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ABSTRACT 
This paper presents a reconfigurable sigma-delta audio 
Digital-to-Analog Converter (DAC) which is suitable for 
embedded FPGA applications. The Sigma-Delta 
Modulator (SDM) design can be configured as a 3rd or 
5th order SDM and allows different input word lengths. 
Different input sampling rates are also entertained by 
employing a programmable interpolator. The DAC 
accepts 16-/18-/20-/24-bit PCM data at sampling rates of 
32/44.1/48/88.2/96 kHz for applications in CD, SACD 
and DVD audio. 

1. INTRODUCTION 

Field programmable gate arrays are able to offer 
advantages over traditional VLSI technology in terms of 
time to market, lower costs for small quantities and 
dramatically reduced development times. As Moore’s law 
continues to improve device density, the trend is to 
integrate increasingly higher levels of functionality into 
FPGA designs. Many control and digital signal processing 
systems require data converters in order to provide analog 
outputs from a digital system. In such systems, an off-chip 
digital to analog converter (DAC) is normally employed.  

Although FPGA technology might at first seem to not 
be suitable for the implementation of analog components 
such as a DAC, their architectures turn out to be very 
suitable for sigma-delta converters which are primarily 
digital. Having the flexibility to incorporate DACs into 
FPGA designs allow for higher levels of integration, 
reducing cost, board area and possibly power consumption. 
FPGAs also make an excellent prototyping environment 
for sigma-delta converter designs. In this paper, a flexible 
audio frequency DAC implemented using FPGA 
technology is presented. This design can be used as an 
intellectual property (IP) core which can be incorporated 
in FPGA based systems. 

Surprisingly few FPGA-based DACs have been 
reported to date. Apart from a first order sigma-delta DAC 
with 6-10 bit accuracy reported by Logue [4], we are not 
aware of other FPGA-based DACs.  

The rest of this paper is organized as follows. In 
Section 2, the architecture of the DAC is presented. 
Section 3 details implementation issues associated with 
our design. In Section 4, measured results are presented 
and conclusions are drawn in Section 5. 

 

2. DAC ARCHITECTURE 

2.1 System architecture 

Figure 1: Block diagram of the audio DAC. 

Figure 1 shows the system architecture of the audio 
DAC. It consists of three blocks, namely, the interpolator, 
the sigma-delta modulator and the 1-bit DAC.  

The audio DAC accepts PCM input data at sampling 
rates of 32/44.1/48/88.2/96 kHz. The interpolation ratio of 
the interpolator can be configured to 64x, 128x, and 192x. 
For 44.1/88.2 kHz input signals, the interpolator gives the 
output data rate of 5.6448 MHz by setting the 
interpolation ratio as 128x/64x respectively. For 21/48/96 
kHz input signals, the interpolator gives the output data 
rate of 6.144MHz by setting the interpolation ratio as 192x 
/ 128x / 64x respectively. 

The main function of the digital-to-analog conversion 
is performed by the sigma-delta modulator, which 
produces one-bit output and spectrally shapes the 
quantization noise to high frequencies. The modulator is 
clocked at 5.6448MHz or 6.144 MHz, depending on its 
input data rates as described in the previous paragraph. 
These two sampling frequencies of the modulator 
correspond to an over-sampling ratio (OSR) of about 128x 
with respect to the audio bandwidth of 20 kHz.  
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2.2 Programmable interpolator 

Figure 2: Interpolation filter. 

The architecture of the 64x/128x/192x interpolation 
filter is shown in Figure 2. It is a multi-stage filter. The 
first two half-band filters are non-configurable. They 
increase the sampling rate of the signal by four times. The 
last stage is a programmable sinc filter to provide variant 
interpolation ratios. 

The half-band filters are designed as 83rd order 
hardware-efficient FIR filters in a tapped cascaded 
interconnection of identical sub-filters[1], which requires 
no multipliers. An implementation of an 83rd-order FIR 
filter needs to perform only 124 additions at the input data 
rate. The sinc2 filter[2] has the transfer function of 
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where )/(2 inMffjez π= , fin is the input sampling frequency, 
and M is the interpolation factor. The filter has a 
frequency response of sinc-shape, with notches at integer 
multiples of fin to reject images. Here a sinc filter of 
second order is sufficient, because the high frequency 
images are not critical to the performance of the 
subsequent sigma-delta modulator.  

The interpolation factor M of the sinc filter can be set 
as 16, 32 and 48 for the overall interpolation ratios of 64x, 
128x, and 192x respectively. Figure 3 shows the block 
diagram of the sinc2 filter. The architecture of the filter is 
fixed. The programmable parts are the sampling frequency 
(fin*M) of the last two integrators and the divisor M. For 
M=16 and 32, the division operation equals bit shifting. A 
fixed-point multiplier is required for M=48 only.  

Figure 3: Block diagram of the sinc2 filter. 

2.3 Re-configurable sigma-Delta Modulator 

Besides variant input data rates, different input word 
lengths of 16-/18-/20-/24-bits are also accepted in the 
proposed audio DAC. One simple approach to do this is to 
use a sigma-delta modulator that meets the requirement of 
24-bit accuracy for all the cases. Input data of less than 
24-bit are then simply extended to 24-bit by padding zeros 
or ones. However, such a modulator is over-designed for 
low word lengths, and power will be wasted.  

In our design, a re-configurable 5th/3rd order sigma-
delta modulator is used instead. The architecture of the 
proposed modulator is depicted in Figure 4. It is a single 
loop modulator with all the zeros of the noise transfer 
function at DC. The coefficients a[i], b[i] and c[i] of the 
modulator are obtained using a Matlab design tool [3]. 

 For 18-/20-/24-bit inputs, the modulator is configured 
as a 5th order one with all the shadowed blocks of Figure 
4 active.  For 16-bit inputs, all the shadowed blocks of 
Figure 4 are shutdown, the output of the third integrator is 
switched to the input of the quantizer, and the modulator 
becomes a 3rd order one.  

Under the 3rd order configuration, the maximum 
signal-to-noise ratio (SNR) of the modulator within the 
audio band is about 96 dB, which is sufficient for the 16-
bit data. Figure 5 shows the simulated output spectrum of 
the modulator excited by a 20kHz sinusoidal input.  

Under the 5rd order configuration, the maximum 

 
Figure 4. Architecture of the re-configurable 5th/3rd order sigma-delta modulator. 
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signal-to-noise ratio (SNR) of the modulator within the 
audio band is about 140 dB, which is sufficient for the 18-, 
20- and 24-bit data. Figure 6 shows the simulated output 
spectrum of the modulator excited by a 20kHz sinusoidal 
input. It can be observed from the two figures that the 
noise level in the 5th order setting is about 35dB lower 
than that in the 3rd order setting. 
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Figure 5: DAC output spectrum with the 3rd order setting. 
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Figure 6: DAC output spectrum with the 5th order setting. 

3. IMPLEMENTATION 

In this section, the design flow and the rapid 
prototyping platform are presented. The software 
simulation is divided into two parts: the matlab simulation 
and the High-level description language simulation. The 
design flow provides a short turnaround design time for 
various SDM designs: different input data bit-width, 
different sampling rate, different oversampling clock rate 

and different SDM ordering. The design is suitable for 
reconfigurable platforms. We have implemented and 
verified our designs by using two different FPGA boards. 
They are from Celoxica and our research group and their 
details are described in later sections. We have used high 
precision logic analyzer to obtain and test the final output 
data. 

3.1 Design Flow 

There are two major stages in designing a 
reconfigurable Sigma-Delta Modulator (SDM) DAC: the 
prototyping stage and the running stage. In the 
prototyping stage, the input to our design is the 
specification of the Sigma-Delta Modulator in which it 
clearly states the input data rate, the input data size, the 
sampling frequency, the variable ordering and the internal 
SDM coefficients. The output from this prototyping stage 
is a workable SDM DAC. In the running stage, the input 
to the DAC is a set of digital PCM data which describes 
the input waveform. This DAC is able to shape the 
quantization noise to high frequency. 

The overall design flow is depicted in Figure 7. We 
first obtain a correct design by performing extensive 
Matlab software simulation. Next, we model different 
orders of SDM designs by using hardware languages and 
this design is further generalized to be parameterized to 
certain objectives. The hardware design is also verified 
and simulated by using hardware compilers.  

As shown in Figure 8, there are generally four steps 
in the design process: Specify, Design, Compile and 
Implement. The specify step is solely used for designer to 
preset the architecture of the DAC. The design step 
enables designer to turn the circuit components into 
description statements, to break large components into 
pieces and to reuse existing resources. The compile step 

 
Figure 7. Design Process. 



turns input high-level hardware description into Register-
Transistor-Level (RTL) code and gate-level netlist. The 
area and speed optimization have been carried out in this 
step. The final step is the implementation step which 
generates the final bitstream for downloading onto the 
FPGA chip. Note that FPGA designs enable great 
flexibility for moving to any previous step in the design 
cycle. 

3.1.1 Interpolator 
The objective of an interpolator is to provide 

oversampling to the input of SDM. It means that the 
number of input is multiplied by a factor, the 
oversampling ratio. For instance, one period of the input 
PCM sine wave is sampled to 1000 points, the resulting 
wave would be very rough. An interpolator is actually a 
multi-stage filter which can be programmed and 
reconfigured in FPGAs. By using an interpolator, we can 
spot the intermediate points between every two input 
points. If the interpolator is a 64x interpolation filter, then 
the input data to the SDM is further increased to 64,000 
points. As shown in Figure 8, the input wave “Vin” is 
distorted due to the insufficient sampling points. The two 
half-band FIR filters and Sinc filter generate the perfect 
output oversampled wave “Sinc”.  

We have implemented a sine wave generator using 
the C programming language for any bit-width and 
sampling frequency. This generator is used to produce the 
input static PCM data set. We have also integrated the 
interpolator onto this wave generator for adjusting the 
over-sampling ratio. 
 

3.1.2 Sigma Delta Modulator 
The reconfigurable SDM inputs a set of PCM data 

which describes a period of a 20kHz wave. It operates at 
the speed of the PCM input frequency times the 
interpolator ratio. It generate a bit-serial output data for a 
1-bit DAC. The internal architectural of the reconfigurable 
SDM has been presented in the previous section. The 
regular pattern of the SDM module makes the design 
easily expandable and provides code reusing in our design. 
The SDM is a closed and loopback system that 
accumulates the noise to high frequency and we can use 
low-pass filter to remove all these accumulated noise from 
the input signal.  

 

Figure 8. Interpolator Curve. 
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Figure 9. Sigma Delta Modulator Implementation. 



/* Implementation of the 5th order SDM */ 

int 40 s1, s2, s3, s4, s5; 

s5 = b[5] * extended_data - a[5] * feedback; 

s4 = b[4] * extended_data - a[4] * feedback; 

s3 = b[3] * extended_data - a[3] * feedback; 

s2 = b[2] * extended_data - a[2] * feedback; 

s1 = b[1] * extended_data - a[1] * feedback; 

unit_delay[5] = unit_delay[5] + s5 + unit_delay[4] + s4 + unit_delay[3]; 

unit_delay[4] = unit_delay[4] + s4 + unit_delay[3]; 

unit_delay[3] = unit_delay[3] + s3 + unit_delay[2] + s2 + unit_delay[1]; 

unit_delay[2] = unit_delay[2] + s2 + unit_delay[1]; 

unit_delay[1] = unit_delay[1] + s1; 
 

Figure 10. Partial implementation of the SDM in Handel-C. 
 

Figure 9 shows the basic implementation of the SDM. 
The a[i], b[i] and c[i] coefficients are all floating-point 
numbers. However, the several large float-point 
multipliers which calculate the intermediate value between 
the input data and these coefficients would eventually used 
up all the resources of the FPGA chip. As a result, we 
extract the mantissa part of these coefficients and 
transform all the floating-point multiplication into fixed-
point multiplication. We can achieve the same correct 
SDM result by using reduced logics. In the SDM, there are 
several large delay elements and adders. We can easily 
model them by using Hardware language. In our design, 
there are several user-defined values before compilation 
such as the ordering value, the bit-width. 

Figure 10 and 11 show the pseudo code of the SDM 
implementation. There are basically two steps: the read 
data and the processing. 

 

/* Implementation Flow for a 16-/24-bit SDM*/ 

1. Specify the clockrate, order, bit-width 

2. Declare the bus I/O 

3. Pack every 2/3 bytes input data into RAM 

4. Stop until a period of data has been put into RAM 
 

5. Label I 

6.    do 

7.       Read data from RAM in every clock cycle 

8.       Sign-extended the read data 

9.       Pass into and calculate by the reconfigured SDM 

10.       Output one-bit of data 

11.    while (not the end of a period of data) 

12. Goto I 

Figure 11. The pseudo code of the implementation. 
 

3.2 Prototyping Platform 

This design can be implemented on any FPGA-based 
prototyping platform. We select two FPGA platforms for 
implementation. The first one is Celoxica RC200 
development board as the testing platform which has 
embedded the Xilinx Virtex II XC2V1000-4FG456C 
FPGA chip. The proposed design has been coded with 
Handel-C 2.1 and synthesized by using Celoxica DK1.1. 
The second platform is the Pilchard [5] FPGA memory-
interface board which is embedded with Xilinx 
XCV1000E. The FPGA chip is then configured as an 
SDM DAC and is used to calculate the SDM output bit. 
We use an Agilent 16702B logic analyzer to record and 
verify the output data.  

 
 

Figure 12. Prototyping Environment. 



 

3.2.1 RC200 Interface 
The RC200 development board provides a wide 

selection for interfacing on different digital designs such 
as networking, blue-tooth, video, serial and parallel ports. 
The design and the photograph of the RC200 platform 
have been shown on Figure 12 and Figure 13 respectively. 
We have selected the RS232 serial port for transferring the 
input data onto the board. The interfacing between PC and 
the development board is made by the parallel and serial 
ports for bitstream and data transmissions. The download 
sampling data is stored on the on-board SRAM which 
provides interleaved Read/Write without wasting any 
turnaround cycles. Since the serial bus transmission can 
only allow 1-byte data per cycle, we need to break down 
the data into bytes at the PC host side. For example, we 
need to break 16-bit data into 2 bytes and reassemble it on 
the on-board SRAM before feeding into the FPGA for 
calculation. The calculated output signals are connected 
from the FPGA to the 50-pin expansion pins. The signals 
from the expansion pins are first probed and reported on 
the logic analyzer before using the high quality audio 
precision appliance. 

3.2.2 Pilchard Interface 
The Pilchard memory-interface board provides a fast 

data transfer between the host PC and the FPGA board. 
The sampled input data can be transferred to the FPGA 
board in a very high speed. In order to reduce the input 
data rate, the interpolator is again used for locating all the 
intermediate points. The photograph of Pilchard FPGA 
board is shown on Figure 14. 

4. RESULTS 

4.1.1 Implementation 
Here we show the result of the implementations in the 

table below. The hardware resources usage and the 
maximum working clock frequency have been put into the 
table. Figure 15 shows the placed and routed results of the 
3rd order design. 

4.1.2 Logic Analyzer 
In order to debug the system in a noise free 

environment, we used an Agilent 16702B Logic analysis 
system to measure the output different bit-width and order 
settings. The state mode sampling method is chosen for 
synchronous sampling clocked by the FPGA board itself 
so that the exact output of the DAC can be captured by the 
logic analyzer. 1M of data thus acquired is then passed 
through a Hann window and an FFT used to display the 
result in the frequency domain. In figure 16, a simulation 
showing the SNR as a function of the input amplitude is 
given for the DAC implementation with 20kHz sine wave 
input and 24-bit input data input. For a sampling 
frequency of 96kHz with 64x oversampling. It can be seen 
that the maximum SNR is 139.8dB. The measured results 
for different configurations are shown in Figures 17 – 20. 
An Audio Precision System Two Cascade audio analyzer 
with -112dB THD+N for a 20kHz input will be used to 
further verify the system and results will be presented at 
the conference. 

Sigma-Delta Modulator 
Designs 

Resource 

(Slices) 

Timing

(MHz)

3rd order 24-bit on Pilchard 1,721 / 3,072 23.523

5th  order 24-bit on Pilchard 2,477 / 3,072 18.882

3rd order 24-bit on RC200 2,188 / 5,120 33.816

5th  order 24-bit on RC200 3,167 / 5,120 27.485

Figure 13. Photograph of the Celoxica RC200 board 

Figure 14. Photograph of the Pilchard card 



 
Figure 15. Place & Route Floorplan of the completed 5rd 
order design on Xilinx Virtex II XC2V1000, RC200 

 

 
Figure 16. Simulation of the input level vs. SNR 

The measured results show the noise shaping 
performed by the SDM. As expected, the higher order  
implementations provide a higher SNR. In our 
experiments, we adjust the input signal amplitude in order 
to achieve the highest SNR data. The input frequency was 
fixed at 20kHz for all results.  

 

 
 

5. CONCLUDING REMARKS 

In this paper, we have presented the design and 
implementation of a reconfigurable Sigma-Delta audio 
DAC on two different FPGA platforms: the RC200 and 
the Pilchard platforms. There are several parameters for 
designers to control such as the bit-width, the 
oversampling ratio, the operating clock rate and the order 
of the design. With different designs, we are able to 
achieve different SNR ratios for various audio applications. 
The maximum achievable SNR from our designs is around 
170db. The reconfigurable platform is proved to be 
suitable for both digital designs and analog related devices 
such as the SDM in audio DACs. 
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Figure 17: 3rd order, 24-bit SNR=98.2088dB, input=0.85, 
fin=20kHz, fs=96Khz, oversampling ratio=64x 
 
 
 

 
Figure 19: 5th order, 24-bit, SNR=139.2924dB, input=0.525, 
fin=20kHz, fs=96Khz, oversampling ratio=64x 

 
Figure 18: 3rd order, 24-bit, SNR=115.9667dB, input=0.85, 
fin=20kHz, fs=96Khz, oversampling ratio=128x 
 
 
 

 
Figure 20: 5th order, 24-bit, SNR=171.8071dB, input=0.525, 
fin=20kHz, fs=96Khz, oversampling ratio=128x 
 


