fixed-point, variable-radix, digit-serial dataflow architecture.
The resulting synthesizable VHDL code is then used to produce
a bitstream for a field programmable gate array (FPGA).

We have successfully generated a series of DCT implemen-
tations with different radices and wordlengths from a single de-
scription. These implementations offer almost continuous trade-
offs among performance, area, latency, and throughput. As an
example, the DCT implementations were applied to 2-D image
coding, from which the signal-to-noise ratios (SNRs) produced
by the implementations are visualized.

The rest of the paper is organized as follows. In Section II,
background concerning the DCT algorithm, floating-point
to fixed-point translation and digit-serial computation are re-
viewed. In Section III, a description of the design environment
and its design flow are given. In Section IV, synthesis and
measured performance results are presented. This is followed
in Section V with a discussion of the experimental results and
conclusions are drawn in Section VI.

II. BACKGROUND

A. Hardware Implementations of the DCT

Previously reported hardware implementations of the DCT in
VLSI technology can be divided into two main categories: high-
throughput and low-power. High-throughput designs include the
100 million samples per second, 100-MHz VLSI implementa-
tion in 0.8 m CMOS technology reported by Uramotoet al.[12]
and the samples per second, 150-MHz VLSI imple-
mentation in 0.3 m CMOS technology reported by Kurodaet al.
[13]. An example of a low-power design is the VLSI implemen-
tation in 0.6 m CMOS technology by Xanthopoulos and Chan-
drakasan [14], which dissipates 4.38 mW at 14 MHz and 1.56 V
and has a maximum performance of samples per second
at 43 MHz. Hunter and McCanny proposed a system which takes
parameters such as point size and coefficient wordlengths and
generates an efficient design for VLSI synthesis [15].

FPGA devices have also been used to implement the DCT.
A Xilinx XC6200 series-based implementation was reported by
Trainoret al.[16], which achieves a performance of 15.3610
pixels/sec for 2-D DCT image coding. Bergmann and Chung
reported an implementation on a Xilinx XC4010 FPGA [17]
which achieves 6.21 10 pixels/s for 2-D DCT image coding
using the Fast DCT algorithm and 12.4410 pixels/sec using
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distributed arithmetic. Kroppet al. proposed a generator for
pipelined multipliers on FPGAs and applied their work on the
DCT [18]. A 2-D DCT processor on an Altera FLEX10K100
FPGA was reported by Mohd–Yusof, Suleiman and Aspar [19],
which achieves a throughput of 5.5310 pixels/s at a clock
rate of 11 MHz. Navineret al. reported a high accuracy imple-
mentation of the DCT on an Altera FLEX10K50 FPGA [20].

There are three main strategies which have been employed
in high-performance implementations of the DCT. The number
of arithmetic operations, particularly multiplications, can be
reduced by converting the DCT to skew-circular convolutions
[21] or a direct sum of matrices [22]; parallelism can be
maximized by systolic structures [23]–[25] or distributed
arithmetic [17], [26]–[28], and, finally, the hardware resources
required for arithmetic operations can be reduced by applying
appropriate approximations such as replacing multiplications
by sequences of shift-and-adds [29], [30].

Liu et al.[11] proposed an approach which utilizes all three of
the above strategies by transforming the DCT computation into
a systolic computation involving discrete moments (DM). The
bulk of computation is performed using addition. Specifically,
the algorithm permits minimal area hardware implementations
with reasonable accuracy and the systolic structure maps well
to the adder and register-rich architecture of an FPGA. This al-
gorithm centers around the relationship between the DCT and
DM and a brief description follows.

The -point DCT is defined by

(1)

where equals if , otherwise. Define
, and by (2), shown

at the bottom of the page. By substituting into (1), for a
given value of , the -point DCT can be transformed to

(3)

where

(4)

Equation (3) establishes the relationship between the DCT
and DM. If the 2 -order moments, , (

Fig. 1. The p-network with input vector (1; x; x ; . . . ; x ; x ), nodes
represent additions.

) are available, each
can be readily computed. is a Taylor remainder term,

which rapidly converges to zero asincreases.
AsproposedbyLiuetal.[11], tocompute ,a transforma-

tionknownas canbeused.The transformation isconductedby
an architecture called the-network which resembles a Pascal’s
triangle. Fig. 1 illustrates a-network for the transformation

By recursive application of , the -order moment,
, can be computed

if

otherwise.
(2)
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Fig. 2. The systolic array for 1-DN -point DCT, withp-network blocks as shown in Fig. 1 and blank nodes represent additions.

The relationship between the DCT and DM decomposes the
computation of DCT into three steps.

1) Precomputation: .
2) Computation of DM:

.
3) Postcomputation: .
Computation of from and from are done

using (2). Computation of the DM is implemented using
-networks each with adders at the top level and

adders at the output of the cascaded-network. Fig. 2 shows the
overall systolic structure for computing the 1-D DCT. Finally,

is computed from (3) where and are precomputed
constants and hence its implementation can use a constant mul-
tiplier.

The structure offers a tradeoff between area and accuracy.
The choice of should be around two to four for a practical
hardware implementation. Hardware requirements and the as-
sociated error term for some typical values of and are
listed in Table I. The numbers of adders and multipliers refer to
the operators in the systolic array only and does not account for
those in the precomputation and postcomputation units.was
calculated by assuming input values in the range of .

TABLE I
THE NUMBER OF ADDERS AND MULTIPLIERS AND THE ASSOCIATEDERROR

BOUND FORDIFFERENTVALUES OFp AND N

B. Floating to Fixed Point Translation

Fixed-point implementations are characterized by the assign-
ment of a fixed wordlength and a fixed exponent to each vari-
able. This is in contrast with a floating-point implementation in
which wordlengths of variables remain fixed but the exponents
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Fig. 3. Dataflow and control mechanisms in digit-serial architectures.

can change at runtime. Fixed-point hardware implementations
are usually preferred over floating-point implementations since
they are more favorable in terms of hardware resources, cost,
design complexity, latency, and power consumption, especially
for those designs having variables with small dynamic range.

The major difficulty in designing a fixed-point implemen-
tation arises from quantization effects. Quantization occurs
naturally when a finite wordlength is used to represent a real
number. A typical design process begins with a floating-point
algorithmic description, each floating-point variable being
translated to fixed-point. To ensure the results obtained are
correct, designers observe the dynamic ranges and errors
of variables and specify sufficient numbers of bits for each
fixed-point variable. Such a translation process is tedious but
worthwhile for gaining an area reduction over a floating-point
implementation.

Commercial fixed-point design environments are mainly tar-
geted for fixed-point digital signal processing (DSP) chips in
which size of a word is fixed. An example of these environ-
ments is mentor graphics data flow language (DFL) [31]. These
tools, however, may not be optimal for FPGA implementations
in which there is no need for each variable to have the same
wordlength and an unnecessarily long wordlength for some vari-
ables may result. Sung and Kum proposed an approach based
on dataflow descriptions made using block diagrams [32]. How-
ever, the problem of converting an algorithm into such a descrip-
tion must be addressed.

Other fixed-point design environments include FRIDGE by
Willemset al.[33], [34] and a fixed-point optimization utility by
Kim et al. [9]. These design environments are based on general
programming languages, such as C and C++. Both introduce
new datatypes or classes on top of the programming language
for simulating fixed-point arithmetic with configurable preci-
sion. Later, the authors proposed a framework also built on top
of C++, which automatically translates arbitrary floating-point
algorithmic description into synthesizable fixed-point VHDL
[very high speed integrated circuit (VHSIC) hardware discrip-
tion language] descriptions [10] and this approach was used in
the work described here.

C. Digit-Serial Computation

In a bit-parallel architecture, a-bit variable requires an-bit
wide datapath for its transmission and at any clock cycle all
the data bits appear on their associated wires to form a two’s
complement representation of the value. Bit-parallel arithmetic
operators process the entire variable in a single clock cycle.

Instead of processing the entire word of a variable in a single
cycle, digit-serial operations are carried out in multiple clock
cycles, a digit being processed each cycle. As an example, Fig. 3
illustrates a digit-serial representation and its associated control
signal. The control signal is set high when the first digitof
the -digit variable is being transmitted. Bit-serial and bit-
parallel architectures are considered as special cases of digit-
serial architectures where the digit sizes are respectively one and
the maximum wordlength among all variables.

Digit-serial systems offer area reduction and higher clock
rate compared with bit-parallel architectures at the expense of
increased latency and perhaps decreased throughput [7], [35],
[36].

III. D ESIGN ENVIRONMENT

The design environment consists of a compiler that translates
algorithmic descriptions in infix form to a directed acyclic graph
(DAG) representation in C++; a C++ library that models fixed-
point arithmetic (specifically quantization and computation er-
rors) under different wordlength configurations; an optimizer
that takes sample input vectors, passes the values to the algo-
rithm for simulation under different wordlength and radix con-
figurations and minimizes area or errors at outputs; a variable-
radix, variable-wordlength module library that provides area, la-
tency, and throughput estimations to the optimizer and generates
VHDL descriptions of the modules; and a VHDL generator that
takes wordlengths and radices determined by the optimizer and
calls module library to generate VHDL description of the whole
design [10].

Fig. 4 illustrates the design flow. The primary input taken
by the system is the algorithmic description written in the C
programming language. The input is processed by an infix
expression compiler to generate a DAG representing the
dataflow of the algorithm. The DAG description is compiled
along with two libraries, namely the fixed-point library and the
optimizer library, to generate an executable for wordlength and
radix optimization. To perform optimization, the executable
simulates the algorithm with the sample input vectors, varying
wordlengths, and radices to reduce a cost function which
incorporates quantization error, area, latency, and throughput
measures. As output, the executable produces the configuration
of radices and wordlengths that minimizes the cost function
while satisfying user-specified constraints. The VHDL de-
scription generator takes the configuration and requests the
module library for VHDL descriptions of the modules being
used in the design. At this step, proper control circuitry is
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Fig. 4. Design flow of the fixed-point design environment.

also inserted into the design. The overall output of the design
flow is a fixed-point VHDL description that implements the
algorithm. As the final step, the description is simulated and/or
synthesized using commercial CAD software.

A. Compilation

The design environment takes a set of infix expressions as
input. The syntax used is a subset of the C programming lan-
guage which does not contain any transfer of control statements.

The input is parsed and converted to a DAG using standard
compilation techniques. As an example, letand be inputs
and and be outputs. Then the sequence of infix expressions

, , , is translated to the
DAG shown in Fig. 5.

The output of the compiler is a C++ function that instantiates
operators as objects and defines the connections between them.
As an example, the compiler would generate the following seg-
ment of C++ code for the DAG in Fig. 5
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Fig. 5. Example of building a DAG from infix expressions.

where , , and are C++ classes that model the
operators (inputs, addition, multiplication and outputs, respec-
tively). The first argument of each constructor is a unique op-
erator name. For and , the subsequent arguments are
operands. The second argument for specifies the output
operator and for and , the last argument specifies the
port name.

B. Variable Radix and Wordlength Architecture

In traditional digit-serial implementations, variables have a
common fixed radix or digit size. In general, the wordlength of
a variable is the product of its number of digits and its radix.
When combining the traditional digit-serial architecture and the
variable wordlength technique, a number of problems arise.

• If the deviation of variable wordlengths is large, hardware
resources may not be fully utilized in all clock cycles. This
is because arithmetic operations on a variable with a large
number of digits requires more cycles to complete, but op-
erators on variables with smaller number of digits require
less cycles, resulting in idle cycles.

• The throughput of a system is limited by the variable with
the largest number of digits. In a conventional digit-se-
rial system, variables with higher precisions require larger
wordlength and hence more digits. To improve precision
by increasing the wordlength of the variable, either the
number of digits or radix must be increased. Increasing

the number of digits would reduce the throughput, while
increasing the radix would result in large area overhead.
This is because in a traditional digit-serial architecture, the
same radix is used for all variables, so all other variables
would also have increased radices and area requirements.

To overcome these problems, the implementations generated
by employ a novel architecture where each variable can have
a different wordlength and radix. The representation of a vari-
able can be of an arbitrary number of bits and is parameterized
as a triplet ( ), where is the fractional wordlength, is
the total wordlength and is the radix. All variables have the
same number of digits which is specified by a global parameter

. In general, , is an integer and . The least
significant bit of a variable has a partial value of 2. When

, sign extension is applied to get the most significant
bits of the most significant digit. The representation of a vari-
able with precision format (5,22,8) and is the equation
shown at the bottom of the next page.

The subscripts of refer to their exponents in base 2. For
instance, if the most significant bit of digit 1 is one, its partial
value is . Since the variable has 22 bits but 24 bits (3
digits 8 bits) are required in the digit-serial implementation,
two sign-extension bits are inserted in the most significant digit.
To summarize our approach:

• the number of digits is common to all variables
throughout the system; this ensures all arithmetic oper-
ators have the same throughput and maximal resource
utilization is guaranteed;
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• since all operators have the same number of digits, they
take the same number of cycles to complete and, hence,
no bottlenecks can occur;

• in contrast to the traditional digit-serial architecture,
radices of individual variables can be increased or de-
creased independently and, hence, a more cost-effective
tradeoff between performance and resource requirements
can be attained;

• a traditional digit-serial architecture is a special case of
this approach where the number of digits and radix are the
same for all variables in the system.

Similar to traditional digit-serial architectures, every variable
in the variable-radix variable-wordlength architecture has an as-
sociated control signal. The control signal is asserted when the
first digit of the variable is being transmitted over the associ-
ated data wires. Bit-parallel and bit-serial implementations are
two special cases, the former case having and the latter
having equal to the maximum wordlength.

C. Fixed-Point Library

As mentioned in Section III-A, algorithmic descriptions are
first translated into C++ code, which instantiates objects to
model the fixed-point arithmetic operations. The fixed-point
library consists of a collection of C++ classes, each of which
models an operator. Each fixed-point arithmetic object contains
an arithmetic core for the real fixed-point computation, which
has inputs and outputs. For instance, an addition object
has and .

Each of the inputs or outputs contains information regarding
precision format, runtime and worst-case error statistics and
range estimation. Their precision formats are controlled by the
arithmetic core associated with it. Each arithmetic core has a
number of public accessible parameters. The optimizer can,
hence, control the precision of the fixed-point arithmetic and the
precision formats of the inputs or outputs by modifying these
parameters. The inputs and outputs are respectively connected
to outputs and inputs of other fixed-point arithmetic objects.
The overall inputs and outputs of the design are defined by two
special classes of nodes, where and respectively.

When the parameters of a fixed-point arithmetic object are
modified, the arithmetic precision of the core and the preci-
sion formats associated with the inputs and outputs are updated.
Worst-case error analysis and range estimation is subsequently
performed. After the parameters have been changed, the fixed-
point arithmetic object can carry out its computation based on
the precisions determined. In a computation cycle, the following
steps are performed.

1) Inputs take values from the outputs to which they connect
and are truncated or extended if the precision formats be-
tween two connected ports are not the same.

2) Arithmetic core performs the required computation and
the results are copied to the outputs.

3) Output is truncated or extended if its precision format
differs from the output of the arithmetic core.

4) Inputs and outputs record runtime range and error statis-
tics.

D. Optimization

The objective of the optimization process is to minimize area
or errors at the outputs of a design while satisfying user-spec-
ified constraints. The optimizer tries different parameters that
control the precisions of arithmetic objects, monitors the errors
at outputs and estimates the area, evaluates a cost, and finds out
the set of parameters that minimizes the cost. The optimizer
used the downhill simplex method of Nelder and Mead [37].
This method does not require the computation of derivatives and
is suitable for a multidimensional discontinuous search space.
Other optimization techniques may lead to a more efficient and
accurate search.

In a single pass of the optimization process, the following
operations are carried out.

1) Optimizer proposes a set of parameters and the fixed-
point arithmetic operators, in turn, modify the number
of fractional bits in their inputs and outputs.

2) Sample input vector is taken as the input to the design.
3) Arithmetic operators perform their computation using

precisions based on the specified parameters and the
number of fractional bits specified for their associated
inputs.

4) Wordlengths of all fixed-point variables are computed
so that they do not overflow with respect to the runtime
ranges.

5) Runtime error statistics and ranges are extracted.
6) If there exist variables with zero wordlengths, the vari-

ables and associated operators are trimmed.
7) Latency and throughput are computed and stage latches

are inserted where appropriate.
8) Area is estimated.
9) Constraint satisfaction is checked and the cost function

is computed if the constraints were satisfied.
10) Optimizer saves the parameters.
As mentioned in Section III-B, the implementation generated

by the tool has variable radix. To facilitate arithmetic operations,
the digit sizes of the operands must match. For addition and
subtraction operations, the fractional precision must also match.
To convert a data value from one format to another, conversion
modules are automatically generated and inserted between op-
erators whenever necessary. Conversion modules introduce area
and latency overhead, so the optimizer takes into account the
overheads contributed by the conversion modules.

digit2

sign ext.

digit 1 digit 0

fractional part
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In most cases, arithmetic modules require all operands to enter
at the same time. The process of time alignment is applied when
the latencies of the operators are different. During this process,
stage latches are inserted such that operands have the same la-
tency after passing through these shift registers. As the latencies
of the modules are known, fp can compute the required number
of stage latches for every arithmetic module input. Note that the
cost function takes into account the area used by stage latches.

E. Module Library

The module library serves two purposes. First, it accepts
enquiries from the optimizer and returns area, latency and
throughput measures of individual modules and second, it takes
requests from the VHDL description generator and generates
synthesizable VHDL descriptions.

The modules inside the library are organized hierarchically,
with every module dedicated to one arithmetic operation.
This hierarchical design enables complicated modules to be
implemented using other modules. In addition to the standard
arithmetic operations, the module library also has two special
subclasses, namely the conversion module and the stage latch
module, as described in Section III-D.

F. VHDL Generation

As inputs, the VHDL description generator takes the
DAG representation from the compiler and the radices and
wordlengths configuration determined by the optimization
process. The generator calls the module library accordingly,
requesting a VHDL description of each module. It also inserts
appropriate sequencing circuits to control module operation. As
output, the generator emits VHDL description for simulation
and synthesis purposes.

IV. RESULTS

A program was developed to generate sets of infix expres-
sions that describe the DCT algorithm described in Section II-A
with different moment order and number of points . The al-
gorithm was originally targeted for VLSI where regularity is of
utmost importance. However, for VHDL synthesized FPGA im-
plementations, regularity is less important, hence a simplifica-
tion of the -network at the top level can be applied. Since the
inputs to the -network at the top level are identical, the outputs
of the first level and subsequent adders are the same value as
their neighboring adders. Therefore, the removal of all adders
except those along the diagonal can be applied. For all of the
experiments, and was used. The systolic struc-
ture thus generated requires 157 adders and five constant mul-
tipliers. The sample input vector consists of 500 entries, 200
of which were extracted from image data (normalized to the
range ), another 200 were the DCT of image data (in
the range ) and the remaining were randomly gen-
erated (in the range ). We included the 200 entries
of transformed image data because for 2-D image coding ex-
periments, the DCT implementation is used twice to encode the
input images.

The software generates 35 000 lines of VHDL code from the
95-line description of the DCT algorithm and the average run-

TABLE II
EIGHT-DIGIT DCT IMPLEMENTATIONS OBTAINED BY AREA MINIMIZATION

WITH DIFFERENTOUTPUT MEAN ERRORCONSTRAINTS

time was approximately 1600 s on a 450-MHz Intel Pentium
III machine. The synthesis and implementation tools used were
Synopsys FPGA Compiler and Xilinx Alliance, respectively.
The designs were tested on an Annapolis “Wildstar” Recon-
figurable Computing Engine, a PCI64 board containing three
Xilinx Virtex XCV1000-6 FPGAs [38]. All results presented in
this section were obtained experimentally from a single FPGA
on the “Wildstar” board.

Using this approach, a set of 70 implementations of the DCT
of different radices and wordlengths were generated from a
single description. These implementations had areas ranging
from 366 to 4013 Virtex slices, with throughputs between
1.62 10 DCT operations per second and 120.5010 DCT
operations per second. Applying the DCT implementations to
2-D image coding, the resultant images had SNRs between
19.67 and 44.52 dB.

A. Area Minimization

In these experiments, error constraints were specified and
the optimization objective was to minimize the implementation
area. In our experiments, mean error constraint were specified.
Other types of error constraints supported by the system include
maximum error constraints, SNR constraints, and worst-case
analysis error constraints.

The results in Table II were obtained by settingto eight
(digit-serial) and varying the error constraints. Results in
Table III were obtained by setting the error constraint to

and varying the number of digits.
Performance is defined as the number of DCT operations per

second and the performance to area ratio indicates the area ef-
ficiency. In the tables, trimmed operators refer to those with
zero output wordlength and could thus be removed. Operators
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TABLE III
DIGIT-SERIAL DCT IMPLEMENTATIONS WITH DIFFERENT DIGIT SIZES OBTAINED BY AREA MINIMIZATION WITH OUTPUT MEAN ERROR

CONSTRAINT SET TO 3.9063�10

which only have outputs connect to trimmed operators are also
trimmed. Note that the “error at output” entry in the tables refers
to fixed-point quantization and its propagated error only and
does not include the effects of .

The number of trimmed operators in the implementations in
Table III are zero, because to achieve the required output error,
all the operators must be preserved. When the error constraint
was relieved, some operators could be trimmed which resulted
in significant area reduction.

Fig. 6 shows the number of slices (proportional to hardware
resource requirements), frequencies, performance and perfor-
mance to area ratios versus the number of digits under different
error constraints. It can be seen from the graphs that the rela-
tionship between the number of digitsand area is not straight-
forward and these graphs can be used to determine the minimal
area implementation satisfying certain error and throughput re-
quirements. To more accurately locate the optimal point, both
error and throughput constraints should be specified. Table IV
shows a series of implementations with a mean error constraint
of and varying throughput constraints.

B. Image Coding

To further evaluate the digit-serial DCT implementation, we
applied the DCT to the coding of several benchmark images.
The experimental framework is shown in Fig. 7. Due to the sep-
arability of the DCT, the 2-D DCT can be computed using the
row-column method. The 1-D DCT was first applied to the input
images using the DCT core. The results were then tranposed
and another 1-D DCT using the same hardware was applied,
followed by another transposition. In this experiment, only the
fixed-point 1-D DCTs are performed in hardware and transpo-
sition are carried out in software. The 2-D DCT results from

the hardware implementation were then correlated with a soft-
ware fp implementation and the results are shown in Table V. We
chose Airfield and applied the inverse DCT on both the hard-
ware and software DCT results and the images are shown in
Fig. 8.

In the table, simulation SNR refers to the SNR based on sim-
ulation of sample input vectors; actual SNR refers to the SNR
based on comparison of images obtained from fp and fixed-point
implementations and is measured in decibels. Simulation SNR
and actual SNR were measured separately because during sim-
ulation (Section IV-A) the errors contributed by were ne-
glected, whereas errors contributed by are included in the
actual SNR. Note that the image coding experiments require
two 1-D DCTs and hence have twice the fixed-point errors of
the 1-D case.

V. DISCUSSION

In general, implementations employing variable-radix vari-
able-wordlength architectures have similar properties to tradi-
tional digit-serial implementations. For instance, the effects of
increasing number of digits are reduced area, increased clock
rate and increased latency. However, the plots in Section IV
show that relationships among area, frequency, performance and
area efficiency are complex. We analyzed the data in an attempt
to understand the cause of such behavior.

A. Tradeoff Between Area and Number of Digits

In Fig. 6(a) a general trend of decreasing area with increasing
can be observed. The insertion of conversion modules for

variable format conversions resulted in area overhead when the
number of digits was increased from 1 (bit-parallel). There-
fore, for , resource requirements are usually greater than
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(a)

(b)

Fig. 6. Plots of (a) number of slices and (b) frequencies.

. To achieve a net decrease in resource requirements,
must be further increased so that area reduction achieved by

folding operators into a lower radix can compensate for the con-
version module overhead.
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(c)

(d)

Fig. 6. (Continued.) Plots of (c) performances and (d) performance to area ratios against the number of digits under different error constraints.

When the implementation was bit-serial, the decrease in area
is significant since conversion modules can be implemented

solely with registers and do not require multiplexers. As can
be seen from Fig. 6(a), when the specifiedis larger than
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TABLE IV
DCT IMPLEMENTATIONS OBTAINED BY AREA MINIMIZATION UNDER

DIFFERENT THROUGHPUTCONSTRAINTS AND OUTPUT MEAN ERROR

CONSTRAINT 3.0963� 10

that required for a bit-serial implementation, area increases
because unnecessarily long stage latches are inserted into the
circuit.

B. Tradeoff Between Clock Rate and Number of Digits

We observed from Fig. 6(b) that the maximum clock fre-
quency of the resulting implementations generally increases
with increasing number of digits . An exception is when

, a drop of maximum frequency is noticed.
Digit-serial architectures with smaller radix often offer higher

clock rates due to shorter ripple-carry chains. The variable-radix
variable-wordlength architecture has a similar property but it
can be seen in Fig. 6(b) to be a weak function of. Since is that
conversion modules become more complicated with increased

, requiring more control circuitry and becoming a bottleneck.
Several optimization techniques such as pipeline stage inser-
tion have been implemented, but it is still difficult to establish
a relationship between these two parameters as in a traditional
digit-serial implementation. The drop in frequency whenis
between 2 and 4 is mainly caused by the increased area of con-
version modules. Normally for FPGA implementations, routing
produces most of the delay in the critical path. Area has a large
effect on consuming routing resources, so it affects the max-
imum frequency.

C. Tradeoff Between Performance and Number of Digits

The variable-radix variable-wordlength architecture has a
property that the throughput is controlled by the number of
digits . A variable of digits takes at least cycles for its
data bits to pass through the associated data wires since it is
multiplexed in time.

The overall performance (DCT operations per second) is de-
termined by two factors, the number of clock cycles to complete
a DCT operation (or equivalently, the maximum number of cy-
cles between adjacent inputs or outputs) and the maximum clock
rate of the implementation. As can be seen from Fig. 6(c), the
first factor has the dominant effect on performance, hence it is
observed that the performance drops with increased number of
digits. The dip in the performance curves in Fig. 6(c) around

can be explained by the corresponding drop in the
frequency discussed in Section V-A.

D. Tradeoff Between Area Efficiency and Number of Digits

Fig. 6(d) shows a plot of area efficiency (DCT operations
per second per slice) versus the number of digits. The curves,
compared with previous ones, contain more local minima and
maxima. This is because area efficiency is determined by two
conflicting factors, namely area requirement and performance.

Certainly better area efficiency implies a better implementa-
tion, but in practice, implementations that achieve a high area ef-
ficiency may not satisfy certain design constraints. For instance,
implementations on the left side of the curves may not satisfy
area constraints, whereas those on the right side may not satisfy
throughput constraints. Therefore, one possible design approach
is to analyze the curves and pick an implementation that offers
the minimal area while satisfying all the design constraints.

E. Effects of Output Error Constraints

By allowing larger errors at the outputs, the control of
fixed-point quantization and computation errors can be relaxed,
hence, providing a larger space for area minimization. The
curves in Fig. 6(a) shows the area requirements under different
error constraints. When the mean error constraint is less than or
equal to , there is a significant reduc-
tion in area due to trimming of operators. More precisely, when
the error constraint was relaxed say to ,
117 adders and two multipliers are trimmed. The removal
of multipliers with small coefficients (for the above case,
multipliers with coefficients and ) does not affect the
precision of output with respect to the error constraint,
as the partial sums they produce are relatively small. Trimming
of these multipliers consequently allowed the removal of their
preceding adders hence resulting in significant area reduction.

Trimming of operators not only results in area reduction but
also in latency reduction. Since adders in the Pascal’s triangles
are trimmed, latency in the-network is shortened, resulting in
a significant reduction in the overall latency.

Moreover, the relaxed error constraints allow operators to
have reduced precision and hence reduced wordlength, leading
to an area reduction. Furthermore, higher maximum clock rates
are obtained because operators are simplified. With smaller area
and higher clock rate, implementations with relaxed error con-
straints thus have higher performance and better area efficiency.
This can be observed in Fig. 6(b) and (c).

F. Optimization by Simulation

Our approach to optimize an implementation is based on the
simulation of sample input vectors. Although the optimization
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Fig. 7. Framework for image coding experiments.

(a) (b)

(c) (d)

Fig. 8. Resultant images obtained from software fp and hardware fixed-point DCT image coding, followed by fp inverse DCT. Results from various algorithm
performances are shown. The number of slices is measured in a bit-parallel implementation. (simulation SNR, actual SNR, slices). (a) Floating-point DCT. (b)
Fixed-point DCT (251.811, 44.550 dB, 4013). (c) Fixed-point DCT (66.271, 32.520 dB, 751). (d) Fixed-point DCT (20.155, 19.664 dB, 651).

procedure considers only runtime error analysis and does not
take worst-case analysis into account, it is observed from the
image coding experiments that the performance of the algorithm
is practical for many applications.

In the experiments the runtime maximum and mean error are
in the order of 10 , but analysis suggests that worst-case error
could be up to the 10, seven orders of magnitude more than
runtime error analysis. A worst-case analysis is very pessimistic
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TABLE V
CORRELATIONSBETWEEN DCT RESULTSOBTAINED FROM HARDWARE FIXED-POINT AND SOFTWARE FLOATING-POINT IMPLEMENTATIONS UNDER VARIOUS

ALGORITHM PERFORMANCES. OUTPUT SNR REFERS TO THESNRAT THE OUTPUT BASED ON SIMULATION OF THE SAMPLE INPUT VECTOR

in practice and area requirements can be drastically decreased
if optimization is based on runtime error analysis.

VI. CONCLUSION

In this paper, an implementation of a systolic structure for
the computation of the DCT using an optimization approach
which automatically translates fp algorithmic descriptions into
hardware-efficient fixed-point implementations was described.
Using a variable radix and wordlength architecture, an al-
most continuous tradeoffs in performance, area, latency and
throughput was obtained, thus allowing designers to choose the
most appropriate design for a given application.

Although this paper only addressed the implementation of
the DCT, the variable-radix variable-wordlength methodology
could be applied to other DSP systems, particularly those in
which the tradeoff between area and performance is an impor-
tant design issue.
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