
An FPGA-based Re-configurable 24-bit 96kHz Sigma-Delta Audio DAC

Ray C.C. Cheung1, K.P. Pun2, Steve C.L. Yuen1, K.H. Tsoi1 and Philip H.W. Leong1

1 Department of Computer Science & Engineering 2 Department of Electronic Engineering

The Chinese University of Hong Kong, Shatin, Hong Kong

ABSTRACT
This paper presents a reconfigurable sigma-delta audio
Digital-to-Analog Converter (DAC) which is suitable for
embedded FPGA applications. The Sigma-Delta
Modulator (SDM) design can be configured as a 3rd or
5th order SDM and allows different input word lengths.
Different input sampling rates are also entertained by
employing a programmable interpolator. The DAC
accepts 16-/18-/20-/24-bit PCM data at sampling rates of
32/44.1/48/88.2/96 kHz for applications in CD, SACD
and DVD audio.

1. INTRODUCTION

Field programmable gate arrays are able to offer
advantages over traditional VLSI technology in terms of
time to market, lower costs for small quantities and
dramatically reduced development times. As Moore’s law
continues to improve device density, the trend is to
integrate increasingly higher levels of functionality into
FPGA designs. Many control and digital signal processing
systems require data converters in order to provide analog
outputs from a digital system. In such systems, an off-chip
digital to analog converter (DAC) is normally employed.

Although FPGA technology might at first seem to not
be suitable for the implementation of analog components
such as a DAC, their architectures turn out to be very
suitable for sigma-delta converters which are primarily
digital. Having the flexibility to incorporate DACs into
FPGA designs allow for higher levels of integration,
reducing cost, board area and possibly power consumption.
FPGAs also make an excellent prototyping environment
for sigma-delta converter designs. In this paper, a flexible
audio frequency DAC implemented using FPGA
technology is presented. This design can be used as an
intellectual property (IP) core which can be incorporated
in FPGA based systems.

Surprisingly few FPGA-based DACs have been
reported to date. Apart from a first order sigma-delta DAC
with 6-10 bit accuracy reported by Logue [4], we are not
aware of other FPGA-based DACs.

The rest of this paper is organized as follows. In
Section 2, the architecture of the DAC is presented.
Section 3 details implementation issues associated with
our design. In Section 4, measured results are presented
and conclusions are drawn in Section 5.

2. DAC ARCHITECTURE

2.1 System architecture

Figure 1: Block diagram of the audio DAC.

Figure 1 shows the system architecture of the audio
DAC. It consists of three blocks, namely, the interpolator,
the sigma-delta modulator and the 1-bit DAC.

The audio DAC accepts PCM input data at sampling
rates of 32/44.1/48/88.2/96 kHz. The interpolation ratio of
the interpolator can be configured to 64x, 128x, and 192x.
For 44.1/88.2 kHz input signals, the interpolator gives the
output data rate of 5.6448 MHz by setting the
interpolation ratio as 128x/64x respectively. For 21/48/96
kHz input signals, the interpolator gives the output data
rate of 6.144MHz by setting the interpolation ratio as 192x
/ 128x / 64x respectively.

The main function of the digital-to-analog conversion
is performed by the sigma-delta modulator, which
produces one-bit output and spectrally shapes the
quantization noise to high frequencies. The modulator is
clocked at 5.6448MHz or 6.144 MHz, depending on its
input data rates as described in the previous paragraph.
These two sampling frequencies of the modulator
correspond to an over-sampling ratio (OSR) of about 128x
with respect to the audio bandwidth of 20 kHz.

fclock =
5.6448MHz/
6.144MHz

64x/128x/192x
Interpolator

3rd/5th Order
Sigma Delta
Modulator

PCM input @
44.1kHz/88.2kHz/

32kHz/48kHz/96kHz

1-bit
DAC

Analog
Output

2.2 Programmable interpolator

Figure 2: Interpolation filter.

The architecture of the 64x/128x/192x interpolation
filter is shown in Figure 2. It is a multi-stage filter. The
first two half-band filters are non-configurable. They
increase the sampling rate of the signal by four times. The
last stage is a programmable sinc filter to provide variant
interpolation ratios.

The half-band filters are designed as 83rd order
hardware-efficient FIR filters in a tapped cascaded
interconnection of identical sub-filters[1], which requires
no multipliers. An implementation of an 83rd-order FIR
filter needs to perform only 124 additions at the input data
rate. The sinc2 filter[2] has the transfer function of

2

12sin 1
11)(








−
−

= −

−

z
z

M
zT

M

c , (1)

where)/(2 inMffjez π= , fin is the input sampling frequency,
and M is the interpolation factor. The filter has a
frequency response of sinc-shape, with notches at integer
multiples of fin to reject images. Here a sinc filter of
second order is sufficient, because the high frequency
images are not critical to the performance of the
subsequent sigma-delta modulator.

The interpolation factor M of the sinc filter can be set
as 16, 32 and 48 for the overall interpolation ratios of 64x,
128x, and 192x respectively. Figure 3 shows the block
diagram of the sinc2 filter. The architecture of the filter is
fixed. The programmable parts are the sampling frequency
(fin*M) of the last two integrators and the divisor M. For
M=16 and 32, the division operation equals bit shifting. A
fixed-point multiplier is required for M=48 only.

Figure 3: Block diagram of the sinc2 filter.

2.3 Re-configurable sigma-Delta Modulator

Besides variant input data rates, different input word
lengths of 16-/18-/20-/24-bits are also accepted in the
proposed audio DAC. One simple approach to do this is to
use a sigma-delta modulator that meets the requirement of
24-bit accuracy for all the cases. Input data of less than
24-bit are then simply extended to 24-bit by padding zeros
or ones. However, such a modulator is over-designed for
low word lengths, and power will be wasted.

In our design, a re-configurable 5th/3rd order sigma-
delta modulator is used instead. The architecture of the
proposed modulator is depicted in Figure 4. It is a single
loop modulator with all the zeros of the noise transfer
function at DC. The coefficients a[i], b[i] and c[i] of the
modulator are obtained using a Matlab design tool [3].

 For 18-/20-/24-bit inputs, the modulator is configured
as a 5th order one with all the shadowed blocks of Figure
4 active. For 16-bit inputs, all the shadowed blocks of
Figure 4 are shutdown, the output of the third integrator is
switched to the input of the quantizer, and the modulator
becomes a 3rd order one.

Under the 3rd order configuration, the maximum
signal-to-noise ratio (SNR) of the modulator within the
audio band is about 96 dB, which is sufficient for the 16-
bit data. Figure 5 shows the simulated output spectrum of
the modulator excited by a 20kHz sinusoidal input.

Under the 5rd order configuration, the maximum

Figure 4. Architecture of the re-configurable 5th/3rd order sigma-delta modulator.

Sinc2 filter Half-band FIR filters

outHhb(z)
↑2

Tsinc(z)
↑16/32/48

Hhb(z)
↑2

in

Fin

1/z 1/z

÷M

1/z 1/z

Fin Fin*M Fin*M

signal-to-noise ratio (SNR) of the modulator within the
audio band is about 140 dB, which is sufficient for the 18-,
20- and 24-bit data. Figure 6 shows the simulated output
spectrum of the modulator excited by a 20kHz sinusoidal
input. It can be observed from the two figures that the
noise level in the 5th order setting is about 35dB lower
than that in the 3rd order setting.

102 103 104 105 106 107
-250

-200

-150

-100

-50

0

Frequency/ Hz

dB

Figure 5: DAC output spectrum with the 3rd order setting.

102 103 104 105 106 107
-300

-250

-200

-150

-100

-50

0

Frequency/ Hz

dB

Figure 6: DAC output spectrum with the 5th order setting.

3. IMPLEMENTATION

In this section, the design flow and the rapid
prototyping platform are presented. The software
simulation is divided into two parts: the matlab simulation
and the High-level description language simulation. The
design flow provides a short turnaround design time for
various SDM designs: different input data bit-width,
different sampling rate, different oversampling clock rate

and different SDM ordering. The design is suitable for
reconfigurable platforms. We have implemented and
verified our designs by using two different FPGA boards.
They are from Celoxica and our research group and their
details are described in later sections. We have used high
precision logic analyzer to obtain and test the final output
data.

3.1 Design Flow

There are two major stages in designing a
reconfigurable Sigma-Delta Modulator (SDM) DAC: the
prototyping stage and the running stage. In the
prototyping stage, the input to our design is the
specification of the Sigma-Delta Modulator in which it
clearly states the input data rate, the input data size, the
sampling frequency, the variable ordering and the internal
SDM coefficients. The output from this prototyping stage
is a workable SDM DAC. In the running stage, the input
to the DAC is a set of digital PCM data which describes
the input waveform. This DAC is able to shape the
quantization noise to high frequency.

The overall design flow is depicted in Figure 7. We
first obtain a correct design by performing extensive
Matlab software simulation. Next, we model different
orders of SDM designs by using hardware languages and
this design is further generalized to be parameterized to
certain objectives. The hardware design is also verified
and simulated by using hardware compilers.

As shown in Figure 8, there are generally four steps
in the design process: Specify, Design, Compile and
Implement. The specify step is solely used for designer to
preset the architecture of the DAC. The design step
enables designer to turn the circuit components into
description statements, to break large components into
pieces and to reuse existing resources. The compile step

Figure 7. Design Process.

turns input high-level hardware description into Register-
Transistor-Level (RTL) code and gate-level netlist. The
area and speed optimization have been carried out in this
step. The final step is the implementation step which
generates the final bitstream for downloading onto the
FPGA chip. Note that FPGA designs enable great
flexibility for moving to any previous step in the design
cycle.

3.1.1 Interpolator
The objective of an interpolator is to provide

oversampling to the input of SDM. It means that the
number of input is multiplied by a factor, the
oversampling ratio. For instance, one period of the input
PCM sine wave is sampled to 1000 points, the resulting
wave would be very rough. An interpolator is actually a
multi-stage filter which can be programmed and
reconfigured in FPGAs. By using an interpolator, we can
spot the intermediate points between every two input
points. If the interpolator is a 64x interpolation filter, then
the input data to the SDM is further increased to 64,000
points. As shown in Figure 8, the input wave “Vin” is
distorted due to the insufficient sampling points. The two
half-band FIR filters and Sinc filter generate the perfect
output oversampled wave “Sinc”.

We have implemented a sine wave generator using
the C programming language for any bit-width and
sampling frequency. This generator is used to produce the
input static PCM data set. We have also integrated the
interpolator onto this wave generator for adjusting the
over-sampling ratio.

3.1.2 Sigma Delta Modulator
The reconfigurable SDM inputs a set of PCM data

which describes a period of a 20kHz wave. It operates at
the speed of the PCM input frequency times the
interpolator ratio. It generate a bit-serial output data for a
1-bit DAC. The internal architectural of the reconfigurable
SDM has been presented in the previous section. The
regular pattern of the SDM module makes the design
easily expandable and provides code reusing in our design.
The SDM is a closed and loopback system that
accumulates the noise to high frequency and we can use
low-pass filter to remove all these accumulated noise from
the input signal.

Figure 8. Interpolator Curve.

20kHz
Sinusoidal

input

Reconfigurable Platform

44.1/88.2/32/48/96 kHz Pulse Code Modulation

64x /128x/ 192x Oversampling

010010...

1-bit
quantized

output

0000,
0192,
0323,
04B5,

…

16-bit
PCM input

Sign-
extended
to 40-bit
registers

Multiply
with sign-
extended
40-bit a[i],

b[i], c[i]
coefficients

Add and
subtract
with the
40-bit

feedback
value from
the 1-bit
quantizer

Store the
computed

value in the
delay

elements
between
different
orders

Figure 9. Sigma Delta Modulator Implementation.

/* Implementation of the 5th order SDM */

int 40 s1, s2, s3, s4, s5;

s5 = b[5] * extended_data - a[5] * feedback;

s4 = b[4] * extended_data - a[4] * feedback;

s3 = b[3] * extended_data - a[3] * feedback;

s2 = b[2] * extended_data - a[2] * feedback;

s1 = b[1] * extended_data - a[1] * feedback;

unit_delay[5] = unit_delay[5] + s5 + unit_delay[4] + s4 + unit_delay[3];

unit_delay[4] = unit_delay[4] + s4 + unit_delay[3];

unit_delay[3] = unit_delay[3] + s3 + unit_delay[2] + s2 + unit_delay[1];

unit_delay[2] = unit_delay[2] + s2 + unit_delay[1];

unit_delay[1] = unit_delay[1] + s1;

Figure 10. Partial implementation of the SDM in Handel-C.

Figure 9 shows the basic implementation of the SDM.
The a[i], b[i] and c[i] coefficients are all floating-point
numbers. However, the several large float-point
multipliers which calculate the intermediate value between
the input data and these coefficients would eventually used
up all the resources of the FPGA chip. As a result, we
extract the mantissa part of these coefficients and
transform all the floating-point multiplication into fixed-
point multiplication. We can achieve the same correct
SDM result by using reduced logics. In the SDM, there are
several large delay elements and adders. We can easily
model them by using Hardware language. In our design,
there are several user-defined values before compilation
such as the ordering value, the bit-width.

Figure 10 and 11 show the pseudo code of the SDM
implementation. There are basically two steps: the read
data and the processing.

/* Implementation Flow for a 16-/24-bit SDM*/

1. Specify the clockrate, order, bit-width

2. Declare the bus I/O

3. Pack every 2/3 bytes input data into RAM

4. Stop until a period of data has been put into RAM

5. Label I

6. do

7. Read data from RAM in every clock cycle

8. Sign-extended the read data

9. Pass into and calculate by the reconfigured SDM

10. Output one-bit of data

11. while (not the end of a period of data)

12. Goto I

Figure 11. The pseudo code of the implementation.

3.2 Prototyping Platform

This design can be implemented on any FPGA-based
prototyping platform. We select two FPGA platforms for
implementation. The first one is Celoxica RC200
development board as the testing platform which has
embedded the Xilinx Virtex II XC2V1000-4FG456C
FPGA chip. The proposed design has been coded with
Handel-C 2.1 and synthesized by using Celoxica DK1.1.
The second platform is the Pilchard [5] FPGA memory-
interface board which is embedded with Xilinx
XCV1000E. The FPGA chip is then configured as an
SDM DAC and is used to calculate the SDM output bit.
We use an Agilent 16702B logic analyzer to record and
verify the output data.

Figure 12. Prototyping Environment.

3.2.1 RC200 Interface
The RC200 development board provides a wide

selection for interfacing on different digital designs such
as networking, blue-tooth, video, serial and parallel ports.
The design and the photograph of the RC200 platform
have been shown on Figure 12 and Figure 13 respectively.
We have selected the RS232 serial port for transferring the
input data onto the board. The interfacing between PC and
the development board is made by the parallel and serial
ports for bitstream and data transmissions. The download
sampling data is stored on the on-board SRAM which
provides interleaved Read/Write without wasting any
turnaround cycles. Since the serial bus transmission can
only allow 1-byte data per cycle, we need to break down
the data into bytes at the PC host side. For example, we
need to break 16-bit data into 2 bytes and reassemble it on
the on-board SRAM before feeding into the FPGA for
calculation. The calculated output signals are connected
from the FPGA to the 50-pin expansion pins. The signals
from the expansion pins are first probed and reported on
the logic analyzer before using the high quality audio
precision appliance.

3.2.2 Pilchard Interface
The Pilchard memory-interface board provides a fast

data transfer between the host PC and the FPGA board.
The sampled input data can be transferred to the FPGA
board in a very high speed. In order to reduce the input
data rate, the interpolator is again used for locating all the
intermediate points. The photograph of Pilchard FPGA
board is shown on Figure 14.

4. RESULTS

4.1.1 Implementation
Here we show the result of the implementations in the

table below. The hardware resources usage and the
maximum working clock frequency have been put into the
table. Figure 15 shows the placed and routed results of the
3rd order design.

4.1.2 Logic Analyzer
In order to debug the system in a noise free

environment, we used an Agilent 16702B Logic analysis
system to measure the output different bit-width and order
settings. The state mode sampling method is chosen for
synchronous sampling clocked by the FPGA board itself
so that the exact output of the DAC can be captured by the
logic analyzer. 1M of data thus acquired is then passed
through a Hann window and an FFT used to display the
result in the frequency domain. In figure 16, a simulation
showing the SNR as a function of the input amplitude is
given for the DAC implementation with 20kHz sine wave
input and 24-bit input data input. For a sampling
frequency of 96kHz with 64x oversampling. It can be seen
that the maximum SNR is 139.8dB. The measured results
for different configurations are shown in Figures 17 – 20.
An Audio Precision System Two Cascade audio analyzer
with -112dB THD+N for a 20kHz input will be used to
further verify the system and results will be presented at
the conference.

Sigma-Delta Modulator
Designs

Resource

(Slices)

Timing

(MHz)

3rd order 24-bit on Pilchard 1,721 / 3,072 23.523

5th order 24-bit on Pilchard 2,477 / 3,072 18.882

3rd order 24-bit on RC200 2,188 / 5,120 33.816

5th order 24-bit on RC200 3,167 / 5,120 27.485

Figure 13. Photograph of the Celoxica RC200 board

Figure 14. Photograph of the Pilchard card

Figure 15. Place & Route Floorplan of the completed 5rd
order design on Xilinx Virtex II XC2V1000, RC200

Figure 16. Simulation of the input level vs. SNR

The measured results show the noise shaping
performed by the SDM. As expected, the higher order
implementations provide a higher SNR. In our
experiments, we adjust the input signal amplitude in order
to achieve the highest SNR data. The input frequency was
fixed at 20kHz for all results.

5. CONCLUDING REMARKS

In this paper, we have presented the design and
implementation of a reconfigurable Sigma-Delta audio
DAC on two different FPGA platforms: the RC200 and
the Pilchard platforms. There are several parameters for
designers to control such as the bit-width, the
oversampling ratio, the operating clock rate and the order
of the design. With different designs, we are able to
achieve different SNR ratios for various audio applications.
The maximum achievable SNR from our designs is around
170db. The reconfigurable platform is proved to be
suitable for both digital designs and analog related devices
such as the SDM in audio DACs.

ACKNOWLEDGEMENTS

This work was supported by the Department of Electronic
Engineering and the Department of Computer Science &
Engineering, The Chinese University of Hong Kong. We
acknowledge the support of Celoxica and Xilinx.

REFERENCES
[1] T. Saramäki, “Design of FIR filters as a tapped cascaded

interconnection of identical subfilters,”, IEEE Transactions
on Circuits and Systems. Vol.34, pp.1011-1029, 1987.

[2] Steven R. Norsworthy and Ronald E. Crochiere,

“Decimation and Interpolation for Σ∆ conversion”, in Delta-
Sigma Data Converters,edited by S.R. Norsworthy, R.
Schreier and G.C. Temes, IEEE Press, 1997.

[3] Richard Schreier, The Delta-Sigma Toolbox,

http://www.mathworks.it/matlabcentral, File Exchange >
Control and System Modeling > Control Design > delsig.

[4] R. Kress, A. Pyttel, and A. Sedlmeier, “FPGA-Based

Prototyping for Product Definition”, Field-Programmable
Logic and Applications (FPL), pp.78-86, 2000.

[5] P.H.W. Leong and M.P. Leong and O.Y.H. Cheung and T.

Tung and C.M. Kwok and M.Y. Wong and K.H. Lee
"Pilchard - A Reconfigurable Computing Platform with
Memory Slot Interface", Proceedings of the IEEE
Symposium on FCCM, 2001

[6] Celoxica. Inc. http://www.celoxica.com.

Figure 17: 3rd order, 24-bit SNR=98.2088dB, input=0.85,
fin=20kHz, fs=96Khz, oversampling ratio=64x

Figure 19: 5th order, 24-bit, SNR=139.2924dB, input=0.525,
fin=20kHz, fs=96Khz, oversampling ratio=64x

Figure 18: 3rd order, 24-bit, SNR=115.9667dB, input=0.85,
fin=20kHz, fs=96Khz, oversampling ratio=128x

Figure 20: 5th order, 24-bit, SNR=171.8071dB, input=0.525,
fin=20kHz, fs=96Khz, oversampling ratio=128x

